
DUMP: Dump User Memory, Please

David W. Duffey, Daniel Andresen
Dept. of Department of Computing and Information Sciences

234 Nichols Hall
Kansas State University
Manhattan, KS 66506

{dduffey, dan}@cis.ksu.edu

June 25, 2002

1 Introduction

While working on several busy Linux research
machines, we found the need to temporarily
remove a running process’s memory resources.
Creating new swap areas and killing existing run-
ning processes (simulations) were not viable so-
lutions to our problem.
Being involved with several Beowulf systems at
school, we knew that these tasks could already be
solved with complex clustering technology, but
we desired a simpler solution. We needed a so-
lution that was only a subset of what cluster-
ing technology could solve; we wanted a solution
that was easy to use. Rather than migrating a
process to another machine, we wanted to mi-
grate a process to a future time.
Simply creating new swap areas is not always
possible (or at least requires a sysadmin), and
has limitations. Sysadmins have no control over
which processes are swapped nor to where pro-
cesses are swapped, and they have to find the
space to create new swap areas. In addition,
swap space cannot be archived, compressed, or
moved to another location. It would be ideal if
users could dump, compress, and move their own
memory resources at will (think of it as a living
core file).
DUMP is a loadable kernel module that allows

a user to remove memory usage of a process and
later inject its memory back into the process and
continue execution. DUMP requires no complex
cluster setup, special libraries, or new userspace
utilities to work.
DUMP is not intended to be used for cluster
process migration or checkpointing/restarting,
rather it is the adaptation of some of this tech-
nology for use by the average user on a single ma-
chine. Process migration is the ability to move a
currently executing process from one machine to
another. Checkpointing/restarting is the ability
to “remember” the state of a process at partic-
ular points of execution and then return to a
previous state of execution if needed. The abil-
ity to checkpoint/restart a process often (but not
necessarily) implies the ability to do process mi-
gration.

2 Related Work

Several userspace utilities provide checkpointing
abilities but require modifying the process to be
manipulated. Some implementations work at
run-time by replacing loadable system libraries
(like libc), or during development time by using
special libraries, or by using a modified compiler.
Unfortunately, this severely limits the number
of applications that are able to be manipulated

1

in they way we wanted. Standard binaries dis-
tributed with one’s preferred Linux distribution
will likely not work with these solutions.
Because a userspace solution would severely limit
use by the average Linux user, we chose to focus
on a kernel implementation.
MOSIX provides process migration through a
Linux kernel patch [2, 1]. When a process ex-
ecutes, it has a unique home node (UHN) and
this process can be migrated to another MOSIX-
enabled machine (but a place-holder is left on
its UHN). If the process tries to open a file,
socket, or another resource provided by the ker-
nel, the kernel will re-route the request to the
UHN. MOSIX is not available as a kernel mod-
ule.
Epckpt, is a Linux kernel patch that allows
checkpointing and restarting of processes [3]. Be-
fore a process executes, a default signal han-
dler is installed for checkpointing, and the kernel
begins logging data on the process (open/close
syscall, etc). As the process executes, Epckpt
collects data that will allow it to be check-
pointed. The process must be marked as check-
pointable before execution begins, and it will in-
troduce (a small) execution overhead. Once a
process has been checkpointed, it can be killed
and restarted on another Epckpt machine with
a similar execution environment.
CRAK, part of the ZAP project, is an adaption
of Epckpt which provides similar ability but as a
kernel module (no patching necessary) [6, 5]. It
also removes data collection overhead and does
not require a special signal handler to be in-
stalled prior to execution. For all practical pur-
poses, CRAK and Epckpt have the same ability
to checkpoint/restart and/or migrate processes.
Unfortunately, these three solutions are too
complex for the common single machine setup.
MOSIX requires a complex cluster setup;
MOSIX and Epckpt require kernel patching;
Epckpt and CRAK use extra userspace utilities,
/dev entries, and will break some applications.

3 Why DUMP?

By completely removing a process from a run-
ning kernel, Epckpt and CRAK are giving up im-
portant resources such as the Process ID, Device
I/O, etc. “For example, top always seg-faults af-
ter the restart [with CRAK]” [6]. Epckpt and
CRAK on the Linux platform are fundamentally
flawed in that they cannot know which resources
that have changed since last execution will affect
the process. For example, a newly restarted ap-
plication has a different Process ID, but it (or
another process) could have stored the old PID
in an integer variable. Another example, if a pro-
cess modifies an open file, restarting the process
from an earlier execution time may have unex-
pected results. Network communication is even
more complex. It is my opinion that success-
ful checkpointing/restarting requires a dramatic
change at all levels of software engineering (from
operating system, to userland software develop-
ment).
DUMP leaves the process as a “place holder”
that retains important process data (Process ID,
locked memory, etc), while removing its biggest
resource usage: memory. Of course, this is at the
expense of not being able to migrate the process
to another machine (or across a reboot). As long
as a process can survive a SIGSTOP and SIG-
CONT, it can be DUMPed. Even this restriction
can be removed in future releases by using 2.5 se-
ries kernel features (fake run queue). A robust
implementation coupled with ease of installation
and use are the primary goals of DUMP.

