
An evaluation of distributed scheduling algorithms within the DESPOT
architecture

Daniel Andresen, Jeffrey Lebak, Ethan Bowker
Department of Computing and Information Sciences

234 Nichols Hall, Kansas State University
Manhattan, KS 66506

Abstract

Current systems for managing workload on clusters of
workstations, particularly those available for Linux-
based (Beowulf) clusters, are typically based on tradi-
tional process-based, coarse-grained parallel and dis-
tributed programming. The DESPOT project is build-
ing a sophisticated thread-level resource-monitoring
system for computational, storage and network re-
sources [2, 3]. In this paper we present an evaluation
of several scheduling algorithms within DESPOT, our
architecture for low-overhead, fine-grained resource-
monitoring tools for per-process network and other
resource usage. We also present experimental results
show our performance using a genetic algorithm, the
MOSIX default scheduler, and a range of parameters
for the multi-facetted DESPOT algorithm. We also
give several examples where our scheduling algorithm
outperforms the MOSIX scheduler.

1 Introduction

Current systems for managing workload on clusters
of workstations, particularly those available for Linux-
based (Beowulf) clusters, are typically based on tradi-
tional process-based, coarse-grained parallel and dis-
tributed programming [13, 4]. In addition, most
systems do not address the need for dynamic pro-
cess migration based on differing phases of computa-
tion. The DESPOT project is building a sophisticated,
thread-level resource-monitoring system for computa-

tional, storage, and network resources. We plan to use
this information in an intelligent scheduling system to
perform adaptive process/thread migration within the
cluster. The DESPOT architecture was presented in a
previous paper [2]. In this paper we discuss in detail
our scheduling algorithms, including an iterative and
genetic algorithm-based system, and compare their
performance with the default MOSIX load-balancing
scheduler.

DESPOT
Network

communication
monitor

DESPOT
Thread

resources
monitor

Other PCP
monitors

XML/SNMP

SGI Performance
Co-Pilot (PCP)

Grid
schedulers

DESPOT
cluster monitor

DESPOT-enhanced
job scheduler

Figure 1. Original DESPOT architecture.

Of central importance to process scheduling systems
such as DESPOT is the collection of system perfor-
mance monitoring data which is used by the schedul-
ing algorithm. Since DESPOT incorporates per-
process and per-thread data into the scheduling algo-
rithm, it has demanding performance monitoring re-
quirements. The original implementation of DESPOT
was based on SGI’s Performance Co-Pilot (PCP) to fa-
cilitate the collection of performance monitoring data
and to provide an API for the scheduling algorithm
to retrieve the data. Unfortunately, the PCP proved
to have too much overhead which slowed the perfor-
mance of the scheduling algorithms.

Our paper is organized as follows: Section 2 dis-

cusses related work. Section 3 covers the design of
our system. Section 4 offers our experimental results,
and finally, Section 5 offers our conclusions and final
thoughts.

2 Background

We first briefly discuss Beowulf clusters, and how they
differ from a network of workstations (NOW) [13, 1].
We then go on to discuss various monitoring and
scheduling tools such as PCP.

Beowulf clustersThe first Beowulf cluster computer
was built by Thomas Sterling and Don Becker at CES-
DIS from 16 Intel 486DX4 processors connected by
channel-bonded Ethernet. “The machine was an in-
stant success and their idea of providing COTS (com-
modity off the shelf) base systems to satisfy specific
computational requirements quickly spread through
NASA and into the academic and research communi-
ties” [4, 13, 1]. Beowulf systems are marked by a re-
liance on COTS machines, publicly available software
(in particular, the Linux operating system, the GNU
compilers and programming tools, and the MPI and
PVM message-passing libraries), and fast node inter-
connects (typically Ethernet or Myrinet). This soft-
ware and hardware environment provides a robust sys-
tem for today, with the ability to migrate easily to
faster and better systems in the future due to stan-
dards like the Linux API, and message passing based
on PVM1 and MPI2 [7, 5].

