
Sharing a File Descriptor between Two Processes
Authored by: Thomas Fletcher
Updated by: Thomas Fletcher

One of the rarely used, but quite handy, features often found in traditional UNIX systems is the
ability to pass file descriptors from one process to another through a UNIX domain socket (uds). If
you aren't familiar with them, UNIX domain sockets are a combination of pipe and socket
services. You have all of the benefits of a bi-directional local pipe (i.e. speed), and you can use
the exact same socket function calls to communicate locally as you would to communicate across
a regular socket.

UNIX domain sockets were introduced into the Neutrino 6.2 release, but prior to that time you
were stuck if you needed the facility of passing a file descriptor between two processes. Using
the UNIX domain sockets as a model, this article describes how that functionality can be provided
using the standard Neutrino IPC mechanisms. It provides a bit of insight into some of the darker
corners of the resource manager and messaging framework.

Understanding How Things Work

The first thing to remember is that the process of obtaining a file descriptor (otherwise known as a
connection id in QNX Neutrino) involves the client process connecting to a channel that has been
established by some server process. The client then sends a message (generally
_IO_CONNECT_OPEN) down the channel which the server receives and processes. Part of the
processing includes checking access control lists, validating paths, etc. In the case of a
successful open() function call, the server will bind the calling client's connection to some internal
resource manager data structures, and all subsequent standard messages (_IO_READ,
_IO_WRITE etc.), will resolve through this binding.

In a monolithic system, where there is usually one central virtual file system (vfs) used by many
different file systems, the mapping of file descriptors in one process (such as what happens on a
fork() system call) to the file descriptors in another process, is quite straightforward.

Due to the distributed nature of the client file descriptor binding operation under the QNX Neutrino
microkernel (one process may have many file descriptors that are, in turn, mapped to many
different servers, each process with its own unique set of bindings), it is impossible to simply pass
numeric integer values between processes. Each client process must build up their file descriptor
mappings by talking to each server process individually.

Talking to Strangers

What we will provide in this example is a way that two client applications can use some
communication channel (pipe, socket, shared memory, native IPC, carrier pigeon) to pass a
packet of information that contains enough information such that the receiver can contact a given
server to duplicate a file descriptor that exists in the client's address space.

© 2003, 2007, QNX Software Systems. All rights reserved.

Graphically, it looks like:

The scenario is as follows:

Client1 has a file descriptor to Server1 (i.e., a file system) as well as a communication channel to
Client2 (i.e., a pipe). Client1 would like Client2 to have the ability to use the same file descriptor
as it's using.

In this scenario, the packet of information will be a dup message that's described in
<sys/iomsg.h>. This message is put together by Client1 and contains all of the information that's
required for Client2 to establish a connection to the server that mimics the first client's
connection.

Here is the code sample that's used for sending the message:

/*
 Generate the data packet (message) that will be sent using
 func() to duplicate the file descriptor fdtosend.
*/
int send_fd(int fdtosend, int flags, void *arg,
 int (*func)(void *arg, void *data, int len)) {
 int ret;
 io_dup_t dupmsg;
 memset(&dupmsg, 0, sizeof(dupmsg));

 dupmsg.i.type = _IO_DUP;
 dupmsg.i.combine_len = sizeof(dupmsg.i);
 if((ret = ConnectServerInfo(0, fdtosend, &dupmsg.i.info)) == -1) {
 return ret;
 }
 /* Overload the thread_id to carry this pid's address */
 dupmsg.i.info.tid = getpid();
 printf("SFD: client pid: %dn"
 " server nd: 0x%x pid 0x%x chid 0x%x scoid 0x%x coid 0x%xn",
 dupmsg.i.info.tid,
 dupmsg.i.info.nd,
 dupmsg.i.info.pid,
 dupmsg.i.info.chid,
 dupmsg.i.info.scoid,
 dupmsg.i.info.coid);

© 2003, 2007, QNX Software Systems. All rights reserved.

 /* Actually perform the transmission of the data through the user
callback */
 if(func) {
 ret = func(arg, &dupmsg, sizeof(dupmsg));
 } else {
 ret = 0;
 }
 return ret;
}

What's going on here is that we're filling in the io_dup_t message structure and sending it as
content along the user's communication channel. Given the client file descriptor, we gather all of
the information about the channel (and server) using the ConnectServerInfo() function. This
conveniently returns most of what we need for an io_dup_t message. We don't have any extra
messages that are being sent, so we can safely fill in the type and the combine_len to indicate a
single _IO_DUP message.

When the receiver gets this message, it's going to need to know which process sent it to be able
to properly generate the _IO_DUP request. There are a few unused fields in the msg_info
structure that are meaningless for server information (see <sys/neutrino.h>), so we hijack the
thread id field (tid) and stuff Client1's process id inside it.

