
SOAP OPTIMIZATION VIA PARAMETERIZED CLIENT-SIDE CACHING

Kiran Devaram and Daniel Andresen
Department of Computing and Information Sciences

234 Nichols Hall, Kansas State University
Manhattan, KS 66506, USA

ABSTRACT

The Simple Object Access Protocol (SOAP) is an
emerging technology in the field of web services. Web
services demand high performance, security and
extensibility. SOAP, being based on Extensible Markup
Language (XML), inherits not only the advantages of
XML, but its relatively poor performance. This makes
SOAP a poor choice for many high-performance web
services. In this paper, we analyze the client side
processing of a SOAP request and investigate the stages
of this processing, where SOAP lags behind its peers in
speed. We concentrate on the more popular RPC-style
implementation of SOAP rather than the message-style.
We then present an optimized design utilizing a caching
mechanism at the client side for SOAP messages. We also
describe our implementation based on the Apache Java
SOAP client, which gives dramatically better
performance (800%) over the original code.

KEY WORDS:
SOAP, XML, Network Optimization, Web Computing.

1. Introduction

Lately, there has been a tremendous development in
the area of web services. SOAP [1] is one such
development, which was conceived when there was a
requirement for a standard, and is the standard binding for
the emerging Web Services Description Language
(WSDL) [3]. SOAP is based on XML [2] and thus
achieves high interoperability when it comes to exchange
of information in a distributed computing environment.
SOAP, carrying the advantages that accrue with XML,
has several disadvantages that restrict its usage. SOAP
calls have great overhead due to the considerable
execution time required to process XML messages. In this
paper, we look at one negative side of SOAP: its speed of
execution.

We optimize the client-side processing of a SOAP
request to the server. We use the Java implementation of
Apache [8] SOAP 1.2 and choose the most common
model of SOAP that is used in distributed software, the
RPC-style, rather than the message-style, which is less
popular. This choice is obvious among Web developers,
as it closely resembles the method-call model.

The study involves analyzing the SOAP request made
by the client to the server when it requests a service from
it. This involves profiling of a SOAP RPC client. The
profiler that we have chosen is Hpjmeter. The profile data
that is collected is then used to investigate the different
stages of execution of the client using the profiler. Each
of the stages is further examined to find out where the
client is spending most of its time. Since SOAP requires
messages to be in XML, a typical request from the client
involves XML encoding (serialization and marshalling of
the payload) before it is sent to the server.

The aim of this research is to make SOAP more
efficient to cope with the requirements of a high-
performance application or a web service, while still
complying with the SOAP standard. After close
examination of each phase of its execution, the client side
is optimized by using a caching mechanism. This
eliminates the need to regenerate the XML from scratch
on every call. An experimental performance increase of
around 800% is obtained by caching the client requests,
which are small in size. A partial caching strategy was
implemented for parameterized calls to improve the
performance further. A secondary goal was to minimize
overhead in modifying an existing SOAP application.
Another objective was to have zero impact on the server-
side code as our implementation mainly concentrates on
the client side. We used Apache SOAP 1.2 with Tomcat
4.1 application server.

The rest of this paper discusses related work in
section 2 and implementation details in section 3. Section
4 outlines the results of the study, and section 5 presents
our conclusion.

2. Related Work

There have been several studies comparing SOAP
with other protocols, mainly binary protocols such as Java
RMI and CORBA. All of this research has proven that
SOAP, because of its reliance on XML, is inefficient
compared to its peers in distributed computing. In this
section we examine studies [4] [5] [6] which explain
where SOAP’s slowness originates and consider various
attempts to optimize it.

SOAP, relying heavily on XML, requires its wire
format to be in ASCII text. This is the greatest advantage
of using SOAP, as the applications need not have any
knowledge about each other before they communicate.
However, since the wire format is ASCII text, there is a
cost of conversion from binary form to ASCII form
before it is transmitted. Along with the encoding costs,
there are substantially higher network-transmission costs,
because the ASCII encoded record is larger than the
binary original [4]. Reference [4] shows that there is a
dramatic difference in the amount of encoding necessary
for data transmission, when XML is compared with the
binary encoding style followed in CORBA.