4 How It Works

The DUMP module works by reading and writ-
ing process’ memory areas and their associated
information through the /proc filesystem. The
DUMP module will create a /proc/dump direc-
tory that will contain a file for each process; the
filenames are simply the pid of each respective

2

process.
By reading from a process’s associated pid-file,
we will be DUMPing information from the pro-
cess to the user and releasing the resourses from
the kernel. This information can be saved to
disk, compressed, and/or sent across a network
device. The resources can be injected back into
the process by simply writing the DUMPed data
to the correct /proc entry.

4.1 Virtual Memory Areas

The proc filesystem includes a subdirectory for
each process containing valuable process infor-
mation, including virtual memory area maps
(VMAs). If we look at /proc/740/maps we get
54 lines, each containing a VMA.
The first column shows the starting and ending
addresses, followed by permissions (read, write,
execute, shared), the offset into the source map-
ping (in this case a file), the device the map is
taken from (in this case, the second partition on
the first SCSI drive), and the inode of the source
mapping.
The first line is sendmail’s read-only code seg-
ment, the second is the initialized writable data
segment, and the last entry is for uninitialized
writable pages (code and data). The other 51
VMAs are similar in nature to these three.

4.2 What Is DUMPed

Since the first VMA is read-only and we have
the file from which to restore, we only need to
remember the filename and we can throw away
its pages. The second VMA is writeable and
has a mapped file, so we only need to save those
pages that have been modified (currently DUMP
saves all pages in a writable area). The third
VMA has no mapped file, so we must dump all
pages within this range.

4.3 File Format

The resulting file format of sendmail.dump is a
binary file. First is an integer value containing
the number of dumpable areas, in this case all
54. The first VMA structure immediately fol-
lows (start address, ending address, offset, pro-
tection bits (not discussed here), flags (permis-
sions and more), filename length) and filename
(if there is one). If the VMA is writable, then
immediately following the optional filename are
pages of data that make up the starting to end-
ing address range. If the VMA is not writeable,
we don’t need to save the memory data and the
next VMA follows.
The flags field also includes information about
whether the VMA is a device mapping (such as
XFree86 mapping a graphic card’s memory area)
or if the area is locked (for such use as DMA
transfers). In either of these cases, the VMA
would not be DUMPable.

5 Modularization

Much work was put into finding functionality
that allows us to provide a module source that
will work across many Linux distributions with-
out modification to the distribution’s kernel tree.
CRAK is able to use several existing kernel func-
tions such as “do mmap pgoff” (adds a VMA to
the currently running process) that DUMP can-
not. This is because the CRAK uses a userspace
utility to restart a process; the userspace utility
actually becomes the restarted process (similar
to a fork-exec) and a simple do mmap pgoff will
be modifying the correct (currently executing)
process. But one of the goals of DUMP was to
avoid requiring special utilities, so we need to
access (and manipulate) the memory mapping
structures of the dumped process when it is not
currently running. This means we had to rewrite
certain procedures that assumed that the “cur-
rent” (a pointer to the currently executing task)

3

START END PERM OFFSET DEVICE INODE MAPPED FILE
08048000 080b2000 r-xp 00000000 08:02 163350 /bin/sendmail
080b2000 080b5000 rw-p 0006a000 08:02 163350 /bin/sendmail
080b5000 080ff000 rwxp 00000000 00:00 0
...

Table 1: /proc/740/maps

FIELD DESCRIPTION
vmacount number of dumpable VMAs
...
start starting address of VMA
end ending address of VMA
pgoff offset into file
pgprot protection bits
flags permisions
fn /len filename length
filename memory mapped filename
data dumped (writable) pages
...

Table 2: DUMP file format

process was the one to be manipulated.
We also needed access to non-exported sym-
bols insert vm struct, vm area cachep and
get user pages. CRAK had a similar need, but
for different reasons, so we adopted CRAKs
method of reading /boot/System.map to find the
addresses of these non-static but non-exported
symbols [6].
There is certainly more than one way to accom-
plish dumping and restoring another process’s
memory, but we found that functions differed
from the stock 2.4 kernel tree and what RedHat
distributed (fortunately we did development on
both). Some kernel functions were exported in
one tree, but static in another. Functions var-
ied in parameters, static-ness, and whether they
are exported or not. The combination of kernel
functions we chose work on both kernel trees and
allows DUMP to run on a stock kernel, or one
provided by RedHat.
The code to provide the dynamic pid-files

in /proc/dump was shamelessly pulled from
linux/fs/proc. The 255 lines of code to modular-
ize this function of DUMP would become about
a 20 line patch to the kernel if we were to create
a new “dump” entry in the currently existing
/proc/[pid] architecture (which is not expand-
able without patching).
The code of DUMP would dramatically decrease
in size and complexity if it were created as a
kernel patch instead of a module, but this would
limit the use and adoption of DUMP.

