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Abstract

A significant number of new Java-based technologies
for mobile code (aka agents) have recently emerged. The
’Aglets’ system, from IBM’s research labs, provides an ele-
gant mechanism for creating mobile code, but lacks a native
scheduling mechanism for determining where code should
be executed. In this paper we present the results of an in-
vestigation into adding sophisticated scheduling capabil-
ities to Aglets (which we refer to as brilliant Aglets, or
Baglets) from the H-SWEB project, which provides hierar-
chical scheduling across sets of WWW server clusters. H-
SWEB uses scheduling techniques in monitoring and adapt-
ing to workload variation at distributed server clusters for
supporting distributed computation. We show how the two
systems can be integrated, and present several algorithms
indicating a major advantage (over 350%) can be achieved
through the use of dynamic scheduling information. We pro-
vide a detailed discussion of our system architecture and
implementation, and briefly summarize the experimental re-
sults which have been achieved.

1. Introduction

The Aglets Framework provides a mechanism for creat-
ing mobile agents. Mobile agents are “programs that can
be dispatched from one computer and transported to a re-
mote computer for execution” [10]. H-SWEB is a hierarchi-
cal scheduler for distributed HTTP server clusters [2]. H-
SWEB allows dynamic scheduling of HTTP requests on re-
sources distributed across the Internet utilizing a distributed
set of servers, set up in hierarchical clusters. We propose
to combine the H-SWEB and Aglets technologies so that
Aglets may be scheduled in an intelligent and flexible fash-
ion. This scheduling ability is absent in the current Aglet

system. Each Aglet is only aware of its own state; it has no
information with which to make scheduling decisions.

The paper is organized as follows: Section 1 presents
Aglets and H-SWEB. Section 2 discusses the design and
integration of H-SWEB and Aglets. Section 3 presents the
experimental results, and Section 4 discusses related work
and conclusions.

1.1 Aglets

Aglets are Java objects that can move from one host to
another. It is possible for them to halt execution, dispatch
to a remote host, and re-start executing again by presenting
their credentials and obtaining access to local services and
data. Aglets provide “a uniform paradigm for distributed
object computing” [10].

Characteristics of Aglets include:

� Object-Passing: When a mobile agent moves, the
whole object is passed; that is, its code, data, state,
and travel itinerary are passed together.

� Autonomous Execution: The mobile agent contains
sufficient information to decide what to do, where to
go, and when to go.

� Asynchronous: The mobile agent has its own thread
of execution and can execute asynchronously.

� Local Interaction : The mobile agent interacts with
other mobile agents or stationary objects locally. If
needed, it can dispatch messenger agents or surrogate
agents, which are all mobile agents, to facilitate remote
interaction.

� Disconnected Operation: The mobile agent can per-
form its tasks whether the network connection is open



or closed. If the network connection is closed and it
needs to move, it can wait until the connection is re-
opened.

� Parallel Execution: More than one mobile agent can
be dispatched to different sites to perform tasks in par-
allel [10].

Using Aglets can ease the development of a system for
distributed computationally intensive processes through the
automation of code and data transport. Aglets utilize a
protocol called ATP (Aglet Transfer Protocol), which is an
application-level standard protocol for distributed agent in-
formation systems which operates on top of TCP.

Aglets, on being dispatched, serialize their internal state and
byte code into the standard form, and then are transported
to the destination. On the receiver side, the Java object is re-
constructed according to the data received from the origin,
and a new thread is allocated and executed.

Aglets API The Aglets API defines methods to control
mobility, life cycle, travel, itinerary, and security.

� onCreation()Initializes the new Aglet. This method is
called only once in the life cycle of an Aglet.

� onDispatching()Called before an Aglet is actually dis-
patched.

� onArrival() Called after the arrival at the destination.

� onReverting()Called just before an Aglet is retracted.

� dispose()Disposes of the Aglet.

� dispatch(URL)Dispatch Aglet to a destination speci-
fied by the URL.

� getAgletInfo()Get information on the Aglet.

1.2 H-SWEB

H-SWEB provides a means by which requests can be
dynamically scheduled across clusters of servers, optimiz-
ing the use of client resources as well as the scattered server
nodes [2]. H-SWEB uses a cluster of servers, and can dy-
namically schedule a request across a group of nodes and
between clusters of nodes. The H-SWEB Cluster Server
(HCS) is an entity that runs as a separate process, and may
reside on one of the cluster nodes, or on a separate machine.
It gathers load and cache information about the entire clus-
ter, as well as the information about the bandwidth and la-
tency between it and other clusters. It then uses this infor-
mation to make scheduling decisions.

