
Using implicit fitness functions for genetic algorithm-based agent scheduling

Sankaran Prashanth, Daniel Andresen
Department of Computing and Information Sciences

Kansas State University
Manhattan, KS USA

Abstract

In a distributed network, servers have various capabili-
ties that make them more suitable for certain tasks. Mo-
bile agents move from server to server based on various
scheduling algorithms. Choosing a server for a partic-
ular agent can be difficult for many users. We present
the design of a system which uses a genetic algorithm
(GA) to “learn” the type of server best suited to an
agent based on parameters such as bandwidth, latency,
and CPU availability supplied by the Network Weather
Service (NWS). Unlike typical GA implementations, we
use an implicit fitness function defined as the amount
of work done per unit time on the actual servers. We
also use a ‘hinting’ system to further improve results
through allowing agents to share information on server
performance for particular agents. We provide experi-
mental results indicating that the GA performance im-
proves significantly over time, and provides a significant
advantage over round-robin scheduling.

Keywords: genetic algorithms, mobile agents, schedul-
ing

1 Introduction

Mobile agent systems provide the mechanisms for
moving code from machine to machine across the
Internet, based on various scheduling mechanisms
ranging from direct user direction to dynamic load
balancing. For systems such as the Aglets mobile
agents framework from IBM, users typically guide
the agents manually [5]. For other scheduling sys-
tems, users are expected to indicate in advance the
resource needs of their computation, which may be
difficult or impossible [7, 3].

To select an optimal server for a task, a program-
mer needs to have information on the performance
parameters of a server. When a user has infor-
mation on these performance attributes for all the
servers, an appropriate selection can be made us-
ing that information. A network-monitoring tool
like Network Weather Service can obtain this in-
formation. This tool runs processes on servers that
continuously monitor various performance param-
eters of the servers and the network and store the
data at some central location from which all the in-
formation can be accessed by any user [8].

A genetic algorithm is used to work on multiple
attributes, where each attribute is a performance
parameter of a server. Thus a genetic algorithm
can run crossovers and mutations on various chro-
mosomes representing different servers to create a
new child that would best represent the set of server
performance parameters for the task being consid-
ered. This new child can be used as a benchmark
along with other rules for the selection of a server
from the available ones as the closest match to the
child.

For genetic algorithms a “fitness” function is re-
quired to evaluate the chromosome, which typi-
cally must be custom tailored for each problem.
The fitness function for a CPU-bound process, for
instance, would look quite different than for an
agent requiring extremely low latencies. Develop-
ing explicit fitness functions for chromosome eval-
uation can be a difficult task for users[4].

In this paper, we combine the learning capabilities
of genetic algorithms with the Grid distributed in-
formation infrastructure provided by the Network
Weather Service to provide an adaptive scheduling

system for the Aglets system. We utilize a ‘hint-
ing’ server to allow agents to exchange information
on server performace. We also provide an alterna-
tive to the explicit construction of fitness functions
by using actual agent performance as animplicit
fitness function, evaluating chromosomes by their
similarity to the chromosome of the servers offer-
ing the best actual performance.

The paper is organized as follows: Section 2 dis-
cusses the design and integration of genetic algo-
rithms and Aglets; Section 3 gives the experimen-
tal results; and Section 4 discusses related work
and conclusions.

2 Integrating Aglets and GA-based
scheduling

Four parameters constitute a chromosome, corre-
sponding to the four performance parameters of
servers supplied by the NWS. The chromosome is
a string of four substrings, each of which is the
representation of a parameter values. The four
parameters in the implementation are percentage
CPU availability, number of CPUs, network band-
width, and network latency. The fitness value is
not a function of the parameters but the task per-
formance on the server, namely, the number of
work units executed by the task per second on
the server. The intent of the GA is to gener-
ate one child chromosome that represents the GA-
generated ideal characteristics for a server to give
best performance.

The solution has a central agent as the parent of all
the mobile agents which acts as the central point of
information as well (Figure 1). The central agent
receives the information on the task that needs to
be executed and some static information regard-
ing the available servers on the network. This
information presently includes the location of the
NWS NameServer process, the NWS Memory-
Server process, NWS Sensor processes, the Aglet
servers (Tahiti Server) and the number of CPUs on
the machines being considered for the experiments.

The parent agent obtains all this information, cre-
ates the mobile agents, one for each task to be ex-
ecuted, assigns a task to each agent, passes the

Task independent
interface for the body of

the mobile agent.

