
Domain-specific Metaware for Hydrologic

Applications

Daniel Andresen, Mitchell Neilsen, Gurdip Singh, Prasanta Kalita a,a,a,b,1

aDepartment of Computing and Information Sciences
234 Nichols Hall, Kansas State University

bDepartment of Agricultural Engineering
University of Illinois, Urbana-Champaign

Abstract

The DHARMA domain-specific middleware system is intended to allow hydrologic
field engineers to tackle water-management problems on a scale previously impossi-
ble without sophisticated computational management systems. DHARMA provides
automatic data acquisition via the Internet; data fusion from online, local, and
cached resources; smart caching of intermediate results; parallel process execution;
automatic transformation and piping of data between different hydrologic simulation
models; and interfaces with existing metacomputing systems. Our target watershed
model, WEPP, is limited to very small watersheds with current computer technol-
ogy. A revolutionary change in hydrologic modeling on the watershed scale will be
brought about by applying various watershed models to large watersheds, such as
the Lake Decatur Watershed which covers 925 square miles. Even with unlimited
computing resources, the current version of WEPP cannot be directly applied to
model the Lake Decatur Watershed because the current implementation of WEPP
is limited to a maximum of 75 hillslopes. To address this issue, we have now in-
tegrated support for multiple simulation models in our software; for example, we
can use WEPP to model individual hillslopes and another model, such as SITES,
to model the connecting channels (reaches) and dams (structures), playing to the
strengths of both models. In this paper we discuss the evolving software architecture
of DHARMA and its interaction with the Web and Grid infrastructures.

Key words: middleware, hydrologic simulation, hydrology, distributed computing,
XML

∗ Corresponding author
Email address: {dan, neilsen, singh}@cis.ksu.edu,

pkalita@sugar.age.uiuc.edu (Daniel Andresen, Mitchell Neilsen, Gurdip Singh,
Prasanta Kalita).

Preprint submitted to Elsevier Science

1 Introduction

The DHARMA project attacks two fundamental problems in today’s hydro-
logic research environment. First, the inability of researchers to perform even
simple investigations due to the inaccessibility and essential difficulty in ac-
quiring and utilizing the necessary data. Often the data and simulation models
are available via the Internet, but through a combination of obscurity, incom-
patibility, and inefficiency are essentially unusable. Second, local computing
resources are inadequate to support modeling systems at the level desired.
DHARMA addresses these problems through significantly easier access to the
computational power and data acquisition capabilities of the Internet. The ob-
jective of the DHARMA project is to expand the applicability of the WEPP
(Water Erosion Prediction Project) model and the SITES (Water Resource
Site Analysis) model to large watersheds, specifically applying them to the
925 sq. mile Lake Decatur watershed in Illinois [7,9].

The DHARMA domain-specific middleware system is intended to allow hy-
drologic field engineers to tackle water-management problems on a scale pre-
viously impossible without sophisticated computational management systems.
The system is intended for use not only by hydrologic researchers, but also by
engineers working in the field on a daily basis. These engineers typically have
older, inadequate local computing power for the increasingly complex models
required.

DHARMA has the following major points of functionality: automatic data
acquisition of geotemporal climatic data from online databases; data merging
necessary for the computation to occur, from online, local, and cached re-
sources; automatic transformation and piping of data between heterogeneous
hydrologic simulations; smart caching of intermediate results to allow for reuse
in future simulation cycles; task graph acquisition from the UI layer, and opti-
mization through application-specific knowledge and dynamic results caching
strategies; and, in the future, interfacing with computing resource managers,
such as Globus and Condor [4,8].

UI Layer

DHARMA

Globus/
Grid

WEPP SITES

Local
resources

WWW
data

Domain-
specific logic

cache

Fig. 1. DHARMA block diagram.

Major technical problems to be solved include: How do we automatically ac-

2

quire the necessary data? How do we know which items can be cached? How
can results be passed from simulation to simulation with dissimilar data for-
mats? What Document Type Definition’s (DTD) must be developed for infor-
mation within this domain? What domain-specific task graph heuristics are
needed for efficient computation?

To address these issues, we:

• use the eXtensible Markup Language (XML) and DTDs as a lingua franca
between simulations, remote data sources, and DHARMA components.
• realize our primary goal is flexibility and ease in data acquisition and data

transfer between simulations, which cannot be sacrificed for utility-limiting
performance enhancements.
• allow DHARMA to have multiple interfaces to existing metacomputing sys-

tems, and use DHARMA to package up the computation into a tidy set for
computation by these systems.
• develop heuristics for scheduling task graphs, interfaces for the various re-

sources, and application-specific caching techniques.