6 Resources

If you are interested in peeking at DUMP’s code,
we found several resources to be immensely help-
ful. Linux Device Drivers was helpful in explain-
ing the overall picture of Linux memory manage-
ment [4]. The kernel source is also a great source
of information.

4

mm/mmap.c Mapping files and VMA manipulation
fs/binfmt* Loading executable data (uses mmap.c)
fs/proc/* /proc fs examples

Documentiation/cachetlb.txt Documents get user pages

Table 3: Useful kernel files

7 Conclusion

DUMP is easy to install, easy to use, and doesn’t
try to do too much.
DUMP is still considered alpha quality code and
shouldn’t be used on production systems. Sev-
eral error conditions are not currently being han-
dled (such as out-of-memory situations), and the
existing code has not been thoroughly tested.
Also, permissions are not enforced, which would
allow any user to map any file (regardless of per-
missions) into one of their processes.
Future work on DUMP includes supporting
copy-on-write pages (don’t save COW pages if
not modified) and creating a stable, robust, and
secure module. Once DUMP has proven itself as
a module, a simplified kernel patch will be made
that would be more appropriate for inclusion into
the standard kernel.

References

[1] Amnon Barak and Oren La’adan. The
MOSIX multicomputer operating system for
high performance cluster computing. Future
Generation Computer Systems, 13(4–5):361–
372, March 1998.

[2] MOSIX, September 2002.
http://www.mosix.org/.

[3] Eduardo Pinheiro. Truly-
transparent checkpointing of par-
allel applications, September 2002.
http://www.cs.rutgers.edu/∼edpin/epckpt.

[4] Alessandro Rubini and Jonathan Corbet.
Linux Device Drivers. O’Reilly and Asso-
ciates, 2nd edition, 2001.

[5] Gong Su Steven Osman, Dinesh Subhraveti
and Jason Nieh. The design and implemen-
tation of Zap: A system for migrating com-
puting environments. In Proceedings of the
Fifth Symposium on Operating Systems De-
sign and Implementation (OSDI’02), Boston,
MA, December 2002.

[6] Hua Zhong and Jason Nieh. CRAK:
Linux checkpoint / restart as a kernel mod-
ule. Technical Report UCS-014-01, Columbia
University, Department of Computer Sci-
ence, November 2001.

5

A Installation

You can download the latest tarball of DUMP
from http://DavidDuffey.com/dump. Untar the
archive and it will create a directory struc-
ture dump. The module directory has a Make-
file that will build a loadable kernel module
dump.o, The Makefile assumes /usr/src/linux
and /boot/System.map are associated with your
currently running kernel.
After loading the module, there will be a di-
rectory /proc/dump that will contain a file for
each process. The filenames are simply the pid
of each respective process. If you read from
/proc/dump/740 you will be dumping process
740’s memory structures and content. If you
write a suitable dumpfile to /proc/dump/740
you will be restoring process 740’s memory.

B Sample Usage

After booting RedHat 7.3, top reports sendmail
as having used 1824k of memory with 1304k of it
being shared (1.4% of total memory). We dump
the sendmail process by simply cat’ing the pro-
cess’s proc entry to a regular file, as shown in
Figure 1.
After the DUMP, top reports 0k SIZE and 0k
SHARE (0% of total memory). You might be
wondering why the dumpfile is 900k, instead of
1824k or 520k (1824k - 1340k = 520k). This
is because read-only memory mapped files don’t
need to be dumped (so less than 1824k), but
copy-on-write shared memory is dumped even if
it has not been modified (and so COW pages
become non-shared after a dump/restore).
Restoring is just as simple, we write a valid
DUMP file to the process’s procfs entry (# cat
sendmail.dump > /proc/dump/740). Immedi-
ately after the restore, top shows us that non-
shared (and COW) memory has been restored
(Figure 4). The 4k (one page) of shared memory
is from the signal handler code of sendmail han-

dling SIGCONT. After sendmail starts handling
mail we can see it start to load more shared,
read-only code.
The %MEM has dropped from 1.4% to 1.0% af-
ter restart. This reduction comes from shared
initialization code that is no longer used after
restart. It is possible that, as more of sendmail’s
functionality is exercised, the memory usage will
actually grow slightly beyond what it would have
if a dump/restore had not taken place.

6

\# cat /proc/dump/740 $>$ /tmp/sendmail.dump \\

\# ls -al /tmp/sendmail.dump \\

-rw-r--r-- 1 root root 899480 Jun 29 18:57 /tmp/sendmail.dump

Figure 1: Sample use of dump

WHEN SIZE SHARE STAT %MEM
before DUMP 1824 1304 S 1.4
after DUMP 0 0 TW 0.0
after restore 880 4 S 0.6
after execution 1348 472 S 1.0

Table 4: sendmail, as reported by top

7

