
User Preference Extensions to eXene

Dusty deBoer
KSU CIS 705 Final Project

March 8, 2005

X applications are generally user customizable. This allows the user to
customize applications to fit his or her needs, and to make make the
applications more usable. For example, a user may wish to set all
applications to use a large font, or set all applications to use a common
background to fit a desktop theme, or set one particular application to use
a unique background so that it can easily be distinguished from other
programs. Applications should provide a way for users to easily and
uniformly apply these preferences.

In Xlib released with version 11 of the X Window system, there are several
standard ways that a user may set application preferences. Application
preferences may be stored in a preferences file in the format
“application[.subcomponent...].attribute: attributevalue”.
These preferences may be loaded by an application into a “resource
database” by the routine XrmGetFileDatabase.

However, if a user were displaying several applications from several
different hosts on the same X-server, the user would be forced to ensure
that the preferences file on each host was the same to ensure that the same
preferences were applied to all applications. To address this issue, there is
the xrdb utility that reads a preferences file and loads the preferences (as
strings) into a property of the X-server. An application then may read
preferences directly from the X-server.

In addition, the user may wish to customize an application at run time. In
Xlib, an application may use the routine XrmParseCommand that, given a

1



specification of the command line options that the application wishes to
recognize, returns a resource database that may be queried for user
preferences.

Finally, an application must have a method for combining resource
databases, giving priority to the preferences of one database over another.
For example, an application may have default preferences programmed
into the application, preferences from a application preferences file,
preferences loaded from the X-server, and run time preferences loaded
from the command line. These preferences would usually be combined in
an order such that run time preferences have priority over X-server (xrdb)
preferences, and X-server preferences have priority over application
defaults. Xlib provides the routine
XrmMergeDatabases(sourcedb,targetdb) to merge preferences of a
source database into a target database, with the preferences of the source
database taking priority over those of the target.

1 eXene Styles

Currently, eXene provides (perhaps limited) methods for customizing
widgets. Generally, widgets take a “view” as an argument to the widget
constructor, containing information about user preferences. A view is a
pair consisting of a “style” and a “styleView”, where a style is a database
of attribute/value pairs (very similar in utility to the Xlib resource
database) and a styleView is a search key into that style, such as the name
of the application. The widget may then use the style, combined with the
styleView, to search for values of attributes it wishes to use, perhaps under
the application name given in the styleView.

There is a function in eXene, Widget.styleFromStrings, that takes a list
of strings and creates a style. This is similar in use to the routines in Xlib
that load strings from a preferences file into a resource database. However,
eXene is missing the ability to load preferences stored by xrdb in the
X-server, the ability to parse options and resources from command line
arguments, and the ability to merge resource databases (styles) together.

While it would certainly not be appropriate to expect eXene to emulate

2



Xlib in every way, the Xlib resource management paradigm is both useful
and widely used. In this project, I shall therefore seek to implement in
eXene methods for parsing command line arguments, methods for loading
preferences stored on the X-server, and methods for merging eXene styles
similar to Xlib where appropriate.

2 Parsing Command Line Options

Xlib provides the routine XrmParseCommand that, given a specification of
the command line options that the application wishes to recognize, parses
command line arguments into a resource database. While I think it is
useful to emulate the option specification used by Xlib, so that eXene
applications might recognize the same types of command line options, I
also recognize that eXene does not have any other command line parsing
functions available. Therefore, a command line argument parsing function
may be useful not only for obtaining user preferences, but for obtaining
data for processing by the application. For example, a application may
wish to accept requests to set the background color by “-background
blue”, but may also wish to obtain the value of a filename by “-filename
foo”. There is really no need for the filename to be recognized as a user
preference for the application and all of its widgets to view. Let us
therefore distinguish between two types of options - “resource” options
whose purpose is to be loaded into an eXene style, and “named” options,
whose purpose is to be used for application processing.

It is the application’s responsibility to set up a command line option
specification table. This table, Styles.optSpec, shall be a:
(optName * argName * optKind * Attrs.attr type) list .

The option name, Styles.optName, shall be of either Styles.OPT NAMED
of string or Styles.OPT RESSPEC of string, where the former is a
named option and the latter is a resource option. The string given for a
named option shall be any string of the application’s choosing, simply used
to identify the option when retrieving a value later, such as
OPT NAMED("filename"). The string given for a resource option is a
resource name, such as OPT RESSPEC("*background") or
OPT RESSPEC("appname.background").

3



The argument name, Styles.argName, shall be a string that is valid to be
used on the command line to specify the setting of this option. For
example, "-background" or "--bg" or "/bg=" might be used as argument
name values.