Other reasons for SOAP’s inefficiency (from [5]) are
the use of multiple system calls to send one logical
message. Of course, the reason of concern to this paper,
XML encoding/decoding, is also mentioned. Some
suggestions made by [5] include HTTP chunking and
binary XML encoding to optimize SOAP.

Extreme Lab at Indiana University [6] came up with
an optimized version of SOAP, namely XSOAP. Its study
of different stages of sending and receiving a SOAP call
has resulted in building up of a new XML parser that is
specialized for SOAP arrays, improving the
deserialization routines. This study employs HTTP 1.1,
which supports chunking and persistent connections.

Reference [7] states that XML is not sufficient to
explain SOAP’s poor performance. SOAP message
compression was one attempt to optimize SOAP; it was
later discarded because CPU time spent in compression
and decompression outweighs any benefits [7]. Another
attempt in [7] was to use compact XML tags to reduce the
length of the XML tag names. This had negligible
improvement on encoding, which suggests that the major
cost of the XML encoding and decoding is in the
structural complexity and syntactic elements, rather than
message data [7].

In Reference [9], O. Azim and A. K. Hamid, describe

client-side caching strategy for SOAP services using the
Business Delegate and Cache Management design
patterns. Each study addressed pinpoints an area where
SOAP is slow compared to its alternatives. Some present
optimized versions of SOAP using such mechanisms as
making compact XML payload and binary encoding of
XML. While said mechanisms achieved better efficiency,
none could match Java RMI’s speed and simultaneously
preserve compliance to the SOAP standard.

3. Implementation

Our study focuses on the optimization of the client
side of a SOAP service. We began by profiling a simple
SOAP RPC-style client requesting service from a server.
The profile data was studied and the client’s job of
requesting a service was broken into stages. Each of these

stages was examined further and key areas where the
client spends most of its execution time were identified.
As expected, the client spends a considerable amount of
its execution time in XML encoding. In some cases, such
as a client application requesting the current stock-quote
value of a company, converting binary data into ASCII
format takes a significant amount of the computation on
the client side while the rest of the client’s task is simply
to construct a query string requesting the stock-quote
value. In such a scenario, XML encoding proves costly
and will have a major effect on client performance.

Every client application has a finite set of different
requests that are sent to the server over time. It happens
quite often that the same request is generated again and
again, which involves sending of the same SOAP
payload. One such example is a stock application, which
makes similar requests to the server querying the stock-
quote values. Our study focuses on caching such requests
at the client side. The first time the SOAP payload is
generated by the client, it is cached in a file and is
indexed by a key, which contains information about the
type of request that generated this payload. Every time the
client needs to send a request, it will first check the cache
to see if the request was previously made and cached. If it
is, then a simple file I/O operation can fetch the payload
from the cache and send it to the server. This relieves the
client application from using org.apache.soap.rpc.Call to
create the payload again. This increases the execution
speed manifold times because creating the SOAP request
significantly impedes client performance.

We have implemented a caching mechanism using
files. One important aspect to be considered is how the
contents in the cache are indexed. The index should
contain information about the type of the request that
generated that particular SOAP payload. For example, for
a client requesting stock-quote value, the index can be the
company’s name for which the stock-quote value is
requested. In case the client needs to request the stock
value of the same company, it can flip the payload from
the cache using the company’s name as a search key. The
indexing can be made application-dependent.