The paper is organized as follows: Section 2 gives the background needed on
WEPP, SITES and XML. Section 3 discusses the DHARMA software architec-
ture and various implementation issues. Section 4 presents some preliminary
experimental results, and Section 5 discusses related work and conclusions, as
well as future directions.

2 Background

WEPP: The WEPP watershed model is a continuous simulation processes-
based model which represents new soil erosion prediction technology based on
fundamentals of stochastic weather generation, infiltration theory, hydrology,
soil physics, plant science, hydraulics, and erosion mechanics [7]. Currently,
all watershed scale hydrologic models are based on empirical relationship and
seldom include process interactions among soils, hydrologic, plant, and atmo-
spheric processes. Currently, WEPP is the only model which accounts for soils,
sediment transport, runoff, channel flow, plant growth, decomposition, snow
melt, freeze-thaw effects, and climatic conditions. The applicability of WEPP,
however, is limited to very small watersheds (up to few hundred acres) due to
currently available computer technology in handling input data requirements.
If the WEPP model can be enhanced for application over larger watersheds,
it will bring a revolutionary change in hydrologic modeling on the watershed
scale as it will be the only such model which will provide accurate predic-
tions and evaluate effects of alternative watershed management practices on
watershed water quality.

3

Fig. 2. Flood control structure components.

SITES: Vegetated earth (soil and rock) auxiliary or emergency spillways have
been used extensively on reservoirs and ponds for flood control within the
United States. These spillways generally consist of a trapezoidal channel cut
through natural materials and vegetated as appropriate for the local area [12].
The USDA Soil Conservation Service (SCS) has constructed approximately
23,000 structures using this type of spillway [3]. Despite their widespread
use, the processes by which these spillways erode during extreme events, and
their effect on the environment, are only imperfectly understood. The SITES
software has been used extensively by the SCS for the design and analysis of
flood control structures since 1971. The SITES software was developed using
Fortran, and consists of several thousand lines of source code [13]. SITES
software evolved from the DAMS2 software, which has been used extensively
by the Soil Conservation Service for the design and analysis of flood control
structures since 1971. While SITES retains all of the capabilities of the DAMS2
software, it also adds a number of new features to better predict erosion. For
example, it has been found that erosion of vegetated earth spillways can be
divided into three phases: vegetal cover failure, concentrated flow erosion, and
headcut advance [12]. Hydraulic and hydrologic analysis of structures (dams)
designed using this new NRCS criterion for spillways and flood routing can
be performed using SITES.

Input to SITES includes information about the structure being analyzed and
information required to generate the inflow hydrograph(s) – functions that
represent the amount of water flowing into the reservoir created by the struc-
ture (see Figure 2). Hydrographs, or the rainfall/watershed information re-
quired to generate them, may be derived from historical data for a given flow
event, or generated automatically from standard design tables. Execution of
SITES generates outflow hydrographs and other structural information, in-
cluding predicted earth spillway erosion (Figure 3).

XML: We have chosen an XML-based data format for several reasons. Using
XML leverages a huge wave of support from industry in terms of tools and
source code. However, the primary advantage is the combination of device- and
OS-independent data transfer, with the ability to retain its semantic struc-
ture [17]. This is a critical advantage over text files or HTML. Furthermore,

4

Fig. 3. Spillway erosion. (Image courtesy USDA)

XML allows a single information source to serve multiple applications. For
example, our weather data server can easily be used by other weather-based
simulations.

Alternative technologies to XML include CORBA, sockets, NetCDF, Java
RMI, and other custom networking protocols. CORBA typically is more com-
plex for developers, but provides an object-oriented interface [14,15]. NetCDF
is designed for the exchange of scientific information, and offers an intrinsic
Web interface, but has failed to achieve the same level of support across the
entire Web industry as XML [11]. We hope to provide a gateway between our
system and NetCDF data sources, due to the significant amount of scientific
data available in that format. Java RMI provides an excellent mechanism for
communicating between Java processes, but lacks the flexibility and generic-
ity of XML [16]. Through the use of industry-standard information exchange
mechanisms, we can provide for future expansion and compatibility with on-
line information sources.

