
HETEROGENEOUS CHANNEL BONDING REVISITED

Daniel Andresen
Department of Computing and Information Sciences

Kansas State University
email: dan@cis.ksu.edu

Sterling Hanenkamp
Department of Computing and Information Sciences

Kansas State University
email: sterling@cis.ksu.edu

ABSTRACT
Efficient communication in distributed systems is es-
sential for optimal system performance. As parallel
computation develops, many different kinds of mes-
sages need to be sent between machines. These mes-
sages may have different requirements for network la-
tency and bandwidth. In this paper, we revisit com-
bining two physical interfaces into one virtual network
(channel bonding).In contrast with most existing im-
plementations, we communicate via heterogenous in-
terfaces, and explore a number of more sophisticated
scheduling algorithms than the round-robin technique
used in the standard Beowulf channel-bonding driver.
We explore the relative tradeoffs of interface schedul-
ing overhead versus the additional bandwidth possible
with multiple interfaces. Using both Gigabit Ether-
net and Fast Ethernet Networks, we evaluate system
performance using netPerf. We show significant per-
formance gains for small messages, with incremental
improvements for larger packets.

KEY WORDS
Network performance, Linux, heterogeneous channel
bonding, Beowulf.

1 Introduction

The Beowulf parallel system defines a new operating
point in price-performance for single-user computing
systems. It couples the low cost, moderate perfor-
mance of commodity personal-computer subsystems
with the emergence of standards in message passing
hardware and software to realize an environment with
exceptional local file storage capacity and bandwidth.
This system was originally created and motivated by
requirements of NASA earth and space science appli-
cations including data assimilation, data set browsing
and visualization, and simulation of natural physical
systems. It exploits parallelism in processor, disk, and
internal communication, all derived from mass market
commodity elements. This enables large temporary
data sets to be buffered on the workstation in order to
reduce demand on shared central file servers and net-
works while greatly improving user response time. The
Center of Excellence in Space Data and Information
Sciences (CESDIS) of NASA Goddard Space Flight

Center has initially built the Beowulf architecture [9].
These systems significantly benefit bulk computations
by distributing computation among machines in an off-
the-shelf PC machine cluster.

While most distributed computing systems pro-
vide general purpose multiuser environments, the Be-
owulf distributed computing system is specifically de-
signed for single user workloads typical of high end sci-
entific workstation environments. These applications
typically require high-bandwidth, low-latency commu-
nication. One approach is to design expensive custom
hardware, such as Myrinet or the Princeton Shrimp
project [3, 2]. Beowulf systems, in contrast, often in-
corporate no special purpose parts, depending instead
on parallel Ethernet communication channels (channel
bonding) to achieve adequate sustained interprocessor
message transfer rates [4, 5, 7, 1]. This has required
some software enhancements at the operating system
kernel level, but has been achieved with commercial
off-the-shelf hardware elements, specifically low cost
Ethernet cards.

Previous research efforts have characterized het-
erogenous channel bonding. In [4], Kim and Lilja
compared channels with significantly differing speeds
(10Mbps Ethernet and HIPPI), and concluded the
most efficient algorithm was to send small messages
to the slow channel (since they were latency-limited),
and large messages through the fast channel, to take
advantage of the higher bandwidth. However, this
strategy is suboptimal in the case of large numbers
of small messages. Zhao and Andresen in [1] evalu-
ated a 100Base-T and 1000Base-F Ethernet network,
and determined that a simple N-to-1 strategy was op-
timal in that case. In the years since these papers were
published, however, processor speeds have gone up ex-
ponentially,and homogenous channel bonding (popular
at the Fast Ethernet level) has dropped in popularity
with the availability of cheap gigabit adapters. The
general attitude has been, “Why bother?”

In this paper we revisit the question of whether
it is worthwhile, in today’s environment, to perform
heterogenuous channel bonding. We present and eval-
uate the performance of a number of different packet
scheduling algorithms. These reside at the virtual de-
vice level within the Linux kernel, and provide differ-
ing methods for determining which physical device a



packet should be sent through. The Linux operating
system kernel has been modified to dynamically dis-
tribute message packet traffic to load balance across
both networks.