We also considered a scenario in which the client
may send to the server repeated requests that differ only
by the values of a few XML tags in the SOAP payload
generated. Consider a web service which provides flight
information. The SOAP RPC client requests flight
information between two cities by providing the city
names as parameters to the server. We use HTTP as the
underlying protocol for transporting SOAP XML
payloads, though it is not mandatory according to the
SOAP specification. Binding SOAP to HTTP provides the
advantage of being able to use the formalism and
decentralized flexibility of SOAP with the rich feature set
of HTTP [1]. To send a request to the server, the SOAP
RPC client creates an instance of
org.apache.soap.rpc.Call, a java class that encapsulates a

SOAP RPC method call. After specifying the name of the
service and the method being invoked, we set the
parameters, which in this case are the names of the two
cities, using the setParam() method of the Call object. The
actual communication with the server is done with the use
of the invoke() method of the Call object to make a
method call to the server. Fig. 1 shows the SOAP payload
that the client generates. Being in ASCII text, this
message is very large compared to a similar request from
a Java RMI client. Note that the source and the
destination cities are stored in the <From> and the <To>
tags of the SOAP payload.

Upon examination of the profile data of the SOAP

RPC client, it is found that about 50% of the execution
time is spent in XML encoding and creating a HTTP
connection. XML encoding involves SOAP payload
preparation, which is basically serializing and marshalling
of the payload before it is transmitted to the server.

Comparing several such requests from the client, it is

found that the SOAP payloads differ only in the values of
the <From> and the <To> tags. For each such request,
the client has to prepare the SOAP payload, which takes a
significant amount of processing time involving XML
encoding. From this observation, we discover that there
are better ways to handle similar multiple calls made by
the client. This is the area upon which our study mainly
focuses and the area from which the notion of partial
caching of SOAP payload stems.

In most web services, it is very common to have an

interaction between the client and the server in which the
client communicates with the server by only passing a
few parameters. The SOAP payload generated by the
client will be the same each time, except for the tag values
of each parameter. In the stock-quote application, the
client makes similar requests to the server by querying the
stock-quote values using the company name as parameter.
Partial caching can be employed here to cache such
requests on the client side. The first time the SOAP
payload is generated by the client using the Call object, it

Fig. 1. SOAP payload generated by a SOAP RPC client.

is cached in a file. During subsequent client requests, only
a simple file I/O operation is necessary to fetch the
payload from the cache. The client can then replace the
values of the tags with the fresh values supplied to it. Fig.
2 shows SOAP client-server architecture in which, the
client implements a partial caching mechanism. The
client then establishes a socket connection at the port
where the SOAP service is deployed on that particular
host.

The response from the server is ASCII text, which is
obtained by listening to the socket through which the
request was sent. The response from the server will be in
XML, from which the required element is searched by a
simple string search, saving the extra time spent to parse
the response, which is done by creating an instance of
org.apache.soap.rpc.Response.

3.1 Limitations and Requirements

 The idea of caching was conceived with the notion
that the SOAP request of the client remains the same in
most of the cases. However, there are few requirements
and limitations for making use of this caching strategy.
The primary requirement is that the client should have a
fixed number of different types of requests that it can
make to the server. Otherwise, for each request, the SOAP
payload is saved in the cache, increasing its size. As the
size of the cache increases, the time spent in file I/O for
each of the following requests increase, which ultimately
degrades its performance. We suggest a better caching
mechanism as a countermeasure.

Fig. 2. SOAP RPC client–server using client side caching.

Application

Client

Cache

Server

 Send a
request

See if the request is
already in cache. If it
is not, store it in a
cache.

Flip the payload if it
is found in cache

If the payload is found in
cache, replace the tag values
in the payload with new
parameter values and make
an optimized call to the
server using sockets.

Response

Response

In cases where the client makes different requests all
the time, our caching strategy does not improve the
performance, rather, we anticipate a decrease in efficiency
due to the time involved in cache lookup. Also, the
growing size of cache will further hinder the performance.
A solution to this is to determine the validity of the data in
cache. This can be done using either time-based or
notification-based approach [10]. Invalid cache contents
can be flushed out. Several of the available techniques of
flushing the cache are suggested for better cache
implementation.

The partial caching mechanism that has been
implemented has a better performance when the number
of tag-values needing to be updated is small. If the client
supplies many different parameters to the server, then
using the cache and replacing the tag-values is not always
efficient. This is because, as the number of tag-values
increase, the time spent in replacing the values of
parameters increases. Also, as the number of parameters
increase, the size of cache increases, which in turn
increases the file I/O computation lowering performance.
Though the partial caching mechanism is designed to
counter the degrading performance of complete caching
due to huge cache size, it is more appropriate to use this
strategy only for requests involving few parameters.