Performance monitoring tools Several commercial
and open-source tools have been developed to mon-
itor the performance of a large number of comput-
ers such as a typical computing cluster. In contrast
with existing systems, which usually display informa-
tion only graphically, the DESPOT project integrates
performance monitoring with scheduling systems. In
the following sections, we discuss open-source cluster-
monitoring tools.

Several tools have been developed to monitor a large
number of machines as stand-alone hosts as well as
hosts in a cluster. These tools can be useful because

1Parallel Virtual Machine
2Message Passing Interface

they monitor the availability of services on a host and
detect if a host is overloaded, but they do not gen-
erally provide performance-monitoring information at
the level of detail needed to tune the performance of a
Beowulf cluster. Examples of these systems are PaRe
Procps [14], BWatch [12], Mon [15], Nocol [10], and
Netsaint [6].

TheSMILE Cluster Management System(SCMS) is an
extensible management tool for Beowulf clusters [8].
SCMS provides a set of tools that help users monitor,
submit commands, query system status, maintain sys-
tem configuration, and more. System monitoring is
limited to heartbeat-type measurements.

MOSIX is a popular platform for supporting dis-
tributed computing. It enhances the Linux kernel with
cluster computing capabilities. In a MOSIX cluster,
there is no need to modify applications to run in the
cluster, or to link applications with any library, or even
to assign processes to different nodes. MOSIX does
it automatically and transparently. The resource shar-
ing algorithms of MOSIX attempt to equalize the pro-
cessing load of the machines in the cluster. However,
the scheduling algorithms primarily consider the total
CPU load and memory usage of each machine. Per
process load and network load measurements are rela-
tively minor factors [9].

MOSIX was useful for our experiments for two rea-
sons. First of all, it provides a framework and an API
for migrating processes between machines. Thus it is a
convenient platform for the development of prototype
scheduling algorithms. Secondly, the built-in MOSIX
scheduling algorithm offers a baseline measuring stick
for comparing our own scheduling algorithms.

3 System design

DESPOT allows for easy testing of different schedul-
ing algorithms and heuristics. By using dynamically
linked libraries (dlls) scheduling algorithms may be
swapped in and out at the command line without re-
compilation of DESPOT. Adding another scheduler is
simple – the program must be compiled as a dll and
must follow DESPOT’s dll interface. Currently, two
scheduling libraries are in use: the DESPOT sched-

uler and the genetic algorithm scheduler. Each uses
the same heuristic back end, which is currently a set of
functions and macros that determines the effectiveness
of a scheduling. Eventually, DESPOT will allow for
dynamic linking of heuristics using the same method
as schedulers. With DESPOT’s flexible architecture,
new algorithms can be tested with no code rewriting
and no recompilation.

DESPOT begins by initializing scheduler dll functions
based on a command line parameter that indicates
which scheduler to use. Next, it sets up the process
monitoring tool,distop, on each node in the cluster.
After initialization, DESPOT repeats the following:
First, it accesses the shared memory where each distop
client places its process information and organizes it
into an array of hash tables. The process information
structure and a collection of cluster parameters (num-
ber of nodes, number of processors on each node, etc)
are passed in a single structure to the chosen sched-
uler. The scheduler produces mapping of processes
to nodes in the form of a list to send to each node.
DESPOT uses RPC to forward each node’s migration
list to its distop server. Once it receives the RPC call,
distop server uses MOSIX to migrate the specified pro-
cesses to their new location. Returned from the RPC
call is an indication of success or failure for each at-
tempted migration. Using the returned list, DESPOT
updates its process information structure to reflect suc-
cessful migrations. Finally the loop ends by sleeping a
set amount of time.

The distop package is intended to be used in
a distributed computing environment to provide a
lightweight means of collecting the overall system us-
age. The package is divided into three applications:
a daemon, a server, and a client. The daemon pro-
gram runs in the background collecting current system
information, comparing it to previously collected sys-
tem information, and storing the information as a ra-
tio of difference over time. The server, upon request
from the client, collects non-ratio system information,
as well as obtaining the stored information from the
daemon, and returns it to the client. Further details
can be found in [2].

