
Towards a Hierarchical Scheduling System for Distributed WWW Server
Clusters

Daniel Andresen and Timothy McCune
Department of Computing and Information Sciences

234 Nichols Hall
Kansas State University
Manhattan, KS 66506
fdan, trmg@cis.ksu.edu

Abstract

In this paper we present a model for dynamically
scheduling HTTP requests across clusters of servers, opti-
mizing the use of client resources as well as the scattered
server nodes. We also present a system, H-SWEB, imple-
menting our techniques and showing experimental improve-
ments of over 250%, which have been achieved through uti-
lizing a global approach to scheduling requests. This is the
first system to provide a hierarchical scheduling mechanism
for distributed HTTP server clusters incorporating dynamic
client-server task distribution and distributed data access.
H-SWEB uses sophisticated scheduling techniques in moni-
toring and adapting to workload variation at the client and
server clusters for supporting typical digital library tasks,
such as fast WWW image browsing. We provide a discussion
of our system architecture and implementation, and briefly
summarize the experimental results that have been achieved.

1. Introduction

We have been studying scalability issues for distributed
Hypertext Transfer Protocol (HTTP) servers on the World
Wide Web (WWW), motivated particularly by applications
within the digital library domain [3, 13, 16]. Digital library
(DL) systems are increasingly moving from research to op-
erational status, distributing their contents via the World-
Wide Web. As their collections grow and diversify, their
system architectures are also evolving from local clusters
in geographical and logical proximity to widely diversified
collections of databases and machines scattered across the
globe. This diversity is at once an opportunity and an obsta-
cle: an opportunity, since more resources and data are avail-
able, and an obstacle, due to the difficulties in effectively
scheduling across widely separated heterogeneous domains.

Under the auspices of the Alexandria Digital Library
Project (ADL) at the University of California, Santa Barbara
(UCSB), we studied potential bottlenecks in digital library
content delivery. The current collections of the Alexandria
Digital Library project at UCSB [2] involve geographically-
referenced materials, such as maps, satellite images, digi-
tized aerial photographs, and associated metadata. The size
of images can range in size from 10-100MB, with larger files
expected in the near future as the scanning resolution in-
creases. The metadata alone consists of millions of records
and is multiple gigabytes in size. Typical requests include
database searches, file fetches, and the progressive delivery
of wavelet-encoded images, where the client possesses a low
resolution image and requests the difference data be sent to
construct a higher-resolution version. ADL has become a
metadata repository for a number of physically and logically
distinct collections of data, including data from various sites
throughout the Western United States.

As digital libraries evolve, so must the depth and sophis-
tication of our techniques. In our work on SWEB++ [5],
we demonstrated that dynamically scheduling HTTP re-
quests across a local server cluster and making use of
client resources can significantly enhance the performance
of WWW applications. We now investigate the potential
performance improvements inherent in utilizing machines
and resources beyond our local cluster and distributedacross
the Internet (Figure 1).

In this paper we present our model for partitioning and
mapping client-server computation across multiple WWW
server clusters. We also introduce a system, H-SWEB, im-
plementing our model. We then present experimental re-
sults indicating that substantial performance benefits can be
gained throughusing sophisticated multi-faceted scheduling
techniques in a distributed environment.

The paper is organized as follows: Section 2 presents
the computational model used by H-SWEB. Section 3 dis-
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Figure 1. Extending SWEB++ to multiple clus-
ters.

cusses the design and implementation of H-SWEB. Sec-
tion 4 presents the experimental results, and Section 5 dis-
cusses related work and conclusions.

2. Background and model of computation

Our system model is a cluster of local server nodes, pre-
sented as a single logical server to the Internet, and con-
nected by a fast local network. Each cluster connects to the
Internet via links of varying speeds. The individual servers
monitor the resource usage of their neighbors, and a synop-
sis of this data is distributed to remote sites. Every node is
running a scheduler and HTTP server, and there is one pro-
cess per cluster responsible for linking to the hierarchical
scheduling system.