Now, with the message readied, it's passed off for transmission by the communication
mechanism of choice. This brings us to the code that's used on the receiver side to decode the
data and get a new file descriptor:

/*
 Given a received packet of data of length len, attempt to extract
 out a DUP message that we can use to generate a file descriptor.
*/
int receive_fd(void *data, int len) {
 io_dup_t *pdupmsg = (io_dup_t *)data;
 pid_t otherpid;
 int ret, newfd;

 /* Very basic validity tests on the message */
 if(len < sizeof(*pdupmsg) || pdupmsg->i.type != _IO_DUP) {
 errno = EINVAL;
 return -1;
 }

 /* Extract out our overloaded field */
 otherpid = pdupmsg->i.info.tid;
 pdupmsg->i.info.tid = 0;

 printf("RFD: other pid: %dn"
 " server nd: 0x%x pid 0x%x chid 0x%x scoid 0x%x coid 0x%xn",
 otherpid,
 pdupmsg->i.info.nd,
 pdupmsg->i.info.pid,
 pdupmsg->i.info.chid,
 pdupmsg->i.info.scoid,
 pdupmsg->i.info.coid);

 /* Establish a connection with the channel first */
 if ((newfd = ConnectAttach(pdupmsg->i.info.nd,
 pdupmsg->i.info.pid,
 pdupmsg->i.info.chid, 0, 0)) < 0) {

© 2003, 2007, QNX Software Systems. All rights reserved.

 return -1;
 }

 /* Make out like we are the other process */
 pdupmsg->i.info.pid = otherpid;

 /*
 Send the message to the server asking it to duplicate the
 connection that has been described by the client. If
 this request succeeds, then the server resource manager layer
 has bound in our request. If it fails, disconnect from the
 channel.
 */
 if(MsgSendnc(newfd, &pdupmsg->i, sizeof(pdupmsg->i), 0, 0) == -1) {
 ConnectDetach_r(newfd);
 return -1;
 }

 return newfd;
}

After some very basic sanity tests to make sure we've received an _IO_DUP message, the
receiver code attempts to establish a connection to the same channel that the originator of the
message had, using the ConnectAttach() function. If that succeeds, then the actual _IO_DUP
message is sent, which will bind the newly obtained connection id to a particular file/device in the
server's resource manager layer. Once it's bound in the resource manager, the connection id
becomes a proper file descriptor that can then be used with the normal read()/write() function
calls. If successful, the newly created file descriptor is then returned to the caller.

Conditions and Terms of Agreement

Like most things, there are a couple of conditions that are associated with this code, and
assumptions that have been made that, if violated, will most likely cause the process not to work
as expected.

Caveats:

Only works between clients in similar uid groups (or root) Only works using normal file
descriptors, not _NTO_SIDE_CHANNEL ones The server must support _IO_DUP
messages (most do by default)

We'll end with a final exercise. Modify the code not to duplicate the file descriptors but instead to
use the _IO_OPENFD to generate a new file descriptor to a file that has been opened by another
client.

Full Example

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <mqueue.h>
#include <sys/iomsg.h>
#include <sys/resmgr.h>

#define MY_MQ_NAME "/fdpass"

© 2003, 2007, QNX Software Systems. All rights reserved.

/*
 Generate the data packet (message) that will be sent using
 func() to duplicate the file descriptor fdtosend.
*/
int send_fd(int fdtosend, int flags, void *arg,
 int (*func)(void *arg, void *data, int len)) {
 int ret;
 io_dup_t dupmsg;

 memset(&dupmsg, 0, sizeof(dupmsg));

 dupmsg.i.type = _IO_DUP;
 dupmsg.i.combine_len = sizeof(dupmsg.i);

 if((ret = ConnectServerInfo(0, fdtosend, &dupmsg.i.info)) == -1) {
 return ret;
 }
 /* Overload the thread_id to carry this pid's address */
 dupmsg.i.info.tid = getpid();

 printf("SFD: client pid: %dn"
 " server nd: 0x%x pid 0x%x chid 0x%x scoid 0x%x coid 0x%xn",
 dupmsg.i.info.tid,
 dupmsg.i.info.nd,
 dupmsg.i.info.pid,
 dupmsg.i.info.chid,
 dupmsg.i.info.scoid,
 dupmsg.i.info.coid);

 /* Actually perform the transmission of the
 data through the user callback */

 if(func) {
 ret = func(arg, &dupmsg, sizeof(dupmsg));
 } else {
 ret = 0;
 }

 return ret;
}

/*
 Given a received packet of data of length len, attempt to extract
 out a DUP message which we can then generate a file descriptor with.
*/
int receive_fd(void *data, int len) {
 io_dup_t *pdupmsg = (io_dup_t *)data;
 pid_t otherpid;
 int ret, newfd;