The DESPOT scheduling algorithmUsing a list of
active processes provided by DESPOT, the DESPOT

scheduler iterates through all possible combinations of
placing p processes on n nodes. The combinations are
formed through simple binary (for 2 machines) logic
on the number of processes and nodes. Consider a 2
node cluster with one process on each of them. A bi-
nary combination of values from 0 to 22̂ will be 00, 01,
10, 11. (In general, total combinations equals np̂.) The
first combination suggests assigning both processes to
node 0, while the third combination considers the first
process to be on node 1 and the second on node 0.

Once it obtains a particular combination, the sched-
uler may then determine how fit this combination is
using a heuristic developed specifically for DESPOT.
A so called ’happiness’ value is computed for every
process based on the current suggested configuration
and a sum of all process happiness values is the hap-
piness of the current configuration. A process is con-
sidered to be ’happy’ if it receives the total amount
of CPU, memory, and network bandwidth it requires.
Desired resource usage is estimated from usage during
the previous time interval. The combination with max-
imum total happiness is chosen as the desired schedul-
ing for the next time period. In calculating happiness,
if a process is using less than its ’fair share’ of CPU or
network bandwidth then its corresponding happiness
value is equal to 1.

Happiness (Hij) for a particular process (i) on ma-
chine (j) is

Hij = αHCPUi,j + βHNETi,j

whereα and β are typically both 0.5, meaning that
the weighting between network and CPU is equal.
α = 1.0 andβ = 0 is equivalent to a load-balancing
algorithm such as that used by MOSIX. We define

HCPUi,j =

{
1 if CPUusage < CPUavail
CPUavail
CPUusage

otherwise

HNETi,j =

{
1 if NETusage < NETavail
NETavail
NETusage

otherwise

where

CPUusage = % system and user time used by a process

CPUavail = processors on a node
CPU procs assigned

NETusage = bandwidth consumed by a process

NETavail = network capacity
NET procs assigned

Total happiness simply becomes
∑p,n

i=1,j=1 Hij

In addition to CPU and network, memory is consid-
ered using a simple heuristic. If the current configu-
ration would cause thrashing on any given node (i.e.
the memory of all processes scheduled on a node is
greater than the memory of the node) that combina-
tion is skipped and scheduling continues. Also, a slight
penalty to happiness is incurred for every process that
is moved. This helps to prevent scheduling in which
a pair of identical processes on identically scheduled
nodes would be swapped back and forth with no per-
formance gain. After determining an optimal schedul-
ing, a list of processes to migrate is created and re-
turned from the scheduler.

Techniques for improving scheduler performance
The DESPOT scheduler looks at all possible combina-
tions of processes to nodes. This works for very small
numbers of processes and nodes only. In order to pre-
vent an explosion in the number of combinations to
check, the DESPOT scheduler orders processes from
least to most ’happy’ where happiness is a measure of
well a particular process fits in the proposed schedul-
ing. Moving the most unhappy processes first reduces
scheduling overhead significantly. This allows for an
incremental scheduling approach. Since the cluster
computing environment is dynamic, scheduling small
chunks of processes yields better performance if mon-
itoring and scheduling overhead can be kept at a mini-
mum.

Genetic algorithms Efficiently scheduling p pro-
cesses overn nodes requires special consideration.
One cannot simply evaluate every possible combina-
tion of processes to nodes in a reasonable amount of
time for large p and n. Using an exploratory search
method such as a genetic algorithm, a satisfactory
scheduling of the processes may be achieved in a re-
alistic time period. A genetic algorithm has a pop-
ulation of solutions to the problem in question. The
population in this case is a set of possible process-to-
node mappings. Each of these population members or
chromosomes is given a fitness, or value measuring the

effectiveness of a chromosome. New populations are
formed by selectively manipulating the current popu-
lation. Better solutions are preserved while poor solu-
tions are replaced. This process is repeated until cer-
tain stopping conditions are met, such as a set number
of iterations reached or a certain solution fitness value
exceeded.

PGAPack, a C language genetic algorithm library, is
used in the DESPOT architecture to implement one of
the two main scheduling algorithms [11]. Fitness val-
ues are calculated based on happiness of a current con-
figuration in exactly the same way as described earlier.