Another aspect that needs to be addressed here is
SOAP fault handling. The SOAP fault element carries
error and/or status information within a SOAP message
[1]. The SOAP processor at the server side generates a
client fault code when it receives an invalid message from
the client. This means that the request from the client is
improperly formed or does not contain enough
information in order to succeed. This is an indication that
the message should not be resent as it is and needs
correction. These responses from the server require the
cache to be flushed, the request to be freshly generated
using SOAP libraries, and then recached.

4. Evaluation

This section first lists a series of experiments that we

ran to compare SOAP with a binary protocol, Java RMI.
These tests enabled us to focus on the stages of client-side
processing we later developed. After SOAP RPC client
was found to be spending a considerable amount of time
encoding the XML payload, the notion of caching the
frequently made requests was conceived. We then
implemented a caching mechanism on the client side,
where the complete SOAP payload is stored in cache and
indexed. As discussed earlier, since most of the requests
from the client are the same except for the values of the
parameters supplied to the server, we also evaluated a
partial caching mechanism at the client side. The final
part of this section will provide a comparative study of the
effect of the size of the data transmitted on the
performance of each of the implemented strategies.

At first, simple applications of getting a string from
the server were implemented in both Java
implementations of Apache SOAP and RMI. We used
Java 1.4 to test these applications on an Apache Tomcat
4.1 web server. Xerces was used as the XML parser for
Apache SOAP 1.2. These applications were tested on
SunOS 5.9 running on a 750 MHz, 2 GB RAM Sun Blade
1000 system. The results are shown in Fig. 3. The
performance of Java RMI is far better than that of SOAP,
and this is evident from the Fig. 3. For this example, Java
RMI client spent around 92% of its total execution time
for RMI naming look-up, while the SOAP RPC client
spent over 52% of its execution time in encoding the
XML payload that is sent to the server.

XML encoding, as mentioned in [5] is not the only

reason for SOAP being slower than Java RMI. Another
reason is making multiple system calls to send a message
[5]. In order to optimize the client-side of SOAP RPC,
frequently sent requests are stored in cache for future use.
This will decrease the client side execution time, as there
is no longer a need to create a SOAP payload using the
class org.apache.soap.rpc.Call. Also, the SOAP payload
is transmitted using sockets, saving the time required to
establish HTTP connection. This logic was used to
implement a modified SOAP RPC client, which now has
a caching mechanism. Its performance is compared with
both the traditional SOAP and Java RMI in Fig. 3. As the
caching mechanism is implemented using files, there is an
additional computation involving File I/O, replacing the
encoding of XML. Every time the client needs to make a
request, it first checks the cache to see if the SOAP
payload corresponding to that request is found in the
cache; if so the client will flip the payload and send it to
the server using Java sockets. The file I/O for the above
example took about 46 ms. This technique also involves
establishment of Java socket connection with the host
where the service is deployed. This cost is, however,
meager.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Java RMI SOAP SOAP (with
complete client-
side caching)

To
ta

l e
xe

cu
tio

n
tim

e
(m

s) File I/O
XML encoding
Naming Look-Up
Other processing

Fig. 3. Comparison of SOAP (with client-side caching) with
Java RMI and the traditional SOAP.

Our client-side caching pushes the performance of
this client, making it work faster than Java RMI.
However, we wanted to evaluate its performance under
high loads, i.e. when a large amount of complex data is
sent to the server. Under high load the generated SOAP
payload is very large, resulting in a huge cache.
Combining large requests with a variety of possible client
request types causes computation involving file I/O to be
very expensive. For example, when the client sends a
string array of size 20KB, the time taken for file I/O
grows up to 300ms from the previous 46ms. However, it
is still faster than traditional SOAP.

