
Received 22 March 2023, accepted 21 April 2023, date of publication 1 May 2023, date of current version 4 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3271640

Linearization Weight Compression and In-Situ
Hardware-Based Decompression for
Attention-Based Neural Machine Translation
MIJIN GO1, (Student Member, IEEE), JOONHO KONG 1,2, (Member, IEEE),
AND ARSLAN MUNIR 3, (Senior Member, IEEE)
1School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, South Korea
2School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea
3Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA

Corresponding author: Joonho Kong (joonho.kong@knu.ac.kr)

This work was supported in part by the Samsung Electronics, and in part by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant NRF-2021R1I1A3A04037455.

ABSTRACT As recent machine translation models are mostly based on the attention-based neural machine
translation (NMT), many well-known models such as Transformer or bidirectional encoder representations
from Transformers (BERT) have been proposed. Along with algorithmic advancements, hardware accel-
eration methods for those attention-based neural machine translation models have also been introduced.
However, the size of the parameters for attention-based NMT is also becoming larger to guarantee the
satisfactory machine translation quality. Among various weights, linearization weights (WQ, WK , WV ,
and WO) account for a non-negligible portion (by up to 30%) among the entire parameters in the modern
NMT models. In this paper, we propose a method for linearization weight compression and near-memory
hardware decoder for fast and in-situ weight decompression. Our weight compression method exploits
the fixed-point quantization along with Huffman coding which is selectively applied depending on the
weight value distribution. Our hardware decoder decompresses the Huffman-coded weights near-memory
to minimize the weight decoding latency. Our compression method shows 4.9–10.0 compression ratio
with small NMT score drops across the five widely used attention-based NMT models (Transformer,
Transformer-XL-base, Transformer-XL-large, BERT-base, and BERT-large). In addition, due to the reduced
linearization weight size, our proposed method with near-memory decoding enables multi-head attention
(MHA) execution latency reduction by 11.8%, on average, as compared to the baseline when considering
the weight loading and initialization. In terms of the memory data transfer energy consumption, our proposed
method leads to a memory energy saving of 16.1%, on average, as compared to the baseline.

INDEX TERMS Neural machine translation, multi-head attention, quantization, Huffman coding, hardware-
based near-memory decoding.

I. INTRODUCTION
Recent trends in machine learning-based translation mostly
focus on the neural machine translation (NMT). In the early
stages of the NMT, recurrent neural networks (RNNs) or
long short-termmemories (LSTMs) have been typically used.
However, the advent of attention-basedmodels such as Trans-
former [1], bidirectional encoder representations from Trans-

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

formers (BERT) [2], etc., has opened a new era of the NMT
because these attention-based models provide better accu-
racy for machine translations. Even further, recent advance-
ment of the Transformer-based large language models
(e.g., GPT-3 [3]) enables revolutionary artificial intel-
ligence (AI)-based services such as AI-based chatbots
(e.g., ChatGPT [4], LaMDA [5], etc.).

The attention-based models generally consist of the com-
bination of multiple encoder and decoder layers. Inside of
the encoder and decoder layers, multi-head attention (MHA)

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 42751

https://orcid.org/0000-0002-9013-9561
https://orcid.org/0000-0002-3126-8945
https://orcid.org/0000-0002-4780-1708

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

is a key operation. In the MHA, linearization, which is per-
formed to map tokens (outputs) into matrices before (after)
the scaled dot-product attention, requires access to a huge
amount of the weights (WQ, WK , WV , and WO). This high
memory requirement forMHA linearization necessitates high
capacity and bandwidth for both memory and storage. In this
paper, we refer to these weight (WQ, WK , WV , and WO)
as ‘linearization weights’ because these weights are used to
project the input matrix into another matrix with linear trans-
formation. It is also known that linearization weights account
for 30.0% of the total attention-based weights in the case
of BERT-large [2] model. Thus, reducing the linearization
weight size can be beneficial for storage and memory capac-
ity usage and energy efficiency. In particular, for enabling
NMT inferences in resource-constrained systems, the weight
size reduction is of paramount significance. As revealed
in [6] and [7], the compression of the weights significantly
reduces storage requirements and energy consumption for
data transfer.