3 The DHARMA Architecture

We now give an overview of the DHARMA architecture, as illustrated in Fig-
ure 4. Our architecture generally follows the standard n-tier model with a
user interface, task logic, and, differing from the standard three-tier model, a
cluster-based computation/data layer. This includes the multiple user inter-
faces, the job manager, automated data acquisition, and execution engine.

5

Data

XML

Data

HTML

Tier 1: Computation
- stores data
- provides computation

- Condor-based

Tier 2:
Core Logic

- Job generation

- scheduling
- access control
- data management
- cache support

- auto data
 acquisition

Tier 3: Display
- define jobs
- display results

- Ex: Internet Explorer,

WAP-enabled cellphone

WEPP
Windows UI

Java UI

Web UI

Fig. 4. DHARMA layers diagram.

3.1 The DHARMA user interfaces

There are currently four possible interfaces that can be used to run a simu-
lation in our system. The four interfaces are the WEPP Windows Interface,
the SITES Integrated Development Environment, the Dharma Web Interface
and the Drag and Drop Interface. Each of these interfaces retrieve data from
the user and interact with the middleware in a different manner. The primary
interface that will be used when the project is fully functional will be the Drag
and Drop Interface. The other three interfaces will still be supported at the
end of the project.

Fig. 5. The WEPP Windows Interface.

WEPP Windows Interface: The first of the four interfaces that can be
used to interact with our system is the pre-existing WEPP Windows Inter-
face (Figure 5). The designers of the WEPP simulation created a windows
application that allows the users to run soil loss simulations on hill slopes and
channels. This interface allows the user to input some basic attributes of the
slope or channel that the simulation will model on. These inputs are then used

6

to generate the files necessary to run the WEPP simulation.

Fig. 6. SITES Integrated Development Environment.

SITES Integrated Development Environment: The SITES Integrated
Development Environment (SITES 2000.1) is designed to allow the user to
conveniently examine the impact of flood or design changes on the perfor-
mance of the downstream (design) structure. A typical watershed schematic
constructed using the SITES IDE is shown below in Figure 6. The envi-
ronment also guides the user through the required input and assists in the
interpretation of the output. It is designed to take advantage of the unique
features of the SITES computational routine while operating in any contem-
porary Microsoft Windows environment.

Fig. 7. Dharma Web Interface.

Dharma Web Interface: The third of the four interfaces that are at the
disposal of the users of the Dharma system is the Dharma Web Interface
(DWI). The DWI uses HTML, XML, and Java Servlets (Figure 7). The only

7

models that the DWI currently supports are the WEPP and SITES simulation
models. However, adding new simulations to the interface is relatively painless.

The overall structure of this interface is fairly straightforward. A user is pre-
sented with a dynamically list of simulations from which one can be selected.
Depending on the simulation selected, our system dynamically generates a
form from an XML document that describes the inputs necessary for that
simulation. The user then enters the data and clicks submit. The submit but-
ton launches a Java Web Start application that checks to see if the Dharma
servers have the data cached already. The application then bundles up the job
and sends it to the middleware. When the user is inputting data, they are
offered two options for each input file. They can submit a file or they can ask
to have the file automatically generated. Currently, the user is only allowed
to automatically generate climate files.

We chose to use a Java servlet solution to implement the data gathering part
of the interface. We did this because it is relatively easy and clean to get
the data via a form and servlet. The servlet also allowed us to create a clean
and aesthetically pleasing interface using HTML and XML style sheets. The
servlets are also easy to write and extend later on. With a servlet solution, if
anyone needs to modify the web interface in the future they can simply write
a function or add an XML document.

Open
Interface

Add New
Job

Open Input
Dialog

Dynamicallly Generate
Dialog Box Using Castor

Input Data

Run Job

Use Class Loader to
Extract Data From the File

Check Metadata
Manager

Create Job
Object

Send Job to Middleware
for Execution

Fig. 8. Dharma GUI process.

Java Web Start was used to gather information about the files on the client.
The Dharma system caches files that it receives so that they do not have to
be later uploaded again. In order to ensure that we were not uploading files
that were already on the servers, it was necessary to gather information about
the files while they were still on the client side. Java Web Start was selected
to do this because with Java Web Start we were able to launch a normal Java
application on the client. This application was able to access the local file
system on the client with the users permission. In order for the program to

8

run, the users of the system must install the Java Web Start plugin and the
Java plugin.

Fig. 9. Dharma Advanced Interface - Drag and Drop Interface with SITES and
WEPP simulations.