 /* Very basic validity tests on the message */
 if(len < sizeof(*pdupmsg) || pdupmsg->i.type != _IO_DUP) {
 errno = EINVAL;
 return -1;
 }

 /* Extract out our overloaded field */
 otherpid = pdupmsg->i.info.tid;
 pdupmsg->i.info.tid = 0;

© 2003, 2007, QNX Software Systems. All rights reserved.

 printf("RFD: other pid: %dn"
 " server nd: 0x%x pid 0x%x chid 0x%x scoid 0x%x coid 0x%xn",
 otherpid,
 pdupmsg->i.info.nd,
 pdupmsg->i.info.pid,
 pdupmsg->i.info.chid,
 pdupmsg->i.info.scoid,
 pdupmsg->i.info.coid);

 /* Establish a connection with the channel first */
 if ((newfd = ConnectAttach(pdupmsg->i.info.nd,
 pdupmsg->i.info.pid,
 pdupmsg->i.info.chid, 0, 0)) < 0) {
 return -1;
 }

 /* Make out like we are the other process */
 pdupmsg->i.info.pid = otherpid;

 /*
 Send the message to the server asking it to duplicate the
 connection that has been described by the client. If
 this request succeeds, then the server resource manager layer
 has bound in our request. If it fails, disconnect from the
 channel.
 */
 if(MsgSendnc(newfd, &pdupmsg->i, sizeof(pdupmsg->i), 0, 0) == -1) {
 ConnectDetach_r(newfd);
 return -1;
 }

 return newfd;
}

int mq_write(void *arg, void *data, int len) {
 return mq_send((int)arg, data, len, 0);
}

int main(int argc, char **argv) {
 mqd_t mqfd;
 int fd, ret, sender;
 char c;

 sender = -1;
 while((ret = getopt(argc, argv, "sr")) != -1) {
 switch(ret) {
 case 's':
 sender = 1;
 break;
 case 'r':
 sender = 0;
 break;
 }
 }

 if(sender < 0) {
 printf("Usage %s -s | -r n", argv[0]);
 printf("Where:n"
 " -s Indicates program should send the fdn"
 " -r Indicates program should receive the fdn");

© 2003, 2007, QNX Software Systems. All rights reserved.

 return 1;
 }

 if((mqfd = mq_open(MY_MQ_NAME, O_CREAT | O_RDWR, 0666, NULL))
== -1) {
 perror("Can't open/create mqueue");
 return 1;
 }

 if(sender) {
 //If we are the sender then we are sending an fd
 if((fd = open("/etc/passwd", O_RDONLY)) == -1) {
 perror("Can't open file to send");
 return 1;
 }

 //For kicks, we read the first line and re-position the fd
 printf("SFD: first line [");
 while(read(fd, &c, 1) > 0) {
 if(c == 'n') {
 break;
 }
 printf("%c", c);
 }
 printf("]\n");

 //Send the re-positioned fd to the other side
 ret = send_fd(fd, 0, (void *)mqfd, mq_write);

 //Sleep for a bit to ensure the receiver is run
 sleep(10);
 } else {
 char *msg;
 struct mq_attr mqstat;

 if(mq_getattr(mqfd, &mqstat) == -1) {
 perror("Can't get mqueue attribute");
 return 1;
 }

 msg = alloca(mqstat.mq_msgsize);

 //If we are the receiver, then we are receiving an fd
 if(!msg || mq_receive(mqfd, msg, mqstat.mq_msgsize, NULL) == -1) {
 perror("Can't receive message");
 return 1;
 }

 //Pass the received buffer off to the interpreter
 if((fd = receive_fd(msg, mqstat.mq_msgsize)) == -1) {
 perror("Can't create file descriptor");
 return 1;
 }

 //Read the next line to make sure we actually have the fd
 printf("RFD: next line [");
 while(read(fd, &c, 1) > 0) {
 if(c == 'n') {
 break;

© 2003, 2007, QNX Software Systems. All rights reserved.

 }
 printf("%c", c);
 }
 printf("]\n");
 }

 //Cleanup ...
 printf("%s: cleaning up and exiting n", (sender) ? "SFD" : "RFD");
 close(fd);
 mq_close(mqfd);
 return 0;
}

Want more information?

For more information on UNIX domain sockets refer to UNIX Network Programming, Volume I, by
W. Richard Stevens.

© 2003, 2007, QNX Software Systems. All rights reserved.

	Sharing a File Descriptor between Two Processes
	Understanding How Things Work
	Talking to Strangers
	Conditions and Terms of Agreement
	Want more information?