The option “kind” (term taken from Xlib), Styles.optKind, shall be of
one of the following:
OPT NOARG of string Similar to Xlib’s XrmOptionNoArg. Option will

assume the value of the string given if set.
OPT ISARG Similar to Xlib’s XrmOptionIsArg. Option will

assume the value of the argument name itself if
set.

OPT STICKYARG Similar to Xlib’s XrmOptionStickyArg. Option
will assume the value of the substring following
the argument name if set. For example, if "-bg="
is the argument name, and “-bg=blue” is given
on the command line, the value of the option will
be “blue”.

OPT SEPARG Similar to Xlib’s XrmOptionSepArg. Option will
assume the value of the command line argument
immediately following if set.

OPT RESARG Similar to Xlib’s XrmOptionResArg. A resource
specification argument should follow on the com-
mand line. For example, if "-res" is the argu-
ment name, and “-res "*background:blue"”
is given on the command line, there will be
two option values created in the option db re-
turned: one with a name of "-res", of either
named or resource specification name, and a
value of “*background:blue”; and the other of
name OPT RESSPEC("*background") and value
of “*background:blue”.

OPT SKIPARG Similar to Xlib’s XrmOptionSkipArg. Skip the
next argument given on the command line; do
not attempt to match it to any option nor to
assign it as a value to any option.

OPT SKIPLINE Similar to Xlib’s XrmOptionSkipLine. Ignore all
following command line arguments given.

Finally, the option type, of type Attrs.attr type, is the type of the value

4



to be returned.

An example option specification is given here, for an application wishing to
find values for named options of “help”, “flag”, “pi”, and “cmd”; and
resource options of “*background”, “*foreground”, and “*borderWidth”.
It also allows the user to skip an argument or all following arguments on
the command line with “-skip” or “-ignore”. In addition, note that the
option “help” may be toggled on with “-help” or off with “-nohelp”.

structure S = Styles
structure A = Attrs
val optSpec =
[(S.OPT_NAMED("help"), "-help", S.OPT_NOARG("on"), A.AT_Bool),
(S.OPT_NAMED("help"), "-nohelp", S.OPT_NOARG("off"), A.AT_Bool),
(S.OPT_NAMED("flag"), "FLAG", S.OPT_ISARG, A.AT_Str),
(S.OPT_NAMED("pi"), "-pi=", S.OPT_STICKYARG, A.AT_Real),
(S.OPT_NAMED("cmd"), "-cmd", S.OPT_SEPARG, A.AT_Str),
(S.OPT_NAMED("res"), "-res", S.OPT_RESARG, A.AT_Str),
(S.OPT_NAMED("skip"), "-skip", S.OPT_SKIPARG, A.AT_Str),
(S.OPT_NAMED("ign"), "-ignore", S.OPT_SKIPLINE, A.AT_Str),
(S.OPT_RESSPEC("*background"), "-bg", S.OPT_SEPARG, A.AT_Str),
(S.OPT_RESSPEC("*foreground"), "-fg", S.OPT_SEPARG, A.AT_Str),
(S.OPT_RESSPEC("*borderWidth"),"-border",S.OPT_SEPARG, A.AT_Str)]

Styles.parseCommand: Styles.ctxt * Styles.optSpec -> string
list -> Styles.optDb * string list.

Command line arguments may be parsed into an “option database”,
Styles.optDb, with the function parseCommand. ParseCommand takes a
styles context (basically, a screen, used in converting attribute values), an
option specification, and a list of command line arguments as strings, and
returns an option database and the list of strings that were not recognized
as option arguments. Note that any unique prefix of an argument name
will be recognized as a valid command line option. Also note that the
function will not throw any exceptions upon encountering an unknown
command line argument, it will simply add that string to the list of
unrecognized arguments. In addition, the position of the unrecognized
arguments is not noted in the list returned; this may be a future

5



enhancement, as the position of these arguments may be important to
some applications.

Styles.findNamedOpt: Styles.optDb -> Styles.optName ->
Attrs.attr value list

Named command line option values may be retrieved from an option
database using the findNamedOpt function. The list of attribute values
returned are the list of all values specified for the named option on the
command line, in reverse order. For example, if “-pi=3.14 -pi=3.15
-pi=3.16” were given on the command line, and an option db “optDb”
was returned from parsing these arguments based on the option
specification given above, (Styles.findNamedOpt optDb
(Styles.OPT NAMED("pi"))) would return a list
[A.AV Real(3.16),A.AV Real(3.15),A.AV Real(3.14)]. In this way, the
application could choose to let the last option given have priority over the
others, in which case it would choose the head of the list. Or, the
application could choose to use all of the option values given, and process
the whole list.