Drag and Drop User Interface The Drag and Drop Interface (DND) is
an interactive interface that allows the user to create a diagram that visually
represents a simulation run (Figure 9). The interface is deployed on client
machines using Java Web Start and written in Java.

The user is allowed to place buttons on the screen that represent watershed
elements, such as hillslopes or channels. When a user clicks on the button
for a simulation a dialog box will pop up that allows the user to input all
of the data necessary to select and run a simulation. These dialog boxes are
dynamically created from XML documents that describe the necessary inputs
for a simulation. After a user has filled in the information on a simulation in
the dialog box, an input icon will appear on the screen for each input into the
simulation. Users are also allowed to chain simulations together and outputs
are automatically fed into the dependent simulations, with the data formats
converted as necessary.

The dynamic generation of XML Dialogs is accomplished by using an XML
parser written for this project. The parser takes in an XML file name and
return a JDialog dialog box. This is generic enough that it could be used in
other projects needing the same type of functionality. The dynamic generation
of dialog boxes will allow the system to be easily extended. All that will have
to be added to the interface is an XML document detailing the necessary
inputs for a simulation.

When a user starts a job, all simulations on the diagram will be executed. The
interface grabs all of the data for the simulations on the screen and checks with
the Metadata Manager (described in Section 3.3) to see if the files exist on

9

Fig. 10. Sample input dialog for WEPP simulation.

the Dharma servers. The application then bundles all of the information up
into SOAP objects. These objects represent a simulation run. These objects
are then sent to the middleware for processing and execution. If there are
multiple simulations on the same diagram that are dependent on each other,
the dependencies will be sent to the middleware as well so that scheduling can
be done.

The Drag and Drop interface is a highly extensible user interface that al-
lows the Dharma project to function for many different simulations. The only
modifications that are necessary to extend the interface are an XML docu-
ment detailing the inputs necessary for the creation of a dialog box for that
simulation. Furthermore due to the utilization of Java Web Start it will not
be necessary for users to acquire new releases of the software. With Java Web
Start new versions are automatically downloaded every time there is a revi-
sion to the software. This process is completely transparent to the users of the
system.

Simulation Handling Currently all handling of simulations is generic and
ignorant of what a simulation needs for its inputs. The way the system cur-
rently runs, all that is required to add a simulation to the interface is an XML
document specifying the inputs that are necessary for the new simulation
model.

When the user clicks on a button on the workspace, a dialog box is automati-
cally generated from XML using Castor and Swing. If the button has already
been clicked then the box that was previously created is made visible again.
The buttons in the workspace are custom buttons that were created specifi-
cally for the Dharma project. They store all of the data that is entered in the
dialog box as well as a vector that contains information about dependencies.

After a user has entered all of the necessary information on a simulation, they

10

are now ready to run their job. This is done by selecting the “Run Job” option
from the file menu. When the user runs a job, the interface runs through each
button on the workspace and prepares it for submission.

It is sometimes necessary for the Metadata Manager to know certain infor-
mation contained in the files that are being sent to it. In order to maintain
the generic nature of the interface, we implemented a class loader that allows
the interface to get the information from the files without actually knowing
anything about the files. We store classes that can be used to extract the data
from the files on the Dharma servers. When the UI is getting ready to check
with the Metadata Manager to see if it should send a file, it downloads this
class and calls the method that extracts the data. Once the data is extracted
to the file it is added to the object that is sent to the Metadata Manager.
The object is then sent to the Metadata Manager and the job continues in the
same manner that it did previous to the changes.

By using the class loader we are able to maintain the generic nature of the
interface. Had we not used the class loader, it would have been necessary for
the interface to extract that data. This would have compromised the generic
nature of the interface, because for each simulation we would have had to
add code that extracted the fields. This would have made the work done to
dynamically generate dialog boxes worthless because we would have had to
add code anyway.

<type>wepp.simulation.hillslope</type>

<numelements>20</numelements>

<tabpanes>

<tabpanel>

<tabname>Climate Info</tabname>

<piecestype>

<group>

<type>wepp.types.climate</type>

<heading>

<type>radiotype</type>

<radiotype>

<rlabel>Use Climate File</rlabel>

<rname>nac</rname>

...

Fig. 11. WEPP XML specification.