As observed earlier, in most cases, the SOAP

payloads generated by the client for different requests
differ only in the values of a few tags. These tag-values
are the parameters supplied by the client to the server.
Using this idea, we implemented a partial caching
strategy on the client side. In this method, we cache the
SOAP payload when it is first generated. From then on,
every time the client has to make a request, we flip the
payload from the cache and replace the values of the tags
with the new parameter values and send it to the server
using Java sockets. The previous mechanism of complete
caching stores each payload even though the request that
generated this payload differs only in parameters
supplied. We did a comparative study on the effect of size
of the data transmitted on the performance of each of the
above strategies. The results are presented in Fig. 4. The
graph shows that the performance of SOAP degrades as
the size of the request increases. We see that SOAP with
partial caching is more efficient than SOAP with
complete caching. The difference in performance is
attributed to the growing size of the cache for a client that
implements complete payload caching. With the increase
in cache size, computation involving file I/O increases,
lowering overall performance. But for a client
implementing partial caching, the size of cache does not
grow over time, as it is limited to the number of different
requests that the client can make. This limits the time
spent for file I/O computation. Using better indexing on

0

500

1000

1500

2000

2500

0 20 10000 20000
Size of data transmitted (bytes)

To
ta

l t
im

e
of

 e
xe

cu
tio

n
(m

s)

SOAP

RMI

SOAP(Complete payload
Caching)

SOAP(With partial-caching)

Fig. 4. Performance comparison when large and complex data is

sent to the server.

cache increases the overall efficiency as it decreases the
time taken to perform a lookup on the cache for the
required payload.

 Our notion of client side caching of the SOAP
payload facilitates building of web services with better
performance. Our study identifies areas where SOAP can
improve its efficiency. Furthermore, our study was
limited to the client side of SOAP. Similar problems do
exist at the server side, which demand further study on
server-side processing.

6. Conclusions and Future Work

In this paper, we have presented an idea of caching
the SOAP payloads at the client side. We also have
demonstrated this idea and implemented a variant of this
mechanism, which is partial caching, which has better
performance and a lesser effect on SOAP payload size.
Our experiments imply the performance boost that we
achieved using these strategies. However, several
important issues still remain open for further research. We
expect more research on improving the performance of
SOAP considering the XML encoding. We are working
toward making the caching mechanism more efficient by
considering different approaches of caching data. The
indexing of the cache contents is one other area that needs
further refinement. As stated earlier, similar performance
improvements are possible on the server side too. These
advancements in SOAP can make it a good choice for not
only web services, but also supercomputing.

Acknowledgements: This material is based in part upon
work supported by the National Science Foundation under
the award numbers CCR-0082667 and ACS-0092839.
Any opinions, findings, and conclusions or
recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

7. References

[1] D. Box et al. “Simple Object Access Protocol 1.1”,

Technical Report, W3C, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.

[2] World Wide Web Consortium. “Extensible Markup
Language”, visited 04-02-03. http://www.xml.org.

[3] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, “Web Services Description Language
(WSDL) 1.1”, Technical Report, W3C, 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[4] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P.
Widener, “Efficient wire formats for high
performance computing”. In Proceedings of the 2000
conference on Supercomputing, 2000.

[5] D. Davis and M. Parashar, “Latency Performance of
SOAP Implementations”, Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 407-412, 2002.

[6] K. Chiu, M. Govindaraju, and R. Bramley,
“Investigating the Limits of SOAP Performance for
Scientific Computing”, Indiana University. Accepted
for publication in the Proceedings of HPDC 2002.
http://www.extreme.indiana.edu/xgws/index.html.

[7] C. Kohlhoff and R. Steele, “Evaluating SOAP for
High Performance Business Applications: Real-Time
Trading Systems”, Proc. of WWW’03, Budapest,
Hungary, 2003.

[8] Apache Software Foundation, http://xml.apache.org.
[9] O. Azim and A. K. Hamid, “Cache SOAP Services

On The Client Side”.
http://www.javaworld.com/javaworld/jw-03-
2002/jw-0308-soap.html?, March, 2002.

[10] “Caching Architecture Guide for .NET Framework
Applications”,
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dnbda/html/CachingArchch5.asp