In section 2, we briefly discuss the standard Linux
networking architecture and channel bonding. We
then move on to present the packet scheduling algo-
rithms and their implementation in section 3, and the
experimental results in section 4. Finally, we conclude
with a brief summary of our findings and future work
in section 5.

2 Background: Linux networking

There are several different communication networks,
such as Ethernet, ATM, Fiber Channel, HiPPI and
FDDI, that have been proposed to be used as a com-
munication channel between independent processing
nodes. Each of these networks has different latency
and bandwidth characteristics. For balancing the
transmission load between heterogeneous networks in a
parallel application we need not only match each mes-
sage to the most appropriate network, we also need to
coordinate multiplexing each message to two channels
and combining them together.

In Linux operating system the network layer tries
to be fairly objected-oriented in its design, as indeed is
much of the Linux kernel [8, 6]. Every layer (Figure 1)
treats an incoming packet as an object, and adds its
own header to the packet. In order to let two physi-
cal network interface communicate between machines
simultaneously, we need to set two interfaces with the
same IP address, same Netmask, same MTU and the
same hardware address. When data arrives from the
IP layer, the device controller will pick up the pack-
ets from the packet queue and send them to different
interface. On the other hand, whenever any interface
has a message coming in from the physical layer it will
interrupt the system interrupt handler and the put the
packet into the receiving queue for upper layer process-
ing. The key objects which we use to implement our
virtual network interface are as following:

• Device or Interface: A network interface is
used to send and receive packets. Usually, this
involves both hardware and software. However,
some devices are software only such as the loop-
back device which is used for sending data up
the same stack. Device structure is the networks
working structure. It contains all the informa-
tion for both sending and receiving. It also has
a slave field for supporting multiple interfaces, we
will utilize this field to build our channel bonding.

• Protocol: Each protocol is effectively a differ-
ent language of networking. Some protocols exist
purely because vendors chose to use proprietary

networking schemes, others are designed for spe-
cial purposes. Within the Linux kernel, each pro-
tocol is a separate module of code which provides
services to the socket layer.

• Socket: The name socket is derived from the no-
tion of plugs and sockets. A socket is an endpoint
in the network that provides unix file I/O and is
accessed by an application through a file descrip-
tor. In the kernel each socket is represented by a
pair of data.

User Space

Hardware

Kernel Space

Socket Interface

Kernel Network Layer

Bonding Device Driver

User
Application

2

Intel
Gigabit

NIC

Intel
Fast Eth.

NIC

3COM
Control

NIC

3c59x.ko
Control
Device
Driver

e1000.ko
Gigabit
Device
Driver

User
Application

1

eepro100.ko
Fast Eth.
Device
Driver

Figure 1. Linux networking configuration.

3 An enhanced channel bonding archi-
tecture

In general, channel bonding can be performed between
n machines over m physical devices. We limited this
experiment to exactly two machines with two devices
each. We then experimented with a number of bond-
ing modes. The first bonding mode we considered was
one that is already available within the kernel. The
others used, we designed ourselves–though, the imple-
mentation was generally just a variation on the exist-
ing mode used. The bonding modes used during the
experiment include the following:

• Round-Robin: The bonding mode available
with the kernel is named “Round-Robin.” It
is present in the stock kernel was the basis for
the modes of our own design. The Round-Robin
driver essential routes packets to every bonded in-
terface. In our experiment, this meant alternating
between routing packets through the Gigabit in-
terface and through the Fast Ethernet interface.

• Null: The simplest bonding mode we designed we
call the “Null” mode. In Null mode, there is no ac-



tual bonding at all. The Null mode driver, wraps
a single interface with a bonding interface that
performs the locking and other activities required
at a minimum to wrap one network driver in an-
other. The goal of this mode is to ascertain what
differences in performance exist between the hard-
ware network driver alone and using the hardware
driver wrapped inside of the bonding driver. This
would give us a base-line by which all other bond-
ing drivers could be judged.