3.2 Middleware

The purpose of the middleware is to provide a flexible way of scheduling large
computing jobs. In the context of Dharma, a job is composed of many dif-
ferent subtasks. The individual subtasks consist of a task type and resources.
The task type is used to figure out what mechanism should be used to pro-
cess the task, and the resources serve as the initial input data. The tasks are
arranged into a directed acyclic graph (job graph) that describes the depen-
dencies between the different tasks. If a task has any children, it means that

11

those children cannot run until their parent is complete and it also means
that they have access to any of the resources that their parent creates. The
execution of a task follows the following steps: First, the cache is checked to
see if the task has already been performed. If it is not in cache, the task is
transformed according to the input format of the native simulation. For ex-
ample, in the case of WEPP, this would mean making a control file. When
this “staging” is complete, the task is enqueued in the backend’s queue. Once
the simulation has been executed by the backend, any resources produced are
cached.

Job acquisition / Data collection

Task Scheduling

Backend - task execution

Data Staging/Translation

M
D

M DB

Middleware server

Simulation execution

Results transformation

Processing nodes

tasks

M
D

M

Fig. 12. Dharma middleware overview.

The middleware provides an interface for adding jobs, checking on the status
of jobs (and individual tasks within a job), and getting the results of jobs (and
tasks). Status objects have two attributes, a status code and a status string.
They work similar to HTTP error codes where the status codes have well
known predefined meanings, and the status string provides further, detailed
information of the fault to the user. The resources that move around in the
system also are not simply raw data. Attached to each resource is information
that defines the data type; that is, metadata that describes the data, and either
a URL that describes where the data is or the raw data itself. The advantage
of using URLs instead of raw data is that it reduces network overheard when
passing resources from component of the system to another.

In our earlier version of DHARMA, all steps to run a task, except running the
simulation itself, were done on a single machine. This scheme did not scale well
as the staging activities were expensive in comparison to the actual simulation
itself. The current version of DHARMA incorporates a distributed version
of the middleware. We have several middleware worker nodes that perform
all of the activities associated with preparing a task. There exists a master
middleware server that is responsible for handing out the tasks. Once the
front-end has generated a job graph, it uses the interface to submit the graph.
After the master middleware server has received the graph, it is responsible for
making sure that all of the tasks are executed in the proper order (i.e. no child

12

(a)

Lake

Dam (b)

Sub-watershed

Lake

Dam

c

Fig. 13. A typical WEPP watershed job divided into autonomous hillslopes, with
dependencies shown (a) and sub-watershed selected for independent computation
(b). The blocks represent hillslopes, connecting edges represent channels.

is executed before its parent). When a worker node starts up, it communicates
with the master server. If there is an available task, the task along with all
the resources necessary to run it are returned. It is important to note that
only the URLs and not the actual resources are moved from one machine to
another.

As shown in Figure 13(a), a multiple-channel, multiple-hillslope simulation is
called a watershed in WEPP. We have isolated each hillslope element of the
watershed as an individual unit of computation. We consider a hillslope to
be an ideal atomic unit of parallel computation because–by definition–runoff
from one hillslope does not flow into another.

A branch of the dependency tree has been isolated in Figure 13(b). Note that
there are only three hillslopes feeding the channel in the sub-watershed. This
owes to two factors:

(1) WEPP itself only supports up to three hillslopes which empty into any
one channel.

(2) Because we control the size of the sub-watersheds (i.e., they are defined
to meet our purposes), we elect to maintain a relatively small size in order
to maximize parallelization.

We will invoke the WEPP binary upon the results of the hillslopes inside the
ellipse of Figure 13(b). The cumulative water runoff from the “watershed” will
be used as the displacement through the channel c when this channel is used
as an input to a later watershed.

One of the future improvements planned for the middleware is a new schedul-
ing algorithm. As previously stated, it immediately executes any runnable task
on any machine that is available. Examining the graph and figuring out better
times and places to run tasks could optimize the scheduling. For instance, if

13

there is a series of tasks that create large amounts of data, it would be time
consuming and a waste of network bandwidth to try to move that data from
machine to machine as tasks are executed. Instead, that series of task should
be run on one set of machines.

3.3 Metadata Manager (MDM)

In order to make the system more efficient, we cache files that are submitted
to us by the users when they submit a job. We also cache the output files that
are created by simulation runs. To solve the problem of caching we created
the Metadata Manager (MDM). The MDM is responsible for maintaining
information on all of the files that have been cached on the Dharma servers.
The MDM stores information on all of the files in the system in a Postgres
database.