Apart from the way each produces a set of combina-
tions, the GA and DESPOT schedulers are nearly iden-
tical. Both have the same dll function and parameter
interface, return the same list of processes to migrate
and evaluate happiness the same way. Another differ-
ence in the DESPOT scheduler is that it sorts processes
by happiness and then only considers the first few for
migration. While this is not currently done in the GA
scheduler, such functionality could easily be added in
a later version.

 125

 130

 135

 140

 145

 5 10 15 20 25 30

P
er

fo
rm

an
ce

Scheduling Period (s)

Original Scheduler
MOSIX

Figure 2. MOSIX vs. DESPOT (network-biased
mixed processes, higher is better).

4 Experimental Results

Tests were conducted on a four node cluster whose
hardware consists of two servers with dual Athlon MP
2000+ (1.7 GHz), 2 GB RAM, and 100 Mb Ether-

net, and two servers with dual Athlon MP 1800+ (1.5
GHz), 2 GB RAM, and 1 Gb Ethernet. All systems run
Debian Linux kernel version 2.4.22 and Mosix version
1.10.1.

Overhead of the data collection process, distop is min-
imal during a CPU intensive test. CPU usage sits
around 1.5 to 2 percent. A mixed mode test yielded
more overhead in the range of 15-20 percent CPU us-
age. This is due presumably to the overhead associ-
ated with packet sniffing within distop, as well as the
MOSIX communications overhead.

Test casesOur performance test consists of 12 pro-
cesses with 2 threads each. One thread is dedicated
to computation, the other communication. The com-
putational thread calculates a Fibonacci number of a
specified size and then sleeps. The communication
thread sends a message of a specified size taken from
a 3 MB text file. To make this situation network in-
tensive, computational threads calculate a Fibonacci
number of size 40, which takes about 20-30 seconds
each on our system. Once the computational threads
yield, the communication threads begin sending the
entire 3 MB text file to a predetermined node. Each
thread sends the same message 10 times in a row with
very little pause in between. After sending its 10 mes-
sages, the communication thread yields and the proce-
dure repeats for 4 minutes. We discuss two variants
below.

• Mixed CPU and Network testA similar testbed is
used to simulate a mixed computation and com-
munication environment. The network intensive
test is modified so that the communication thread
yields after each 3 MB file it sends. By keeping
the Fibonacci number the same, a good balance
was struck between computation and communi-
cation. At any given moment half of the processes
are doing computation and half are communicat-
ing, testing the schedulers on their ability to adapt
in a dynamic environment.

• CPU intensive testTo simulate CPU intensive
computing with the same test program, the fol-
lowing modifications were made: Instead of us-
ing 3 MB messages, a single 4kB message is sent
before yielding. To increase computational time,

a Fibonacci number of size 44 was calculated.

 0 10 20 30 40 50 60 70
Scheduling Period (s)

 1
 2

 3
 4

 5
 6

 7
 8

Processes Considered

 100
 110
 120
 130
 140
 150
 160
 170
 180
Performance

Figure 3. Effects of scheduling frequency on
DESPOT scheduling algorithm, CPU-bound
tasks, higher is better.

Scheduling times for the two algorithms (general and
GA) were nearly constant for the GA at approximately
200 ms., and ranged from 123µs for moving one pro-
cess to 16,000µs. for moving up to six processes. The
results for more frequent scheduling and considering
the movement of various numbers of processes can be
found in Figures 3, 4, and 5. As might be expected,
in general scheduling more frequently produced better
results. Surprising, changing the number of processes
to be moved usually did not substantially effect the re-
sults. Table 1 gives the relative performance numbers
for the two algorithms. In

As the benchmark processes were more and more bi-
ased towards network communication, the DESPOT
algorithm began to dominate the CPU-centric MOSIX
algorithm, as shown in Figure 2. Changing the weights
within the DESPOT algorithm to bias the algorithm
itself towards making scheduling decisions based on
network activity led to significantly (50%) worse per-
formance withα = 0.

