
SOAP Optimization via Client-side Caching

Kiran Devaram and Daniel Andresen
Department of Computing and Information Sciences

234 Nichols Hall, Kansas State University
Manhattan, KS 66506, USA
{devaram, dan}@cis.ksu.edu

Office: (785) 532-6350, Fax: (785) 532-7353

Abstract

 The Simple Object Access Protocol (SOAP) [1] is an
emerging technology in the field of web services. Web
services demand high performance, security and extensibility.
SOAP, being based on Extensible Markup Language [2],
together with the advantages of XML, however, has a
relatively poor performance, which makes SOAP a bad
choice for high performance demanding web services. In this
paper, we analyze the client side processing of a SOAP
request and investigate the stages of this processing, where
SOAP lags behind its peers in speed. Our concentration is on
the more popular RPC-style implementation of SOAP rather
than the message-style. We then present an optimized Java
implementation of Apache SOAP [8] client, showing
experimental improvements in performance (800%), which
have been achieved by implementing caching mechanism at
the client side.

Keywords: SOAP, XML, Performance study.

1. INTRODUCTION

 Lately, there has been a tremendous development in the
area of web services. SOAP is one such development, which
was conceived when there was a requirement for a standard,
and is the standard binding for the emerging Web Services
Description Language [3]. SOAP is based on XML and thus
achieves high interoperability when it comes to exchange of
information in a distributed computing environment. SOAP,
carrying the advantages that accrue with XML, has few
disadvantages, which restrict its usage. As SOAP requires
messages to be in XML, processing of these messages takes
considerable amount of execution time, which is a great
overhead in computation of a SOAP call. In this paper, we
look at one such negative side of SOAP: its speed of
execution.

 In this paper, we analyze the client side processing of a
SOAP request to the server. We use the Java implementation
of Apache SOAP 1.2 and choose the most common model of
SOAP that is used in distributed software, the RPC-style,
rather than the message-style, which is less popular. This

choice is obvious among web developers, as it closely
resembles the method-call model.

 The study involves analyzing the SOAP request made by
the client to the server when it requests a service from it. This
involves profiling of a SOAP RPC client. The profiler that we
have chosen is Hpjmeter. The profile data that is collected is
then used to investigate the different stages of execution of
the client using the profiler. Each of the stages is further
examined to find out where the client is spending most of its
time. As SOAP requires messages to be in XML, a typical
request from the client involves XML encoding, which is
basically serialization and marshalling of the payload, before
it is sent to the server.

 The aim of this research is to make SOAP more efficient to
cope with the requirements of a high performance application
or a web service, while still complying with the SOAP
standard. The client side, after close examination of each
phase of its execution, is optimized by using a caching
mechanism. An experimental performance increase of around
800% is obtained by caching the client requests, which are of
small size. Secondary goal was, to have minimum overhead
to modify an existing SOAP application to achieve this
performance. Another objective was to have zero impact on
the server side code as our implementation mainly
concentrates on the client side. We used the Apache SOAP
1.2 with Tomcat 3.02 application server.

 The rest of this paper talks about the related work in
section 2, and puts the implementation details in section 3.
Section 4 presents the results of the study and conclusion
follows it in section 5.

2. RELATED WORK

 There have been several studies comparing SOAP with
other protocols, mainly binary protocols like JavaRMI and
CORBA. All of this research has proved that SOAP, because
it relies on XML, is inefficient compared to its peers in
distributed computing. In this paper we look at some of those
studies [4] [5] [6] which explained where SOAP is getting
slower and look at various attempts made to optimize it in

different ways. All of these studies have targeted to increase
the performance of SOAP.

 SOAP relying heavily on XML, requires its wire format to
be in ASCII text. This is the greatest advantage of using
SOAP, as the applications need not have any knowledge
about each other before they communicate. However, since
the wire format is ASCII text, there is a cost of conversion
from binary form to ASCII form before its transmitted.
Together with the encoding costs, there are substantially
higher network transmission costs because the ASCII
encoded record is larger than the binary original [4].
Reference [4] shows that there is a dramatic difference in the
amount of encoding necessary for data transmission, when
XML is compared with binary encoding style followed in
CORBA. But SOAP, by definition is based on XML.