The primary keys stored by the MDM are file name, file size, checksum of
the file, file type, the lat- long box that the file stores data on, location on
servers, and other specialized attributes. The manager was designed to be
easily extensible. For each type of file in the system there is a Java class that
represents the data stored on that file. These classes contain information that
is stored about the files. There are also methods in these classes that tell a
database how to create tables for this type of file and create queries to get
information about these file types. All that is required to add a new file type
to the system is a class that tells the manager how to set up and access data
on files of this type.

To access data in the MDM you must create a SOAP request that the MDM
will process and return the results of the query. When looking for a file match-
ing some specific parameters, the user will be returned a list of URLs to where
the files are located on the Dharma servers. Users of the system are not al-
lowed to directly access the database that stores the information on the files
for security reasons. The abstraction added by the MDM provides a security
buffer between the metadata and the outside world. This will also allow us
to later implement the idea of file ownership. However, we also had to have
an efficient way to store information on files that we have cached so that our
system would run efficiently. In our test system, execution times typically drop
over 70% compared to uncached execution indicating the overhead introduced
by our system is small and the caching is effective.

14

3.4 Automatic weather data acquisition

Automatic data acquisition over the Internet is one of the major points of
functionality of Dharma. The data acquisition module has the following goals:

(1) Automatic data acquisition via the Internet for geotemporal climatic data
from online databases and digital libraries.

(2) Merging the data necessary for computation to occur, and storing it in an
XML annotated form, to facilitate easily conversion to different formats.

(3) Conversion of the XML annotated data to different formats as may be
needed. More specifically, this module performs the conversion for WEPP
and SITES. The conversion is performed by using an XSLT stylesheet
specific to each simulation.

Currently, DHARMA uses CLIGEN (a Climate Generator program) to pro-
vide WEPP with climatic data over a given time span in a per-point-per-day
format. The WEPP interface takes cligen-formatted files as input. This ap-
proach has two disadvantages:

(1) Cligen can generate the data only for weather stations for which past
data is available.

(2) Since cligen requires historical data, it cannot generate per-point-per-day
data for any arbitrary point.

(3) Cligen also cannot interpolate data from nearby stations to give an ap-
proximation of the weather at a particular point during a given time
span.

(4) Cligen can generate data only for one weather station at a time. However,
often we may need data for a set of points.

This module can effectively be used as a replacement for CLIGEN, to pro-
vide data gathered in real-time to the WEPP interface. Figure 14 depicts the
architecture of this module and its environment.

The Online Weather Database/Data Library collects data from various weather
stations, and serves out this data in the form of XML. This data is translated
by simulation-specific modules into the appropriate input files. When request-
ing for data, users need to specify the set of points needed as a rectangle or
box, in terms of the latitude/longitudes of the topleft and bottom-right cor-
ners of the box. More specifically, requests for data must have the following
parameters:

• Latitude/longitude of top-left corner
• Latitude/longitude of bottom-right corner
• Horizontal spacing between points in the rectangle specified above
• Horizontal spacing between points in the rectangle specified above

15

 Weather
Station 1

Weather
Station 2

Weather
Station 3

Weather
Station n

Online Weather Database / Data Library with XML Annotated Data

Data Acquisition Module

Request for per-
day climatic data

XML
annotated

output

Cligen
formatted

output

Fig. 14. Automatic weather acquisition overview.

• Starting day, month and year for the climatic data
• Ending day, month and year for the climatic data
• Maximum distance of any point from stations to be used for interpolating

data
• Maximum number of stations to be used for interpolating data.

On receiving a request, the module performs the following actions:

(1) Break the input request into a set of requests for individual points. For
this, it interpolates the individual latitude/longitude for each point in the
specified grid.

(2) Fetch the data for each point for each day in the specified time span,
from the Online Weather Database/Data Library. The fetching is done
in a multithreaded fashion, with one thread being used for each point in
the grid

(3) Convert the fetched data into an XML annotated format.
(4) Convert the per-point climatic data into cligens output format using

XSLT. The conversion to the cligen format is again done in a multi-
threaded way.

(5) Merge the XML data for all points into a single file, and store the file to
disk

(6) Merge the cligen formatted data for all points into a single file, and store
the file to disk

The user can use the files created above directly, or they may be used as input
to the WEPP interfaces.

Performance is very acceptable, averaging approximately one minute to re-
trieve two years worth of weather data for over 700 points from a local weather
web server. This information is cached, so repeated invocations are very effi-
cient.

16

Hillslopes Single events (s) 2-yr. Cont. (s)

136 8 17

946 13 67

4999 46 319

10002 90 624

Table 1
Dharma run times (10 processors).