We assume that clients are either SWEB-unaware, in
which case scheduling only occurs among the servers and
no client computation is considered [4], or SWEB-aware, in
which case there is a dynamic interaction between the client
and server (Figure 2). If the client is SWEB-aware, then it
is responsible for providing its load and connection informa-
tion to the scheduler, and contributing its resources to com-
plete the request via a custom Java applets. We model this
interaction as a task chain that is partially executed at the
server node (possibly as a CGI program [21]) and partially
executed at the client (as a Java applet [17]). A task con-
sists of a segment of the request fulfillment, with its associ-
ated computation and communication. Task communication
costs differ depending on whether task results must be sent
over the Internet or can be transferred locally to the next task
in the task chain.

For example, ADL has adopted a wavelet-based progres-
sive multi-resolution and subregion browsing strategy to re-
duce Internet traffic in accessing map images. This approach
is based on the idea that users often browse large images via
a thumbnail (at coarse resolution), and desire to rapidly view
higher-resolution versions and subregions of those images
already being viewed. To support these features, the ADL
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Figure 2. SWEB++ Client-server interactive
model.

system is using a hierarchical data representation for multi-
resolution images [10]. Figure 3 depicts a task chain for
processing a user request in accessing an image or subim-
age with a higher resolution, based on an implementation in
[22].
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Figure 3. A task chain for image reconstruc-
tion.

Tasks in this chain are:

1. Fetch and extract the subregion indexing data when a
user wants to review a subregion.

2. Use the indexing data to find coefficient data to be used
in constructing a higher resolution subregion image.

3. Use the coefficient data and thumbnail image to per-
form a wavelet inverse transform in producing a higher
resolution image.

4. View the image.

Thus there are four possible split points between a client and
a server as shown in Figure 3.

D1 Send the entire compressed image to the client and let
it do everything.

D2 Send over the relevant portions of the compressed im-
age for the client to process.

D3 Recreate the coefficients from their compressed repre-
sentation and send them to the client for reconstruction.

D4 Recreate the image requested by the client and send the
pixels to the client.



For split point D3, the thumbnail file is available at the
client machine, thus the data access from the server disk for
thumbnail data is eliminated.

We have shown analytically and empirically that a fixed
partition point within the chain is unwise given the dispar-
ity in client resources expected [3, 6]. Our local algorithm,
then, selects an appropriate node within the server cluster to
process the request modeled by a task chain. If the expected
response time is greater than a predetermined limit, the hi-
erarchical scheduler is consulted. We also partition tasks in
the chain into two sets, one for the client and another for the
server, such that the overall request response time is mini-
mized as illustrated in Figure 4. For example, if the client
happens to be underpowered and one server node is lightly
loaded, then keeping all of the tasks on that server node will
be more reasonable in terms of request response time. In ad-
dition to client and server machine load and capabilities, net-
work bandwidths between clients and a server also affect the
partitioning point.

Client machine

WWW server

One server node

Internet

Task Chain

Dynamic partitioning and mapping

Figure 4. An illustration of dynamic task chain
partitioning and mapping.

For each request, we predict the processing time and as-
sign this request to an appropriate processor within our set
of clusters. Our cost model for a request is

ts = tredirection + tdata + tserver + tnet + tclient:

tredirection is the cost to redirect the request to another
processor, if required. tdata is the server time to transfer the
required data from a server disk drive. If data files are local,
the time required to fetch is approximated as the file size di-
vided by the available bandwidth of the local storage system.
If data files are located on another local node, or a remote
cluster, then each file must be retrieved through the inter-
connection network. Then tdata is approximated as the file
size divided by the available remote access bandwidth. If
there are many concurrent requests, local data transmission
performance degrades accordingly. At run-time, the system
needs to monitor the disk channel load of each local disk and
also available remote data accessing bandwidths. tserver is

the time for required server computation, which can vary de-
pending on whether the request response has been partially
or completely cached. tclient is the time for any client com-
putation required, which is the number of client operations
required divided by client speed. Here we assume the speed
reported by the client machine includes client load factors.
In the implementation, we need to collect three types of dy-
namic load information: CPU, disk, and network. CPU and
disk activity can be derived from the Unix rstat utility, as
well as some network information. Latency to the client can
be approximated by the time required for the client to set up
the TCP/IP connection over which the request (with the la-
tency estimate) is passed. Client bandwidth is determined
by the client, which measures the number of bytes per sec-
ond received from the server for messages over a minimum
size. The client passes both the latency and bandwidth esti-
mates to the server as arguments to its HTTP requests.