H-SWEB API The following are some of the API func-
tions that were utilized for our project:

� (HcsRmi)Naming.lookup(“rmi://”+hcs+”/”
+”HSWEB”) : Looks up the appropriate HCS
server

� Request(Vector cpuCycles, Vector outBytes, Vec-
tor timePenalty, float clientCpu, float clientDisk,
Hashtable clientLatency, Hashtable clientNet, double
localTime, String url)

cpuCycles Predicted CPU requirements for each split
point

outBytes Predicted output bytes for each split point

timePenalty Predicted time penalty for each split
point

clientCpu Client CPU available in Hz

clientDisk Client disk available in bytes/sec

clientLatency Hashtable where the keys are cluster
names and the values are the corresponding la-
tencies between the clusters and the client in mil-
liseconds

clientNet Hashtable where the keys are cluster names
and the values are the corresponding throughput
between the clusters and the client in bytes/sec

localTime - The time it will take to complete the re-
quest locally

uri Requested URI

� rmiChooseCluster(Request req): Choose the best clus-
ter in the supercluster of server clusters

� RemoteClusterInfo(String,URL,int,int,String,String,
File,Hcs) : Retrieves information from a remote
cluster regarding the load information on the remote
cluster. The information is received in the form of a
compressed file to minimize overhead, and is used for
load calculations and comparisons.

2 Integrating Aglets and H-SWEB

In Figure 1, we see two clusters which are exchanging their
load and cache information. This exchange takes place
between HCS of respective clusters. There is also a flow of
load and cache information between the nodes within the
cluster and the HCS for that particular cluster.

We utilize H-SWEB to improve the decision making of
Aglets so that they become capable of executing code on
the most favorable node that is part of the super-cluster of
machines. Every node which is part of this configuration
will have an Aglets daemon running on it. This will enable
it to accept/dispatch Aglets that might be coming in, or
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Figure 1. H-SWEB Architecture

need to be sent out. The API of Aglets is well suited for
such a situation. It provides easy to use mechanisms for
serializing and moving objects from place to place.

One primary design goal was to make the system as easy
to use as possible. Thus we wanted to hide as many details
from a user of the system as possible. To that end, we
constructed a base class calledSwebAgletwhich takes care
of the details of making the RMI calls to the HCS as well
as moving the Aglet from place to place. This class extends
from Aglet, and contains the methodsonCreation()and
signalCheckPoint()and the abstract methodsestimateCpu()
andexec(). A user simply need extend fromSwebAglet,
provide implementations for the two abstract methods and
call signalCheckpoint()when appropriate to utilize the full
scheduling functionality.

The skeleton of theSwebAglet.javaJava class is as fol-
lows:

SwebAglet extends Aglet

� onCreation()An ExecMobilityListener is added to
listen for arrival events (other mobility events are ig-
nored).

� signalCheckpoint()First, java.rmi.Naming.Lookup()
is called to obtain a reference to the HCS for this clus-
ter. Then aRequestobject is built and sent to the HCS.
The HCS responds with the best cluster and node on
which to perform the computation. The Aglet them
moves itself if necessary.

� exec()Abstract method. Should be overridden by sub-
classes to contain the code that should be executed by

the Aglet. This is similar to therun() method within
java.lang.Thread.

� estimateCpu()Abstract method. Should be overrid-
den by subclasses to contain code that estimates the
amount of cpu cycles necessary to complete the com-
putation specified byexec.

The base class by itself, however, is not sufficient. The
base Aglet class has no way of detecting when it is moved
from place to place. Instead the Aglet API provides aMo-
bilityListener interface. TheMobilityListener interface
specifies that implementing classes provide methods to han-
dle MobilityEvent s. MobilityEvent s occur whenever an
Aglet is dispatched, reverted or arrives at a destination. The
implementing objects are attached to Aglet objects at run-
time (in our case in theonCreation()method). Whenever
so calledMobilityEvent s occur, the appropriate method is
called in the attachedMobilityListener .

In this case, we are only interested in detecting arrival
events. We constructed theExecMobilityListener class to
detect when the Aglet arrives at a new node. The skeleton
of theExecMobilityListener Java class is as follows:

SwebMobilityListener extends MobilityListener

� onArrival(MobilityEvent)Call the exec()method of
theSwebAgletto which it is attached to start or restart
the computation.

� onDispatching(MobilityEvent)Empty. Provided only
to satisfy the interface.

� onReverting(MobilityEvent)Empty. Provided only to
satisfy the interface.

In Figure 2 we see the flow of information between the
components in the system. For our experiments the Net-
work Weather Service [12] was not used since all clusters
were local to our location; bandwidth and latency were rela-
tively constant over our switched, 100Base-T network. Sig-
nificantly varying bandwidth and/or latencies would tend to
increase the value of dynamic scheduling [2, 3]. We can see
that the load, network, and request information flow into the
HCS, allowing it to make intelligent scheduling suggestions
regarding optimal load placement. This information is then
passed on to the Aglets so that they may move themselves
accordingly. The name of the initial cluster server is initially
supplied by an external mechanism (e.g., command-line op-
tion).