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

Nodes

T
as

ks
/s

e
c

Fig. 15. Scalability for single storm simulation (5K tasks, 2-18 processors).

4 Experimental Results

Initial experimental results are positive. We estimate a total of approximately
10,000 hillslopes will be required to adequately model the Lake Decatur wa-
tershed. The project to gather this data is underway at UIUC, and will be
completed later. In the meantime, we are using a subset of the Lake Decatur
watershed (the 38-sq. mi. Big Ditch watershed) and randomly generated task
graphs with WEPP hillslopes as leaf nodes and SITES structures as interior
nodes. We have obtained convincing results indicating the scalability of our
system.

Overhead for the system is somewhat steep, given its distributed nature and
the degree of data conversion/translation necessary for the heterogeneous sim-
ulations. We offset this by exploiting caching, fast hardware, and parallelism.
All computation nodes and our MySQL server are dual-processor Athlon
PR1800-1900+ rackmount servers, with 2GB RAM running Linux 2.4.18 and
IBM’s JVM 1.3.1, connected via switched Fast Ethernet. A similarly-configured
dual Athlon MP serves as our NFS and middleware server.

17

DB
19%

Disk
8%

Network
15%

Transformation
12%

Computation
46%

Fig. 16. Time spent per task in processing nodes (event simulation).

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

Nodes

T
as

ks
/s

e
c

Fig. 17. Scalability for 2-year continuous simulation (5K tasks, 2-18 processors).

Single-storm event simulation. We use WEPP and SITES compiled into a
Linux binary and a standard single-event 10-year storm. The current single-
event task has a rather low computation/communication ratio (Figure 16),
making our goal of high performance more difficult.

We also see in Figure 15 and Table 1 we are achieving near-linear speedups
through approximately 4 nodes (8 processors), though we are currently bot-
tlenecked by our NFS server. For the 10K-node single event simulation, ap-
proximately 1.2GB of data is generated. Potential solutions include using a
parallel filesystem or using a higher-performance server.

Two-year continuous simulations. For continuous simulations (Figure 17 and
Figure 18), with their higher computational demands (Table 1), the compu-
tatation/communication ratio is significantly better. Here, despite the fact
that over 10x the amount of total data is generated, we achieve near-linear

18

DB
2%

Disk
1%

Network
4%

Transformation
4%

Computation
89%

Fig. 18. Time spent per task in processing nodes (2-year continuous.

speedup through 18 processors and are CPU limited. For each graph node,
approximately 500KB of data is transferred to the fileserver to be cached and
returned to the client.

Computation breakdown. In Figures 16 and 18 we show the breakdown of the
total times on our computational nodes. Efficiency suffers for event simula-
tion, given the small amount of computation relative to the amount of data
transferred, but we see this problem disappearing for continuous runs. We ex-
pect an increase in performance after moving to gigabit Ethernet sometime
this summer, based on the total time spent in network communication. We are
happy to see the time spent converting the data from one format to another is
relatively small (using SAX helped considerably to keep the overhead down).
The database has the potential to become a bottleneck, since each node in the
task graph generates approximately ten database queries to determine when
data already exists or has been created. We are investigating the use of a
clustered database server.

5 Related work and conclusions

Presenting a simple interface to the researcher and educator, with its seam-
less and transparent access to distributed databases, is a difficult technologi-
cal challenge. Various other distributed computation systems have previously
been developed, but all are aimed at automating the distribution of existing
scientific programming and data. Systems such as SWEB++, Ninf, AppLeS,
Globus, and Legion all will schedule computation quite competently [1,10,2,4,6].
However, they fail to address the most fundamental difficulty in conducting
any sort of operation on distributed data sets – the acquisition and match-
ing of data to the models being used. Furthermore, the interface presented

19

to the user is often more suited to the professional programmer rather than
a researcher in the physical sciences. Systems devoted to universal data ac-
cess, such as the WebHLA and DATORR projects, lack the domain-specific
knowledge to acquire and optimally use the necessary hydrologic data [5].

In this paper we have discussed the DHARMA system, which, through the
use of standards from the computational Grid and the WWW, meets our
goals of increasing user capabilities while maintaining simplicity of use. We
show how we have implemented automatic weather data acquisition, multi-
level caching, connecting multiple simulations, and an extensible set of user
interfaces to bring hydrologists into a new era.