α

Figure 5. H-SWEB structural model.

3. System Design

Following the model given in the previous section, H-
SWEB is implemented as a collection of collaborating
WWW servers on a local network, withone process per clus-
ter responsible for interaction with other clusters (See Fig-
ure 5). Interaction between clusters is achieved through the
H-SWEB Cluster Server (HCS). The HCS runs as a separate
process which may reside either on one of the server nodes,
or a separate machine. It is responsible for three main func-
tions. First, it gathers load and cache information about the
entire cluster, as well as information about the bandwidth
and latency between it and other clusters. It then distributes



this information to other HCS nodes. Second, when the time
for the local cluster to complete a request exceeds a prede-
termined threshold, the HCS analyzes the time to complete
the request at each of the other remote clusters. It responds
to the requesting server node with either a URL within a re-
mote cluster that the client should be redirected to, or an in-
struction that the request should be fulfilled within the local
cluster. Third, if a request requires data that resides within
a remote cluster, the HCS can transfer this data to and from
remote HCS hosts. If no communication has occurred with a
remote cluster for a predetermined period, the cluster is pre-
sumed dead until communication is restored.

Within a cluster, the scheduler at each server node in-
teracts with a daemon for handling HTTP requests. It has
a server broker module which determines the best possible
processor to handle a given request. The broker consults
with two other modules, the oracle and the loadd, to de-
termine the appropriate split point. The oracle predicts the
CPU and disk demands for a particular request. The loadd

daemon is responsible for updating the local CPU, net-
work and disk load information periodically (every 2-3 sec-
onds) [4]. If the predicted response time is larger than a pre-
determined constant, the broker then consults with the HCS
to determine the best possible site for processing the request.
Our HTTP server code is based on a slightly-modified pre-
liminary version of Swala, the scalable caching web server
project at UCSB implementing the SWEB scheduling algo-
rithms and task chain caching [19].
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Figure 6. The HCS decision path.

In some cases, a request, such as a wavelet transform,
may require one or more input files that are not located
within the local cluster. These input files may reside in any

number of different remote clusters. When the HCS ana-
lyzes this request, it first considers the time required to trans-
fer all of the input files to a particular cluster. Then it con-
siders the time it will take that cluster to fulfill the request
based on the cluster’s load information. These times are
compared, and the fastest cluster is then chosen. A illustra-
tion of H-SWEB’s decision process is given in Figure 6.

Our bandwidth and latency information between clusters
is provided by the Network Weather Service (NWS). The
NWS is a generalizable and extensible facility designed to
provide dynamic resource performance forecasts in meta-
computing environments. While the forecasting methods
are general, they focus on the ability to predict the TCP/IP
end-to-end throughput and latency that is attainable by an
application using systems located at different sites [23].

H-SWEB is designed to use true hierarchical scheduling.
In such a system, an HCS can provide service to a super-
cluster (a group of clusters or a group of other superclus-
ters) in the same fashion that it provides service to a clus-
ter (a group of individual nodes.) The current implementa-
tion uses a hierarchy that is only one layer deep. We plan
to use an H-SWEB hierarchy with multiple levels, but this
functionality has not yet been implemented. In its current
form, H-SWEB would be best suited for deployment within
a close-knit community such as the Digital Library projects,
due to the need to install trusted software and a modified
HTTP server. Clients, however, require only the use of a
Java-compatible browser.

Minimizing the overhead involved with HCS schedul-
ing has had a significant impact on design issues. In some
cases, abstractions were useful in reducing this overhead.
For instance, instead of broadcasting load information on
every node within its cluster, the HCS broadcasts only the
average load, the lowest load, and the number of nodes. In
other cases, we dynamically adapt the imposed load of the
HCS based on available system resources. As an example,
the rate at which an HCS retrieves load and cache informa-
tion from other clusters changes dynamically based on the
amount of information being transferred as well as the band-
width and latency between the two clusters.