Genetic Algorithm

NWS data extraction module

Decision Rules

JNI Interface
for NWS

Mobile
Agent

Transfer
Module

: Command

: Data

Figure 1. Agent architecture

server information to them, and then leaves them to
work autonomously in the network. In the mean-
time, all the mobile agents send important perfor-
mance information to this parent agent. This infor-
mation includes the present values of the perfor-
mance parameters of the server on which the mo-
bile agent is currently working (its chromosome)
and the performance of the task on the server in
terms of number of work units done per second
and the location of the server. The information on
performance parameters of each of the servers is
obtained by calling a native method from the JNI
interface that interacts with the appropriate Memo-
ryServer of the NWS system to fetch the data (Fig-
ure 1). This information is stored and maintained
by each of the mobile agents in their history. The
parent agent sorts all the information from the mo-
bile agents, and distributes only the relevant ones
to the mobile agents, namely, the best two perfor-
mances of any task on any server. Using this infor-
mation, the mobile agents decide whether to con-
tinue working on the present server or to jump to
a new server. On completion of the execution of
their tasks, the mobile agents return to the central
agent, submit their history of performance, and die.

The GA of the mobile agent is initialized by the
history of the performance of the mobile agent.
This history, as described earlier, contains data
about the performance parameters of the server on

which the mobile agent was working at that time,
the task performance obtained during that period
when it was working on the server in number of
work units done per second, and the location of the
server. The mobile agent maintains two histories.
One is its own private history, and the other is the
combined history of the mobile agent and the infor-
mation it receives from the parent or central agent.
The GA is also initialized by the data it receives
from the parent agent. The GA then generates a
population from the above information obtained,
each GA parameter being a performance parameter
from the history of the mobile agents. The fitness
value for each of the entries in the population is the
value of the task performance on the server. Based
on these fitness values the GA runs crossovers and
mutations on one pair of entries selected as the best
fit for the generation of the child. The resulting
child is the GA-generated best server performance
characteristics for the task being considered. The
mobile agent then finds the current performance
characteristics of the servers in the network, and
selects the server with the chromosome “closest”
to the generated optimum. The closeness valuec is
computed as

c =

√√√√ 4∑
i=1

(
Gi − Si
Gi

)2

whereGi is the GA-generated parameter corre-
sponding to the observed server parameterSi.

Initially, a chromosome of the GA was represented
as a string of 56 1’s and 0’s. fourteen characters
represented each parameter: seven characters rep-
resented the integer part of the parameter value,
and seven characters the decimal. The drawback of
this implementation was that the number of CPUs,
being a small integer value, did not have a good
representation as a 14-character sub string in the
chromosome. Hence the GA did not have a sig-
nificant effect on the parameter. Additionally, our
implementation was not normalized with respect to
the parameters

The final GA chromosome representation is uses
only four characters for the number of CPUs pa-
rameter assuming that the number of CPUs in the
server’s being considered does not exceed 15. This

increases the odds that the GA will have a signifi-
cant effect on the parameter.

The currently used decision rules for migration
employ an average performance value for the de-
cision making process. This average performance
value is a monitor for the mobile agent, and it tries
to continue increasing this value. This value is
the average of the task performance values in the
history of the mobile agent and is updated only if
the current average is more than the previous aver-
age. The mobile agent jumps to the selected server
only if the previous task performance of this mo-
bile agent on the selected server is better than the
task performance on the present server or if the
previous task performance of this mobile agent in
the selected server is better than the average value.
The information for these conditions is obtained
from the history that stores both the mobile agent
history and the information obtained from the par-
ent agent. The two conditions are satisfied only if
the mobile agent has worked on the server before.
If not, the mobile agent unconditionally jumps to
the selected server. If none of the conditions are
satisfied, then the mobile agent picks the second-
best matching server to the child generated by the
GA. The same decision rules are employed for this
server as well. If again none of the conditions are
satisfied for the second-best server, then the mobile
agent stays in the current server. It can continu-
ously stay in the same server three times only. The
fourth time, the mobile agent searches its own his-
tory data for an unvisited server and jumps to any
one of them randomly. If all the servers have been
visited it then stays in the same server.