• N:1: Logically, since one interface we are testing
is ten times faster than the other, we can write a
driver mode which would perform the same func-
tion as Round-Robin, but using a 10:1 ratio. We
generalized this driver mode as “N:1.” This allows
us to experiment with different ratios to compare
their relative utility.

• Least-Queue: Moving beyond a simple ratio, we
decided to try and take advantage of the queue
length measurements recorded by the kernel for
hardware devices. Armed with this information,
we can try to direct packets to the device that is
least busy at the current moment. Since our archi-
tecture is intended for use with devices with dif-
fering bandwidth we will always choose the faster
interface if the queue length is the same on all
devices. We refer to this driver mode as “Least-
Queue.”

• N:1/Primary: Then, our most complex driver
modes are hybrid algorithms that try to use dif-
ferent techniques based upon packet sizes. The
rationale being that a large packet is more likely
to benefit from transmission over a high band-
width interface. On the other hand, except for
extremely small packets, it conceptually matters
very little which interface smaller packets are sent
through. Our first complex driver mode is called
“N:1/Primary Combo.” For packets below a cer-
tain threshold we transmit the packets according
to the N:1 strategy while larger packets will al-
ways be sent out of the primary (i.e., higher band-
width) interface.

• Cut-off-Least-Queue: We call the second com-
plex driver mode, “Cut-off-Least-Queue.” In this
case, large packets are always transmitted to the
primary interface. Small packets, then, will be
transmitted according to the Least-Queue algo-
rithm. This algorithm should conceptually do well
where there is a high volume of small packet traffic
that will split the traffic best among any interface.
When a large packet does come through, though,
we can always use the primary interface for faster
transmission.

4 Experimental Results

In this section, we evaluate the algorithms presented
in Section 3 for latency, bandwidth, and CPU utiliza-
tion. During these experiments, we used two identical
Dual AMD Athlon MP PR1800 machines with three
network interfaces. The Tyan K7X Pro motherboard
in these machines has two integreted network inter-
faces. We used these interfaces for the experiment: an
Intel 82545EM 10/100/1000Mbps controller and an In-
tel 82551QM 10/100Mpbs controller. We installed a
third network interface into both machines to allow for
remote communication with the machines during test-
ing and for automation of the test process. For our en-
hanced channel bonding architecture, we used a stock
Linux kernel for our experiments. All tests involved
a stock 2.5.x kernel with some slight modifications by
us in the channel bonding driver. All tests presented
here were performed on a 2.5.66 kernel with our modi-
fications added. We used the kernel modules available
in the stock kernel to drive the hardware interfaces.

CO L-
ACT -
ST A-

1 2 3 4 5 6 7 8 9 101112
HS1 HS2 O K1 OK2 PS

CO NSOL E

NetGear GS524TNA Gigabit switch

1 2 3 4 5 6

7 8 9 1 01 11 2

A
B

1 2 x

6 x

8 x

2 x

9 x

3 x

1 0 x

4 x

1 1 x

5 x

7 x

1 x

E
th

e
rn

e
t

A

1 2 x

6 x

8 x

2 x

9 x

3 x

1 0 x

4 x

1 1 x

5 x

7 x

1 x

C

Linksys 4-port 100Base-T switch

Dual AMD Athlon MP PR1800
2GB RAM, Tyan Thunder K7X Pro

S2469 motherboard
(on-board Gigabit & Fast Ethernet),

Linux 2.5.x kernel

Figure 2. Experimental configuration.

Because channel bonding causes all interfaces to
appear as one (including IP and MAC address config-
uration), it is necessary to use a separate network bus
for each group of devices. For this experiment, we used
a 4-port Linksys hub for routing fast ethernet traffic
and a Netgear Gigabit Switch for the gigabit traffic.
See Figure 2 for a view of the hardware setup.

These results were obtained through the Netperf
network performance tester using it’s TCP STREAM test.
All tests were done with the socket send and receive
buffers set to 128 kilobytes (under Linux, this actu-
ally results in the maximum buffer size of 256 kilo-
bytes). Each bandwidth measure was obtained by
sending data over the network as quickly as possible
for a 10 second period using a given message size. The
tests were repeated over 20 iterations and the average
of those results is presented here. We have measured
the 95% statistical confidence interval for each point.
The average error interval has been measured to be



less than 10% of the bandwidth at each point.