 There have been various other studies, which compared
SOAP with binary protocols like JavaRMI and CORBA.
Reference [5] does one such study, which finds out reasons
why XML causes SOAP to be inefficient. The research in [5]
finds out that one source of inefficiency in SOAP is the use of
multiple system calls to send one logical message. Of course,
the reason of concern to this paper, XML encoding/decoding,
is also mentioned. Some suggestions made by [5] include
HTTP chunking and binary XML encoding to optimize
SOAP.

 Extreme lab at Indiana University [6] came up with an
optimized version of SOAP, namely XSOAP. Their study of
different stages of sending and receiving a SOAP call has
resulted in building up of a new XML parser that is
specialized for SOAP arrays improving the deserialization
routines. They employ HTTP 1.1, which supports chunking
and persistent connections.

 Reference [7] says that XML is not sufficient to explain the
SOAP’s poor performance. SOAP message compression was
one attempt to optimize SOAP, which was later discarded as
CPU time spent in compression and decompression the
messages, outweighs any benefits [7]. Another attempt in [7]
was to use compact XML tags to reduce the length of the
XML tag names. This had negligible improvement on
encoding, which suggests that the major cost of the XML
encoding and decoding is in the structural complexity and
syntactic elements, rather than the data contained in the
message [7].

 Each of these studies pinpoints the area where SOAP gets
slower by comparing it with its alternatives. Some of them
also present optimized versions of SOAP which were
conceived as a result of different mechanisms like making
compact XML payload, binary encoding of XML etc and
achieved a better efficiency. But none of these solutions
could make SOAP close to JavaRMI in speed while
preserving the software to comply with the SOAP standard.

3. IMPLEMENTATION

 Our study focuses on the optimization of the client side of
a SOAP service. The work starts with the profiling of a
simple SOAP RPC-style client requesting service from a
server. The profile data that is collected is studied and the
client’s job of requesting a service is broken into stages. Each
of these stages is further studied and the key areas where the
client is spends more time are identified. As expected, the
client spends a considerable amount of its execution time in
XML encoding. In some cases, like a client application
requesting the current stock quote value of a company, this
conversion of binary data into ASCII format, takes significant
amount of the computation that occurs at the client side as the
rest of the client’s task is to simply construct a query string
requesting the stock quote value. In such a scenario, XML
encoding can prove costly and will have a major effect on the
performance of the application as far as client side is
concerned.

 Consider a simple SOAP RPC client requesting the Time-
of-day service from a server. We use HTTP as the underlying
protocol for transporting SOAP XML payloads though it’s
not mandatory according to the SOAP specification. Binding
SOAP to HTTP provides the advantage of being able to use
the formalism and decentralized flexibility of SOAP with the
rich feature set of HTTP [1]. To send a request to the server,
the SOAP RPC client creates an instance of
org.apache.soap.rpc.Call, a java class that encapsulates a
SOAP RPC method call. After specifying the name of the
service and the method being invoked, we use the invoke()
method of the Call object to make a method call to the server,
passing the required parameters. Fig. 1 shows the SOAP
payload that the client generates. This message is very large
in size when compared to a similar request of a JavaRMI
client.

Fig. 1. SOAP payload generated by a SOAP RPC client.
 Upon examination of the profile data of this SOAP RPC
client, it is found that, around 40% of the execution time is
spent in XML encoding. This involves preparation of the

SOAP payload, which is basically serializing and marshalling
of the payload before it is transmitted to the server.

 Consider the scenario where the client application sends
the same kind of request to the server over and over again.
For each request, the client has to prepare the same SOAP
payload, which takes significant amount of processing time
involving XML encoding. From this observation, we figure
out that, there can be a better way to handle similar multiple
calls made by the client. This is the area, our study mainly
focuses on. This is where the notion of caching the SOAP
payload comes up.