If the mobile agent jumps to a new server, it starts
executing the task and, after a specific time inter-
val, runs the GA that generates a new population
using updated data from its own history and from
the central agent to update the best available sys-
tem for the execution of the task. And, based upon
these new results the mobile agents decide whether
to stay and continue execution or to move to the
new available best system for the execution of the
task. This continues until the execution of the task
is completed by each of the mobile agents when
they return back home to the central agent.

Avg. Task Time Avg. User Time Min. Task Time Min. User Time
GA Based CPU Task 2.65 min 4.72 min 1.87 min 2.78 min
RR Based CPU Task 5.5 min 9.24 min 3.71 min 6.43 min
GA Based Thread Task 2.45 min 5.33 min 2.02 min 4 min
RR Based Thread Task 2.89 min 5.21 min 2.5 min 4.36 min
GA Based Network Task 3.63 min 6.7 min 3.06 min 6.84 min
RR Based Network Task 3.7 min 6.4 min 3.21 min 5.22 min

Table 1. Task test results

3 Experimental results

To demonstrate the value of our system, we con-
ducted a series of experiments to compare the per-
formance of an agent using our scheduling al-
gorithm with one using the round-robin schedul-
ing algorithm. Since all machines were local to
our location, bandwidth and latency were rela-
tively constant over our switched, 100Base-T net-
work. Significantly varying bandwidth and/or la-
tencies would tend to increase the value of dynamic
scheduling [2]. The servers used consisted of
five Sun Ultra 5s (265Mhz.), one 9-processor Sun
E4000(183Mhz.), a dual processor Sun SPARC
10/512(85Mhz.), a three processor Sun SPARC
20/514(70Mhz.), and a dual-processor Pentium-
II-based Linux server(300Mhz.), all on a switched
Fast Ethernet network.

Our test applications consisted of three types of
agents: CPU-bound, multithreaded, and network-
based. These were intended to favor fast, multi-
processor, and low-latency/high-bandwidth sys-
tems, respectively. The CPU-intensive task sim-
ulates a simple genetic algorithm and performs ex-
tensive operations on strings and float values. The
multithreaded task has three threads which contin-
uously put values into a queue, and three threads
which remove the value from the queue. Thread
synchronization is the bottleneck for this task, af-
fecting its execution time. The network task ob-
tains one line at a time from a remote file, appends
a number to the line, and copies it into another file
on the same machine until the end of file is reached.
This task is primarily latency-limited.

The tests are conducted on a pair of mobile agents
at a time spawned by a central agent. The pair

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50000 100000 150000 200000

Time (s)

W
or

k_
U

ni
ts

Figure 2. CPU-intensive GA performance
over time

of mobile agents is initialized by an instance of a
task each. The task is one of the three described
above, namely CPU-intensive, thread-based, and
network-based. The tests are conducted on each
task, first using the genetic algorithm-based mobile
agents and then using the round robin based mobile
agents. All results are averaged over multiple runs.

The graph in Figure 2 shows the ideal case behav-
ior of the genetic algorithm based mobile agents.
It is clear that the mobile agent shows intelligent
behavior by jumping to the server that outputs best
performance. The trend line is the learning curve
of the mobile agent, which, being linear, shows the
good functioning of genetic algorithm in making
selection of servers based on performance. The
mobile agent shows a fairly randomized beginning
where the agent just jumps to any server available
studying its performance. The genetic algorithm

-0.5

0

0.5

1

1.5

2

2.5

0 50000 100000 150000 200000 250000 300000

Time (s)

W
or

k_
U

ni
ts

Figure 3. CPU-intensive RR performance
over time

then takes over to make decisions. It jumps to an
Ultra 5 because of its comparatively better perfor-
mance. The GA realizes that the configuration of
acrux gives the best performance among its known
servers and hence stays there. After staying there
for three time intervals, based on its decision rules
the mobile agent jumps to the dual P-II as an un-
visited server. Since the performance is very good,
the GA tries to make the agent stay on that server.
After three time intervals, however, it jumps to the
E-4000, an unvisited server. It then returns to the
dual P-II as its best server and remains until com-
pletion. In comparison to that, Figure 3 shows the
normal behavior of the round robin based mobile
agents, with substantially lower performance.

The overall performance of the genetic algorithm
based mobile agents is better than the round robin
based mobile agents in the case of CPU-intensive
tasks. Contrary to our expectation, the thread-
based task did not perform very well with the ge-
netic algorithm-based mobile agents with respect
to task time (Table 1). The thread-based mobile
agents could not spawn multiple processes on the
machines, and hence were not able to use the ad-
vantages of executing on a multiprocessor system.