As shown in Table 1, a 136 node task graph covering the Big Ditch water-
shed takes 8s. on ten processors (five nodes), while 10,002 task nodes take 90
seconds for a single storm event, and simulating two years takes only around
five minutes. Given this performance, we are quite confident in our ability to
simulate the entire Lake Decatur watershed with an unprecedented degree of
precision when our full dataset becomes available.

In the near future we are extending DHARMA in two directions. First, we are
working to incorporate the HEC-RAS river modeling tool. This will signifi-
cantly increase the accuracy of our channel simulation, and, due to the fact
that HEC-RAS allows for backflows where two channels meet, forcing us to
extend our dependency graphs to include cycles. Second, we are developing
the tools to automatically aggregate and partition jobs to increase our overall
execution efficiency. We plan to begin using CONDOR-G to test performance
over Globus and the Grid.

Acknowledgments

This work was supported in part by startup funds from Kansas State Uni-
versity, and NSF ITR-0082667. All opinions, findings, conclusions and recom-
mendations in the material are those of the author(s), and do not necessarily
reflect the views of the National Science Foundation. We also wish to thank
Michael C. Hirschi, Ryan Porter, Jesse Greenwald, Dan Lang, Matt Hoosier,
Mahesh Kondwilka, T.J. Rothwell, and Doug Armknecht for their efforts and
enthusiasm.

20

References

[1] D. Andresen and T. Yang. Multiprocessor scheduling with client resources to
improve the response time of WWW applications. In Proceedings of the 11th
ACM/SIGARCH Conference on Supercomputing (ICS’97), Vienna, Austria,
July 1997.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-
level scheduling on distributed heterogeneous networks. In Proceedings of
Supercomputing’96, Pittsburgh, PA, November 1996.

[3] K. Cato and C. Mathewson. Rock material performance during emergency
spillway flows. In Proceedings of the 1989 ASAE Annual International Meeting,
St. Joseph, Michigan, ASAE Paper No. 89-2649, 1989.

[4] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, Summer 1997.

[5] G. C. Fox, W. Furmanski, G. Krishnamurthy, and H. T. Ozdemir. Using
WebHLA to integrate HPC FMS modules with Web/commodity based
distributed object technologies of CORBA, Java, COM and XML. In
A. Tentner, editor, High performance computing: HPC ’99: Conference;
7th — April 1999, San Diego, CA, PROCEEDINGS OF THE HIGH
PERFORMANCE COMPUTING SYMPOSIUM 1999; 7th, pages 273–278, San
Diego, CA, USA, 1999. Society for Computer Simulation.

[6] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds, Jr.
Legion: The next logical step toward a nationwide virtual computer. Technical
Report CS-94-21, Department of Computer Science, University of Virginia, June
08 1994.

[7] J. Laflen, L. Leonard, J. Lane, and G. Foster. WEPP: A New Generation of
Erosion Prediction Technology. Journal of Soil and Water Conservation, 1991.

[8] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter of Idle
Workstations. In Proceedings of the 8th International Conference on Distributed
Computer Systems, pages 104–111. IEEE, June 1988.

[9] M. Neilsen and D. Temple. A distributed simulation environment for water
resource site analysis. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’99), pages
560–566, 1999.

[10] Ninf, a network based information library for global world-wide computing
infrastructure, 1996. http://hpc.etl.go.jp/NinfDemo.html.

[11] R. Rew and G. Davis. NetCDF: An interface for scientific data access. IEEE
Computer Graphics and Applications, 10(4):76–82, July 1990.

[12] D. Temple and G. Hanson. Headcut development in vegetated earth spillways.
Applied Engineering in Agriculture, 10(5):677–682, 1994.

[13] D. Temple, H. Richardson, H. Moody, H. Goon, M. Lobrecht, J. Brevard,
G. Hanson, E. Putnam, D. Woodward, and N. Miller. Water Resource Site
Analysis Computer Program (SITES) – User’s Guide. Technical report, USDA,
1996.

[14] S. Vinoski. Distributed Object Computing with CORBA. C++ Report, 5(6),
Aug. 1993.

21

[15] M. Weiss, A. Jhonson, and J. Kiniry. Distributed Computing: Java, CORBA,
and DCE. Open Software Foundation Version 2.1, Feb. 1996.

[16] A. Wollrath and J. Waldo. Trail: RMI. The Java Tutorial, July 1999.
http://java.sun.com/docs/books/tutorial/rmi/index.html.

[17] Extensible Markup Language (XML). W3C, July 1999.
http://www.w3.org/XML/.

22