4. Experimental Results

In our experiments we demonstrate the effectiveness and
logic of our scheduling scheme in a distributed, heteroge-
neous environment. We also briefly discuss the overhead
incurred by our system. Two types of requests are exam-
ined: fetching a file and fetching a wavelet-encoded image
(as described in Section 2). We fetch two file sizes, small
(10KB), and large(1.5MB), representing typical HTML and
significant binary data, respectively. The wavelet operation
is to extract a 512� 512 subregion at full resolution from a
2K � 2K map image, representing the user zooming in on



Client location
Data loc. KSU UCSB

KSU small and large files remain local small files are mixed, large are redirected
UCSB small files are mixed, large are redirected small and large files remain local

Table 1. Scheduling results for fetching files
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Figure 7. The KSU-UCSB network model.

a point of interest at a higher resolution after examining at
an image thumbnail. We also use the full 2K � 2K extrac-
tion as a more significant task, taking approximately 20s. of
processor time on a Sun Ultra1 workstation (in contrast with
the 2-3s. for the 512�512 subimage). For both types of re-
quests, if the data required to fulfill the request is located at
a remote cluster, the scheduler has the option of transmitting
the data to a local node for processing or redirecting the re-
quest for processing at the cluster where the data is located.
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Figure 8. KSU-UCSB network bandwidth vari-
ations.

For our experiments, we used clusters located at UCSB
and Kansas State University (KSU). At UCSB the cluster
consisted of Sun Ultra1 and Ultra2 workstations connected
locally via 100Base-T Ethernet, and connected to the In-
ternet by a vBNS link. At KSU, the cluster consisted of a
Sun Ultra1 and 10-processor Sun Enterprise 4000 linked by
10Base-T Ethernet, and connected to the Internet by dual T1

lines (which average over 95% utilization). Clients were lo-
cated at both KSU and UCSB. As is usually the case when
working with a distributed computing solution over the In-
ternet, individual test results varied widely depending on the
usage of the clusters and the available network capacities.
For example, Figure 8 shows the typical bandwidth varia-
tions in the early afternoon between KSU and UCSB (data
from NWS). All tests were for a period of 30 s., and the re-
sults are averaged over multiple experiments. The HCS pro-
cess is implemented in Java, running under JDK 1.1.4 with-
out a JIT compiler. As such, HCS is portable across vari-
ous platforms without requiring recoding or recompilation.
Swala is written in C++ [19].

File Fetch The results from our experiments where a file
was fetched repeatedly from the various sites were as ex-
pected, as shown in Table 1. The configuration was an Ul-
tra1 at KSU, and multiple Ultras at UCSB. Requests for
small files, whose total response time would not be ma-
terially affected by any normal scheduling, were evenly
distributed between redirecting to remote hosts or fetch-
ing the data for retransmission. The individual decisions
were swayed by the balance between the available band-
width (affecting tdata) and cost to establish a new connec-
tion (tredirection). Fetching large files, however, causes the
tdata and tnet terms to dominate. The scheduling algorithm
then follows file locality. When H-SWEB scheduling is en-
abled, allowing the servers to follow data locality, response
times become 64% to 197% faster (averaging 112%) (Fig-
ure 10(a)). In Figure 10(b), improvements for large files
ranged from 44-175%, averaging 122%.

Figure 9. HCS scheduling time
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Figure 10. File-fetch request times for (a) 10KB and (b) 1.5MB files.
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Figure 11. H-SWEB wavelet performance. (a) uniform requests (b) heterogenous requests

Wavelets A request for an image stored in the wavelet file
format is considerably more CPU intensive than a typical
file fetch. As such, the processing resources available at any
particular moment (affecting tserver) tend to significantly
affect the scheduler. Because of this high demand for sys-
tem resources, if one particular cluster is significantly more
powerful than the others, the vast majority of the wavelet
requests will end up at this cluster. The real advantage
of HCS scheduling becomes evident when all of the clus-
ters involved in the system possess a similar amount of re-
sources. When this is the case, initial requests tend to re-
main within the local cluster to save the overhead of redi-
rection. Once the local cluster reaches a certain saturation,
succeeding requests are redirected to remote clusters. As re-
quests continue to come into the system, the load on these
remote clusters reaches levels similar to those of the local
cluster. At this point, subsequent wavelet requests will typ-
ically be evenly distributed across all clusters. For the ex-
periments shown in Figure 11(a), we used the same config-
uration as in the previous section, launching homogenous
512x512 wavelet transform requests in bursts of 30 sec.,
and achieved improvements in the response times of averag-
ing 18%, peaking at 53%. The experiments in Figure 11(b)
consisted of a uniform mixture of 512x512 and 2048x2048
wavelet transform requests distributed evenly to the Ultra