For a full description of the H-SWEB scheduling algo-
rithm, see [2]. In brief, for each request, H-SWEB predicts
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the processing time and assigns this request to an appropri-
ate processor within our set of clusters. Our cost model
(Equation 2) for a request takes into account the cost to
move the Aglet from one cluster to another, the relative
loads, and the costs to fetch any data required.

Fault tolerance is not supplied by the H-SWEB system,
which only provides scheduling services.

ts = taglet movement + tdata + tserver + tnet + tclient:

The Aglet requesting the scheduling services is expected
to supply the necessary parameters to the H-SWEB pro-
cessing model. It is assumed there is no actual ‘client’, so
all terms reduce to zero related to client processing time.
taglet movement is the cost to move the Aglet to another
processor, if required.tdata is the server time to transfer the
required data from a server disk drive. Typically this would
be0 under current security models.tserver is the time for
required server computation. In the implementation, we
need to collect three types of dynamic load information:
CPU, disk, and network. CPU and disk activity can be de-
rived from the Unixrstat utility, as well as some network
information. Latency and bandwidth information between
clusters is provided by the Network Weather Service, while
a custom daemon is used within each cluster. A daemon
(loadd) periodically updates the above information between
the server nodes. An incorrect estimate of Aglet CPU needs,
for example, might cause a temporary error in scheduling.
Since the system relies on actual system load information
for its scheduling of other Aglets, however, they would be
affected for only a short time while the effects of the rogue
Aglet were being detected and accounted for.

2.1 Primes Example

We present an example of how to turn a plain Aglet into
a H-SWEB-aware Aglet. In this case the Aglet computes
prime numbers. The bulk of the functionality is obtained by
extending the SwebAglet class (itself a subclass of Aglet).
The following are the steps necessary to convert a plain
Aglet to a H-SWEB-aware Aglet

1. In a normal Aglet, the code that is to be executed is
placed inside arun() method similar to what is done
with Java Threads. To avoid conflict with that name,
code to be executed in this case is placed in anexec()
method.

2. Provide an implementation of the abstract methodesti-
mateCpu(). This should be an estimation of how long
a given computation should take. The more accurate
this estimate is, the better the scheduling will be.

3. Add periodic calls tosignalCheckpoint(). We found
that making this call at somewhat random intervals
helped prevent flooding the HCS with Java RMI
calls. An alternative, currently unimplemented method
would allow HCS to asynchronously notify Aglets
when conditions are favorable for them to move.

4. Since Java serialization is the method used for trans-
ferring the Aglet from place to place, care must be
taken in the handling of variables. All variables must
be class (global) variables because only class variables
are saved during the serialization process. In addi-
tion, the exec method must be structured in such a way
that whensignalCheckpoint()is called, the object is
in a consistent state. Here this is done by callingsig-
nalCheckpointat the top of the loop, thus preserving
the atomicity of each loop iteration.

3 Experimental results

We utilized the small (10KB) “Primes” Aglet to com-
pare different scheduling mechanisms. The aim was to find
out which of the different scheduling mechanisms for these
Aglets actually resulted in the maximum advantage, as far
as response time was concerned. The different scheduling
mechanisms chosen for evaluation were the following:

� Static Scheduling
In this type of scheduling, all Aglets are sent to the
same node within a cluster. Upon arrival at this node,
the HCS is queried to determine the best node on
which to perform the computation. If necessary, the
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Aglet moves to that location. No further scheduling is
done, and theexecmethod runs to completion.

� Dynamic Scheduling
Under Dynamic Scheduling, the Aglets are again all
sent to the same node with the cluster and initially
scheduled. Then, the HCS is periodically queried at
checkpointsin the code to determine if the Aglet needs
to move. If so, the Aglet is then dispatched to the new
location. The potential problem with such an approach
is that a “wave” of Aglets could migrate off to a remote
site if all of them query the HCS and find that a lightly
loaded machine is available. To combat this problem,
the program which contains the computational code
was written in such a way that, the Aglets perform
checkpointing at random intervals between twenty and
forty seconds.

� Round Robin Scheduling
Here Aglets are sent one after the other in a round
robin fashion to the nodes that constitute the cluster.
Once these Aglets are sent, they do not query the HCS
to find out if any further scheduling is required. This
scheduling method was only included for comparison
purposes, and is equivalent to running the Aglets with-
out HCS.

� Round Robin Dynamic Scheduling
This is a combination of round-robin and dynamic
scheduling. The client sends off the Aglets to all the
machines in the cluster in a round-robin fashion. Then
the Aglets query the HCS at the code atcheckpoints
specified by the user.