 Every client application has a finite set of different
requests that are sent to the server over time. It happens quite
often that same request is generated again and again, which
involves sending of the same SOAP payload. One such
example is a stock application, which makes similar requests
to the server querying the stock quote values. The idea that is
presented in this paper is to cache such requests at the client
side. The first time the SOAP payload is generated by the
client, it is cached in a file and is indexed by a key, which
contains the information about the type of request that
generated this payload. Every time the client needs to send a
request, it will first check the cache to see if the request was
previously made and cached. If it is, then a simple File I/O
operation can fetch the payload from the cache, which is then
sent to the server. This relieves the client application from
creating the payload again using org.apache.soap.rpc.Call,
increasing the execution speed manifold times. Fig. 2 shows a
SOAP client-server architecture in which, the client
implements such a caching mechanism.

 We have implemented caching mechanism using files. An
important aspect to be considered is, how the contents in the
cache are indexed. The index should contain information
about the type of the request that generated that particular
SOAP payload. For example, for a stock quote value
requesting client, the index can be the company’s name for
which the stock quote value is requested. In case the client
needs to request the stock value of the same company, then it
can flip the payload from the cache using the company’s
name as search key. The indexing can be made application
dependent.

 Once it is found that the present request was already sent
and has been stored in the cache, the client application, using
the search key, flips the XML payload and sends it to the
server using Java Sockets. A socket connection must be set
open to the port at which the SOAP service is deployed on
that particular host. The response from the server is an ASCII
text, which is obtained by listening to the socket through

Fig. 2. SOAP RPC client–server using client side caching.

which the request was sent. The response from the server will
be in XML, from which the required element is searched by a
simple string search saving the extra time spent to parse the
response, which is done by creating an instance of
org.apache.soap.rpc.Response.

4. EVALUATION

 This section first lists a series of experiments that we ran to
compare SOAP with a binary protocol, JavaRMI. These tests
enabled us to focus on the stages of client side processing we
later worked on. After SOAP RPC client was found to be
spending a considerable amount of time encoding the XML
payload, the notion of caching the frequently made requests
was conceived. The later part of this section presents the
comparative study between the performance of SOAP and
SOAP with client side caching. The effect of passing large
and complex data types to the server on performance of
SOAP with client side caching has also been evaluated.

 At first, simple applications of getting a string from the
server were implemented in both Java implementation of
Apache SOAP and JavaRMI. We used Java 1.4 to test these
applications on Apache Tomcat 3.02 web server. Xerces was
used as the XML parser for Apache SOAP 1.2. These
applications were tested on SunOS 5.9 running on a 750
MHz, 1GB main memory Sun Blade 1000 system. The
results are shown in Fig. 3. The performance of JavaRMI is
far better than that of SOAP and this is evident from the Fig.
3. For this example, JavaRMI spent around 47% of round trip

Application

Client

Cache

Server

Send a request

Perform a look up on
cache for payload and
save the SOAP
payload if it is not
found in cache

Flip the payload if it
is found in cache

If the payload is found in
cache, make an optimized
call to the server using
sockets.

Response

Response

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

JavaRMI SOAP

Ro
un

d-
tri

p
tim

e
(s

ec
on

ds
)

XML encoding
Naming look-up
Other processing

Fig. 3. Comparison of RMI with SOAP.

time for RMI naming look-up, while the SOAP RPC client
spent over 39% of its round trip time in encoding the XML
payload that is sent to the server.

 XML encoding, as said in [5] is not the only reason for
SOAP being slower than JavaRMI. Another reason is making
of multiple system calls to send a message [5]. In order to
optimize the client side of SOAP RPC, frequently sent
requests are stored in cache for future use. This will decrease
the client side execution time, as there is no longer a need to
create a SOAP payload using the class
org.apache.soap.rpc.Call. Also, the SOAP payload is
transmitted using sockets, saving the time required to
establish HTTP connection. This logic was used to
implement a modified SOAP RPC client, which now has a
caching mechanism. Its performance is compared with both
the traditional SOAP and JavaRMI in Fig. 4. As the caching
mechanism is implemented using files, there is an additional

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

JavaRMI SOAP SOAP (w ith
client-side
caching)

R
ou

nd
-t

rip
 ti

m
e

(s
ec

on
ds

) XML encoding

File I/O

Naming lookup

Other processing

Fig. 4. Comparison of SOAP (with client-side caching) with
JavaRMI and the traditional SOAP.

computation involving File I/O, replacing the encoding of
XML. It also involves establishment of Java socket
connection with the host where the service is deployed. This
cost is, however, meager. The performance of SOAP using
client side caching is over 800% more than that of SOAP,
which uses XML encoding.