Fast Ethernet
Gigabit Ethernet

Round Robin
Least−Queue

Combo
Cut−LQ

1000

2000

3000

4000

5000

6000

7000

8000

0 5000 10000 15000 20000 250
Message Size (bytes)

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

Figure 3. Messages/second (higher is better).

Latency: In general, Figure 3 indicates that
plain Fast Ethernet has the lowest latency and high-
est number of messages per second, with Round-robin
coming in second, and the rest of the algorithms clus-
tered near each other at the bottom. Round-robin
does show a surprising (but consistent) degree of vari-
ance, possibly due to CPU cache effects. The gigabit
driver exhibits consistently more overhead than Fast
Ethernet, with the more sophisticated algorithms giv-
ing nearly identical performance.

Fast Ethernet
Gigabit Ethernet

Round Robin
Least−Queue

Combo
Cut−LQ

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 250
Message Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

Figure 4. Throughput for all algorithms.

Bandwidth: We ran a number of tests on each of
the bonding modes described in Section 3. As it turns
out, not many of these driver modes proved to be a
significant improvement over gigabit alone. For very
large message sizes, no routing algorithm we present
here has demonstrated notable improvement over gi-
gabit alone. For very small message sizes, however,
we have found channel bonding may provide a large

bandwidth boost. Using the Round-Robin mode that
exists in the stock 2.5.x kernel, small messages trans-
mitted over TCP can gain as much as a 300% band-
width boost over either fast ethernet or gigabit ether-
net alone. The gain is as high as 150% above the sum
of the bandwidth of both gigabit and fast ethernet in-
terfaces.

Fast Ethernet
Gigabit Ethernet

Round Robin (Gig/Fast)

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120
Message Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)
140

Figure 5. Fast Ethernet and Gigabit Ethernet results
compared to Round-Robin Bonding.

As can be seen in Figure 5 (the interesting part
of Figure 4), the results show that Round-Robin mode
maintains a superior bandwidth for messages smaller
than 64 bytes. On the test architecture, Round-Robin
quickly becomes inferior as message sizes larger than
64 bytes as the gigabit device ramps up well-above the
maximum bandwidth Round-Robin is of which capa-
ble. The reason for Round-Robin’s impressive success
appears to be that it reaches its bandwidth cap faster
than the hardware devices do on their own. Since its
bandwidth cap is so low, however, it cannot win once
hardware processing of packet data trumps CPU pro-
cessing.

A detailed examination of the results can be
found in Table 1. Examination reveals that extremely
small message sizes show a notable improvement over
the sum of the bandwidths, which we believe is due to
the pipelining of the requests on the two devices. This
advantage remains in place for messages up to 32 or 40
bytes in size. Larger messages from 40 to 56 bytes tend
to show a slight improvement until the bandwidth of
the gigabit device overtakes Round-Robin at 64 bytes.

CPU Utilization: The figures for CPU utiliza-
tion show Fast Ethernet taking approximately 20-30%
of the local and remote CPU. Any gigabit algorithm
other than round-robin (Figure 7) has a graph virtu-
ally identical to Figure 6, indicating that, while the ad-
ditional overhead from more sophisticated algorithms



Msg. Size R.R. Mbps F.E. & G.E. % Impr.
1 4.4 2.8 155.7
8 46.3 29.6 156.3
16 84.6 74.8 113.0
24 117.0 82.6 141.6
32 143.8 111.2 129.2
40 147.0 114.7 128.1
48 140.0 143.2 97.7
56 149.2 129.7 115.0
64 144.1 148.6 97.0
72 149.7 152.9 97.9
80 141.3 165.3 85.4

Table 1. Percentage improvement of Round-Robin
above the sum of the individual Fast Ethernet and
Gigabit Ethernet devices alone.