cluster at UCSB and a two Ultra, one Enterprise-4000 clus-
ter at KSU, with the client located at KSU. The requests ar-
rived over a 30 second period. The improvements ranged
from -6% under low loads to 250+% at higher loads, aver-
aging over 147%.

Overhead The system and per-request overhead imposed
by HCS is small. The overhead of the additional layer of
scheduling is only incurred where the request is estimated
to take a long time to completion. We expect only a small
fraction of requests will require this additional computation;
however, these also stand to gain the most from a possi-
ble transfer to another site. The per-request scheduling per-
formed by Swala/SWEB++ takes < 10 ms., and, HCS adds
approximately 10 ms. + round-trip communication time
(80ms. between two Java VM’s over an Ethernet 10Base-T
network). Figure 9 shows the time required for scheduling
as the number of clusters increases. We also see from Fig-
ure 12(a) the scheduling times increases slowly as multiple
simultaneous requests arrive. We feel these times will drop
substantially with the use of a Java JIT compiler for HCS.

The overhead of load monitoring via the NWS and the
SWEB/Swala systems is also small, taking less than 1% of
CPU and network resources, and HCS itself averages less
than 1% under normal loads (Figure 12(b)) [3, 23]. The
ability of H-SWEB sites to dynamically increase or decrease
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the intervals between updating remote information further
contributes to keeping the imposition small on local and re-
mote clusters.

5. Related work and Conclusions

Other systems have explored runtime load balancing
within a distributed system, although none with the context
of the WWW and digital libraries. The Flock of Condors
work provides a hierarchical metacomputing environment
with services beyond those of H-SWEB, including check-
pointing and system call translation, at the cost of requiring
application relinking to the Condor libraries [12]. The Le-
gion project provides a distributed load-balancing environ-
ment, at the cost of rewriting applications to fit the project
libraries and languages [18]. The Globus project also aims
at providing a global metacomputing object-oriented envi-
ronment, but is oriented towards a different set of problems
than H-SWEB [14]. Projects in [8, 11, 9] are working on
global computing software infrastructures, but are gener-
ally still in the design stage. Scheduling issues in heteroge-
neous computing for large-scale scientific applications us-
ing network bandwidth and load information are addressed
in [7]. The above work deals with an integration of dif-
ferent machines as one server and does not have the divi-
sion of client and server. Recent work on mobile comput-
ing (e.g. [1]) also uses bandwidth and data locality infor-
mation to dynamically migrate computation. Our project fo-
cuses on the optimization between a server and clients, and
uses tightlycoupled server nodes for a WWW server, gener-
alizing to loosely coupled server clusters. Addressing client
configuration variations is discussed in [15] for filtering
multi-media data but it does not consider the use of client re-
sources for integrated computing. Several distributedHTTP
servers and techniques are listed on the “Distributed Internet
Servers” page, but are designed for implementation on local
area networks [20].

In this paper we have presented a model for dynamically
scheduling HTTP requests across clusters of servers, opti-

mizing the use of client resources as well as the scattered
server nodes. We also presented a system, H-SWEB, imple-
menting our techniques and showing experimentally gains
of over 250% can be achieved through utilizing a global
approach to scheduling requests. H-SWEB is the first sys-
tem to provide a hierarchical scheduling mechanism for dis-
tributed HTTP server clusters incorporating dynamic client-
server task distribution, caching of partial results, and dis-
tributed data access. H-SWEB uses sophisticated schedul-
ing techniques in monitoring and adapting to workload vari-
ation at the client and server clusters for supporting typi-
cal digital library tasks, such as fast WWW image brows-
ing. In the future we plan to extend our system to more gen-
eralized scheduling problems, and explore several object-
oriented scenarios.
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