5 Conclusions and future work

In this paper we have presented our system for mon-
itoring and scheduling processes within a Beowulf

 0 10 20 30 40 50 60 70
Scheduling Period (s)

 1
 2

 3
 4

 5
 6

 7
 8

Processes Considered

 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
Performance

Figure 4. Effects of scheduling frequency
on DESPOT scheduling algorithm, network-
bound tasks, higher is better.

 0 10 20 30 40 50 60 70
Scheduling Period (s)

 1
 2

 3
 4

 5
 6

 7
 8

Processes Considered

 520
 540
 560
 580
 600
 620
 640
 660
 680
 700
Performance

Figure 5. Effects of scheduling frequency
on DESPOT scheduling algorithm, CPU- and
network-bound tasks, higher is better.

Scheduling Standard Algorithm Genetic Algorithm
Period (s) CPU Mixed Net CPU Mixed Net

5 170 646 792 172 464 n/a
10 168 641 814 172 544 628
15 162 686 803 170 687 681
30 159 605 825 152 584 760
60 126 537 771 140 578 682

Table 1. Benchmark execution times (work
units - higher is better).

cluster. We have also discussed our multi-facetted
scheduling algorithms, and demonstrated good perfor-
mance over a variety of test cases, including surpass-
ing that of MOSIX in some cases.

We plan to extend the system and viewing application
to a hierarchical organization to increase its scalability
over the current, centralized system. We are also work-
ing to achieve the ability to monitor individual Java
threads through identifying their mapping to kernel-
level threads.

Acknowledgments This material is based in part
upon work supported by the National Science Foun-
dation under award numbers ITR-0082667 and ACS-
0092839. Any opinions, findings, and conclusions
or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

[1] T. E. Anderson, D. E. Culler, and D. A. Patterson.
A case for NOW (Networks of Workstations).IEEE
Micro, 15(1):54–64, Feb. 1995.

[2] D. Andresen, S. Kota, M. Tera, and T. Bower. An
ip-level network monitor and scheduing system for
clusters. InProceeding of the 2002 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’02), Las Vegas,
June 2002.

[3] D. Andresen, N. Schopf, E. Bowker, and T. Bower.
Distop: A low-overhead cluster monitoring system.
In Proceedings of the 2003 International Conference
on Parallel and Distributed Processing Techniques

and Applications (PDPTA’03), pages 1832–1836, Las
Vegas, NV, June 2003.

[4] D. Becker. The Beowulf project, July 2000.
http://www.beowulf.org.

[5] M. P. I. Forum. MPI: A message-passing interface
standard. Technical Report UT-CS-94-230, Depart-
ment of Computer Science, University of Tennessee,
Apr. 1994. Wed, 7 Jul 99 23:57:06 GMT.

[6] E. Galstad. Netsaint Network Monitor.
http://www.netsaint.org/.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam.PVM 3 User’s Guide.

[8] P. R. Group.SCMS Web Page. Kasetsart University.
http://smile.cpe.ku.ac.th/.

[9] The MOSIX Project Homepage.
http://www.mosix.cs.huji.ac.il/.

[10] Netplex Technologies Inc.Nocol System Monitoring
Tool. http://www.netplex-tech.com/software/nocol.

[11] Pgapack, Jan. 2004. www-
fp.mcs.anl.gov/CCST/research/reportspre1998/compbio/stalk/pgapack.html.

[12] J. Radajewski. bWatch - Beowulf Monitoring Sys-
tem. University of Southern Queensland, Apr. 1999.
http://www.sci.usq.edu.au/staff/jacek/bWatch/.

[13] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. BEOWULF: A
parallel workstation for scientific computation. In
Proceedings of the 24th International Conference on
Parallel Processing, pages I:11–14, Oconomowoc,
WI, Aug. 1995.

[14] F. Strauss and O. Wellnitz.Procps Monitoring Tools.
Technical University Braunschweig, June 1998.
http://www.sc.cs.tu-bs.de/pare/results/procps.html.

[15] J. Trocki. Mon System Monitoring Tool. Transmeta
Corporation. http://www.kernel.org/software/mon/.