Note that only “named” options may be returned by findNamedOpt; if a
resource option is searched on, an empty list will be returned.

Styles.styleFromOptDb: Styles.ctxt * Styles.optDb ->
Styles.style

Finally, resource options and their values in an option database may be
converted to an eXene style. The function styleFromOptDb takes a
context and an option database and returns a style.

3 Loading X-Server (xrdb) Preferences

val Display.rootWinOfScr: Display.screen -> XProtTypes.win id

When xrdb is run, it loads preferences (as strings) into the
XA RESOURCE MANAGER property of the root window of the X-Server. The
function Display.rootWinOfScr returns the root window id of a screen.

6



val ICCC.xrdbOfScr : EXB.screen -> string list

The function ICCC.xrdbOfScr uses the Display.rootWinOfScr to retrieve
the resource properties stored by xrdb in the XA RESOURCE MANAGER
property and convert them into strings. Note that managing user
preference strings has nothing really to do with ICCC; it was located in
this structure simply because ICCC had the necessary data structures
available, in addition to the get-property functions. In contrast, Styles is
not currently aware of Display and ICCC; it would be much harder to
locate this function there. In the future, this function should probably be
relocated (before being used by many users).

4 Merging Styles

When an application obtains eXene styles from several sources (such as
command line arguments and X-server preferences) it is necessary to
combine or “merge” these styles together. It is also necessary to perform
this merge in such a way that certain preferences have priority over others.
For example, an application may wish to allow run-time preferences in a
style obtained from the command line to have priority over preferences
from a style obtained from X-server preferences, which may have priority
over preferences from an application default style.

val Styles.mergeStyles : Styles.style * Styles.style ->
Styles.style

The function mergeStyles takes two eXene style arguments, the first the
“source” style and the second the “target” style, and merges them into one
“merged” style. The “merged” style should consist of the same resource
specifications that would exist in the “target” style if all resource
specifications of the “source” were inserted into the “target.” That is, in
particular, a tight binding of a particular resource specification in
targetStyle would not be overwritten by a loose binding of the same
specification in sourceStyle.

The behavior of this should be similar to XrmMergeDatabases(db1,db2) of
Xlib; in particular, resources specified in db1 should override those in db2.

7



5 Implementation Details

The following functions and types were added to the Widget structure, to
make it easier for the user of eXene widgets to use the user preference
extensions. In addition, the styleFromXRDB function is a utility function
that simplifies creating a style from xrdb properties - it obtains the
properties stored by xrdb in the X-server, and calls styleFromStrings on
these strings to create a style.

type Widget.optName
type Widget.argName
type Widget.optKind
type Widget.optSpec
type Widget.optDb
type Widget.attr_value
val Widget.mergeStyles :

Widget.style * Widget.style -> Widget.style
val Widget.styleFromXRDB :

Widget.root -> Widget.style
val Widget.parseCommand :

Widget.root * Widget.optSpec -> Widget.string list
-> Widget.optDb * string list

val Widget.findNamedOpt :
Widget.optDb -> Widget.optName -> Attrs.attr_value list

val Widget.styleFromOptDb :
Widget.root * Widget.optDb -> Widget.style

The following files from the eXene source tree were modified. The line
numbers of the modifications are listed, or a search for “ddeboer” in the
eXene tree will also list these files and lines.

Command line parsing; Merging styles:
eXene/styles/styles-func.sml: 312-314, 342-344, 448-718

Retrieve xrdb properties:
eXene/lib/window/display.sml: 181-190
eXene/lib/user/iccc-sig.sml: 161-174

8



eXene/lib/iccc/property-sig.sml: 92-104
eXene/lib/iccc/property.sml: 206-227

Adding extensions API to Widgets:
eXene/widgets/basics/root.sml: 37-90, 165-196

6 Further Work

The signatures (interfaces) for the three extensions implemented in this
project should be further refined and documented, and the structures
implementing them should be relocated (in some cases) into more natural
locations in the eXene source. The merge function should be better
defined, in addition to perhaps being rewritten to eliminate possible errors.
The unrecognized arguments returned from command line parsing should
perhaps be marked according to position among the command line
arguments. Finally, eXene in general is very much in need of updated
documentation and cleanup (for example, some abandoned code in Styles
used deprecated CML functions like “CML.accept”).

7 References

Nye, A. Xlib Programming Manual, Volume One. O’Reilly & Associates,
1990.

Nye, A. Xlib Programming Manual, Volume Two. O’Reilly & Associates,
1988.

Reppy, J. “eXene/styles/Notes” of eXene source distribution.

Reppy, J.H., and E.R. Gansner. “The eXene Library Manual”, AT&T Bell
Laboratories, 1993.

9