The network-based task performed equally well
with both round robin based mobile agents and the
genetic algorithm-based mobile agents (Table 1).

The network parameters for all the servers are sim-
ilar and hence do not help the genetic algorithm
in manipulating the parameter values in identify-
ing the ideal network parameters for servers.

The mobile agents take a considerable amount of
time in transferring themselves from one server to
the other, giving the considerable difference be-
tween the task time and the user time.

4 Conclusions

We implemented a genetic algorithm that would
work on four parameters, namely, percentage avail-
able CPU, number of CPUs, network bandwidth
and network latency. The information for this is
made available by the Network Weather Service
tool that monitors the performance of servers and
the network in the distributed system. Using this
genetic algorithm, a distributed “hinting” system,
and a few decision rules, the mobile agents are able
to dynamically self-schedule without the need for
an explicita priori fitness function.

Other systems have explored runtime load bal-
ancing within a distributed system, although few
within the context of Java-based mobile compu-
tation environments. The Plangent project adds
scheduling capabilities to Aglets, but does not use
genetic algorithms [6]. Recent work on mobile
computing (e.g. [1]) uses bandwidth and data lo-
cality information to dynamically migrate com-
putation, but requires a much greater degree of
knowledge on the user’s part than our work.

We have presented the test results that show, that
the genetic algorithm based mobile agents give
over 51% better performance in task time and over
48% better performance in user time for the CPU-
intensive task as compared to the round robin based
mobile agents. In contrast, the genetic algorithm
based mobile agents give just over 15% better per-
formance in task time over the round robin based
mobile agents, and the round robin based mobile
agents performed about 2% better in user time
than the genetic algorithm based mobile agents for
the thread-based task. From the observations this
could be due to the inability of the mobile agents in
taking advantage of executing the task on the mul-

tiprocessor systems, as the mobile agents could not
spawn off threads as individual processes. Since
the mobile agent has to work only on the perfor-
mance output, the improvement in the overall per-
formance of genetic algorithm based mobile agents
is not satisfactory. Due to the overhead involved in
the execution of the genetic algorithm in the ge-
netic algorithm-based mobile agents, the perfor-
mance of the round robin based mobile agents is
marginally better with respect to user time.

The performance of the genetic algorithm based
mobile agents as compared to the round robin
based mobile agents has been proved to be defi-
nitely better in the execution of the CPU-intensive
tasks. Though the genetic algorithm has shown
only satisfactory performance improvement on the
thread-based task and marginal performance im-
provement on the network based tasks, their per-
formance degradation can be explained from the
observations that have been made with respect to
both the task time and user time. There is cer-
tainly a trade-off in between the performance gain
and the overhead of execution of the genetic algo-
rithm in the genetic algorithm based mobile agents.
However, the test results show that the genetic
algorithm-based mobile agents definitely perform
well for some tasks, and and on par with round
robin based mobile agents for others despite their
inherent increased overhead.

References

[1] A. Acharya, M. Ranganathan, and J. Saltz. Suma-
tra: A language for resource-aware mobile pro-
grams. Lecture Notes in Computer Science,
1222:111–??, 1997.

[2] D. Andresen and T. McCune. Towards a hier-
archical scheduling system for distributed www
server clusters. InProc. of the Seventh IEEE
International Symposium on High Performance
Distributed Computing(HPDC7), pages 301–309,
Chicago, Illinois, July 1998.

[3] B. Brewington, R. Gray, K. Moizumi, D. Kotz,
G. Cybenko, and D. Rus. Mobile agents in dis-
tributed information revrieval. page Chapter 15,
1999.

[4] E. D. Goldberg.Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison Wesley
Pub. Co., 1989.

[5] D. B. Lange and D. T. Chang. Programming mo-
bile agents in Java–a white paper. Technical report,
IBM, Sept. 1997.

[6] A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and
S. Honiden. PLANGENT: An approach to making
mobile agents intelligent.IEEE Internet Comput-
ing, 1(4):50–57, 1997.

[7] P. Stone and M. Veloso. Multiagent systems: A
survey from a machine learning perspective.IEEE
Transactions on Knowledge and Data Engineering,
1996.

[8] R. Wolski. Dynamically forecasting network per-
formance using the network weather service.Clus-
ter Computing, April 1998.