The configuration for testing was one cluster with three
nodes. The nodes consisted of one lightly loaded 85 MHz
SPARC 5, one heavily loaded 140 MHz UltraSPARC, and
one lightly loaded 269 MHz UltraSPARC 5. Each Aglet (or
“request”) consists of the program to calculate the firstn

prime numbers, wheren is passed in as a parameter. Figure
3 shows the number of homogeneous requests for round-
robin and round-robin dynamic scheduling vs. response
time. Each Aglet calculated the first 50,000 primes. It can
be seen that the response times for round-robin scheduling
become larger at a much faster rate than for round-robin
dynamic scheduling. The percentage improvements ranged
from 12% to 89%, averaging 46%.

Figure 4 graphs heterogeneous requests. Round-robin
scheduling performed fairly well initially, because the num-
ber of requests was quite low. As the number of requests
increases, then the performance of round-robin scheduling
becomes very poor because the Aglets can never get re-
scheduled to take advantage of less loaded nodes. This

difference was especially pronounced in this data set be-
cause one of the machines in the cluster was heavily loaded
during testing. The static scheduling line only extends to
30 because we were unable to successfully get numbers for
forty Aglets under that configuration. The Aglets daemon
always core dumped. Again dynamic round-robin showed
its worth, peaking at a 354% improvement over round robin,
indicating a slowdown under light loads due to the overhead
of rescheduling, and averaging a 128% improvement.

The following points were observed during the imple-
mentation of the different scheduling mechanisms:

1. Round-robin dynamic scheduling did very well for
both homogeneous and heterogeneous requests.

2. The use of Java 1.2 for running HCS helped to a great
extent. This was because HCS was actually suffer-
ing from severe memory leaks while running with Java
1.1.6. The memory requirements for HCS, as observed
with top, grew from about 12 MB (9 MB resident)
when the process is started to 47 MB (20 MB resident)
over the course of ten minutes. Under Java 1.2, the fig-
ure was constant at 10 MB (9 MB resident). We feel
this was an artifact of the JVM being used.

3. RMI calls to the HCS are a bottleneck to the perfor-
mance of the system, as well as a source of scalability
problems. If a large number of Aglets query the HCS
at the same time to find out which node they need to
move to, it results in a degradation of performance, or
the JVM on which the HCS is running crashes with a
segmentation fault. We believe the segmentation fault
to be occurring somewhere in the underlying commu-
nications structure.

4 Conclusion and Related Work

In this paper we have presented a design for integrating a
dynamic multi-faceted hierarchical scheduling system with
the Aglets mobile code system. We have implemented this
design, and give experimental results indicating a substan-
tial speedup (over 375% in some cases) is achieved over
blind scheduling mechanisms such as round-robin in a het-
erogeneous environment. We have also demonstrated hi-
erarchical multiple-cluster operation, and feel this substan-
tially improves the ultimate scalability of our approach. In
the future we plan to characterize the system and its bot-
tlenecks more thoroughly, and explore its applicability to
differing problems. To the best of our knowledge, this is the
first hierarchical dynamic scheduling system across multi-
ple server clusters for Aglets.

In the future we hope to further characterize the costs
of moving Aglets (currently sitting at approximately 1,500
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ms. for the prime number generator, primarily due to Java
object serialization costs) factored by Aglet size and com-
plexity. We have also been experimenting with multi-cluster
installations, and hope to provide significantly more exper-
imental data in this area. We are also examining ways to
reduce the overhead imposed by the HCS system (currently
10-20ms. per call) and explore ways to avoid HCS-induced
‘hotspots.’ A technique to reduce the possibility of Aglets
overloading the HCS scheduler through asynchronously no-
tifying Aglets when conditions have changed is also under
consideration.

Other systems have explored runtime load balancing
within a distributed system, although few within the con-
text of Java-based mobile computation environments. The
Plangent project adds scheduling capabilities to Aglets, but
puts the intelligence into each Aglet instance rather than
having a single instance of the scheduler per cluster [11].
The Legion project provides a distributed load-balancing
environment, at the cost of rewriting applications to fit the
project libraries and languages [9]. The Globus project also
aims at providing a global metacomputing object-oriented
environment, but is oriented towards a different set of prob-
lems than Aglets + H-SWEB and is non-Java based [8].
Projects in [5, 7, 6] are working on global computing soft-
ware infrastructures, but are generally still in the design
stage. Scheduling issues in heterogeneous computing for
large-scale scientific applications using network bandwidth
and load information are addressed in the non-Java-based
AppLeS project [4]. Recent work on mobile computing
(e.g. [1]) also uses bandwidth and data locality information
to dynamically migrate computation, but typically require
greater much greater effort to integrate with the client code
than the changes we require to an Aglet. We also provide a
hierarchical scheduling environment, aiding scalability.
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