 Our client side caching pushes the performance of this
client further, making it work faster than JavaRMI. We,
however, wanted to evaluate its performance under high
loads, i.e. when large amount of complex data is sent to the
server. For this, we implemented clients in all three ways,
JavaRMI, SOAP and SOAP with client-side caching, which
sent 20KB of string array. The results of this experiment are
shown in Fig. 5. The sending of a complex data type, like an
array, involves more XML encoding as the SOAP payload
now contains many more tag value pairs. This further
degrades the performance of SOAP which is now over 5
times worse than that of JavaRMI. However, the performance
of SOAP with client-side caching persists to be lot better as it
involves only File I/O and socket connection establishment.
The increase in the time spent in File I/O is minimal making
SOAP with client side caching perform better even for large
SOAP payload transmissions.

 Earlier studies in this topic focused on making SOAP
faster by different means like modifying the XML parser,
compressing the XML payload etc, but none of them worked
on the idea of reusing the payload that is already generated.
The caching mechanism works great and usage of better
indexing on cache increases the overall efficiency further as it
decreases the time taken to perform a lookup on the cache for
the required payload.

 Our notion of client side caching of the SOAP payload can
facilitate building of web services with better performance.
Our study shows areas of SOAP to work on, to improve its

0

1

2

3

4

5

6

JavaRMI SOAP SOAP (w ith
client-side
caching)

Ro
un

d-
tri

p
tim

e
(s

ec
on

ds
)

File I/O
XML encoding
Naming look-up
Other processing

Fig. 5. Performance comparison when large and complex data is
sent to the server

efficiency. Furthermore, our study was limited to the client
side of SOAP. Similar problems do exist at the server side,
which demand study on the server side processing.

6. CONCLUSIONS AND FUTURE WORK

 In this paper, we have presented an idea of caching the
SOAP payloads at the client side. We also have demonstrated
this idea and various other issues that effect its applicability
for real life applications involving high speed demanding web
services. Our experiments imply the performance boost that
we achieved using this mechanism. However, several
important issues still remain open for further research. We
expect more research on improving the performance of SOAP
considering the XML encoding. We are working towards
making the caching mechanism work better, considering
different approaches of caching data. The indexing of the
cache contents is one other aspect, which needs further
refinement. More often than not, it happens that only a few of
the XML elements of the payload change, while the rest of
the nodes and values remain the same. With this finding,
future work also includes usage of DOM for large payloads
facilitating modification of the XML elements that need to be
updated and keeping the rest of the document the same,
which might save valuable time of creating the XML payload
each time.

Acknowledgments: This material is based in part upon work
supported by the National Science Foundation under award
numbers ITR-0082667 and ACS-0092839. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

7. REFERENCES

[1] D. Box et al. “Simple Object Access Protocol 1.1”,

Technical Report, W3C, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[2] World Wide Web Consortium. “Extensible Markup
Language”, visited 04-02-03. http://www.xml.org.

[3] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, “Web Services Description Language
(WSDL) 1.1”, Technical Report, W3C, 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[4] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P.
Widener, “Efficient wire formats for high performance
computing”. In Proceedings of the 2000 conference on
Supercomputing, 2000.

[5] D. Davis and M. Parashar, “Latency Performance of
SOAP Implementations”, Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 407-412, 2002.

[6] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating
the Limits of SOAP Performance for Scientific
Computing”, Indiana University. Accepted for
publication in the Proceedings of HPDC 2002.
http://www.extreme.indiana.edu/xgws/index.html.

[7] C. Kohlhoff and R. Steele, “Evaluating SOAP for High
Performance Business Applications: Real-Time Trading
Systems”, accepted to WWW2003, Budapest, Hungary,
2003.

[8] Apache Software Foundation, http://xml.apache.org.