Remote CPU
Local CPU

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Message Size (bytes)

900

C
PU

 U
sa

ge
 (

%
)

Figure 6. CPU utilization for Gigabit Ethernet.

may not be noticable, TCP/IP traffic at gigabit speeds
is not going to leave much CPU available for other
tasks.

Remote CPU
Local CPU

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Message Size (bytes)

C
PU

 U
sa

ge
 (

%
)

900

Figure 7. CPU utilization for Round-robin Ethernet.

5 Future work and conclusions

Efficient communication in distributed systems is es-
sential for optimal system performance. As parallel
computation develops, many different kinds of mes-
sages need to be sent between machines. These mes-
sages may have different requirements for network la-
tency and bandwidth. In this paper, we revisit com-
bining two physical interfaces into one virtual network
(channel bonding).In contrast with most existing im-
plementations, we communicate via heterogenous in-
terfaces, and explore a number of more sophisticated
scheduling algorithms than the round-robin technique
used in the standard Beowulf channel-bonding driver.
We explore the relative tradeoffs of interface schedul-
ing overhead versus the additional bandwidth possible
with multiple interfaces. Using both Gigabit Ether-
net and Fast Ethernet Networks, we evaluate system
performance using netPerf. We show significant per-
formance gains for small messages, with incremental
improvements for larger packets.

In the future we are looking forward to evaluat-
ing other combinations of networks, such as gigabit
Ethernet and Myrinet under MPI (Message Passing
Interface). We also hope to optimize our implemen-
tations of the algorithms above to reduce their CPU
overhead and enhance their throughput.

Acknowledgments

This material is based in part upon work supported
by the National Science Foundation under the award
numbers CCR-0082667 and ACS-0092839. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s)



and do not necessarily reflect the views of the National
Science Foundation. We also wish to thank Basong
Zhao for his previous work on channel bonding.

References

[1] Daniel Andresen and Zhao Baosong. Heterogeneous
channel bonding on a Beowulf cluster. In Proceed-
ings of the 2000 International Conference on Paral-
lel and Distributed Processing Techniques and Appli-
cations (PDPTA’2000), pages 2479–2484, Las Vegas,
June 2000.

[2] M. A. Blumrich, R. D. Albert, Y. Chen, D. W. Clark,
S. N. Damianakis, C. Dubnicki, E. W. Felten, L. Iftode,
K. Li, M. Martonosi, and R. A. Shillner. Design choices
in the SHRIMP system: An empirical study. In Proc. of
the 25th Annual Int’l Symp. on Computer Architecture
(ISCA’98), 1998.

[3] Jenwei Hsieh, Tau Leng, Victor Mashayekhi, and Reza
Rooholamini. Architectural and performance evalua-
tion of giganet and myrinet interconnects on clusters of
small-scale SMP servers. In Proceedings of Supercom-
puting’2000 (CD-ROM), Dallas, TX, November 2000.
IEEE and ACM SIGARCH. Dell Computer Corp.

[4] JunSeong Kim and David J. Lilja. Utilizing het-
erogeneous networks in distributed parallel comput-
ing systems. In Proceedings of the Sixth IEEE
Intnl. Symp. High Performance Distributed Computing
HPDC, pages 336–, Portland, OR, August 1997.

[5] John Mehaffey. Highly available networking. Embedded
Linux Journal, 7:45–47, January/February 2002.

[6] Bryan Pfaffenberger. Linux networking clearly ex-
plained. Academic Press, New York, NY, USA, 2001.

[7] Chance Reschke, Thomas Sterling, Daniel Ridge,
Daniel Savarese, Donald J. Becker, and Phillip Merkey.
A design study of alternative network topologies for
the beowulf parallel workstation. In Proceedings of the
Fifth High Performance Distributed Computing (HPDC
’96), pages 626–636, August 1996.

[8] R. W. Smith. Advanced Linux Networking. Addi-
son Wesley, June 2002.

[9] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. BEOWULF: A par-
allel workstation for scientific computation. In Proceed-
ings of the 24th International Conference on Parallel
Processing, pages I:11–14, Oconomowoc, WI, August
1995.