The recent efforts on attention-based NMT model accel-
eration or system design have mostly focused on the MHA
acceleration. Since the MHA operations incorporate many
complex operations, hardware acceleration of MHA could be
beneficial for improving performance of the attention-based
NMT models. Compared with the graphics processing unit
(GPU) based execution, the customized hardware accel-
erators can significantly improve performance and energy
efficiency [8], [9]. Apart from the hardware acceleration,
weight quantization and data compression have also been
explored [10], [11], [12], [13]. For instance, 3-bit quantiza-
tion of the attention weights and its hardware-based accel-
eration have been introduced in [13]. While the most of the
recent works have focused on the multi-head attention accel-
eration and data reduction, the linearizationweights reduction
has been largely overlooked.

In this paper, we focus on the linearization weights
(i.e., WQ, WK , WV , and WO) used in the linearization
step (i.e., linear projection of the input tokens and outputs:
see Section II-A for details) before the MHA operations.
We propose a linearization weight quantization and Huffman
coding-based compression method. We employ fixed-point
weight quantization for all linearization weights (i.e., for the
entire encoder and decoder layers in the model). In addition,
to achieve far better data compression ratio, we also employ
Huffman coding for over 98% of the linearization weights,
which are distributed within a certain range [X , Y] where
X and Y are determined by considering the weight distribu-
tion. By employing our weight compression method, we can
reduce the linearizationweight size by up to 10× as compared
to the single precision floating point 32-bit (FP32) or ten-
sor float 32-bit (TF32) element-based linearization weights.
Although our method could also be employed for weights
used in feed-forward networks in attention-based NMTmod-
els, too aggressive quantization might adversely affect the
accuracy of the NMT model, which is another reason why
we focus on the linearization weights in this work.

For fast in-situ weight decompression, we also introduce
a near-memory hardware decompression accelerator, which
enables seamless decoding of the Huffman-coded weights
at runtime. We demonstrate the employment of our com-
pression method and hardware decompression accelerator for
high-bandwidth memory (HBM) enabled GPUs (e.g., [14]).
After training the model, the linearization weights are quan-
tized and compressed with our method and stored in the stor-
age or memory. During runtime inference, the compressed
weights are decompressed to the fixed-point weights in near-
memory logic die (the 1st floor base logic die in the HBM)
and stored in theHBM (asGPUmemory) while also delivered
to the GPU for the linearization operation. Experimental
results reveal that our proposed method results in a com-
pression ratio of 4.9–10.0 with only a marginal drop in
NMT scores. Our proposed method also reduces memory
data transfer energy consumption by 16.1%, on average,
as compared to the case without our compression method
(i.e., baseline). As our method employs a near-memory hard-
ware decompression accelerator, the weight decoding latency
is hidden by the latency required for other computations
during theMHAoperation. It means that the latency overhead
(by up to 15.1%) for decompression can be minimized. Fur-
thermore, our compression method results in the data transfer
latency reduction when loading the weights from storage or
host memory to the GPU memory. In this case, the MHA
execution latency can be reduced by 11.8%, on average,
as compared to the baseline.

We summarize our contributions as follows:
• We propose a quantization and selective Huffman
coding-based weight compression method to reduce the
size of the linearization weights, which results in a
compression ratio of 4.9–10.0 with only marginal NMT
score drops;

• For fast in-situ weight decoding at runtime, we also pro-
pose a near-memory processing hardware architecture;

• Our near-memory decoding enables memory energy
savings by 16.1%, on average, as compared to the
baseline (i.e., without using our proposed compression
method);

• When considering the weight loading and initializa-
tion, our weight compression method with near-memory
decoding enables MHA execution latency reduction by
11.8%, on average, as compared to the baseline.

The remainder of this paper is organized as follows. Section II
presents background related to our work. Section III explains
our proposed linearization weight compression and hardware
decoder architecture. In Section IV, we present evaluation
results. In Section V, we review the related works recently
introduced and published. In Section VI, we conclude our
work.

II. BACKGROUND
A. ATTENTION-BASED NEURAL MACHINE TRANSLATION
NMT is one of the most widely used artificial intelligence-
based applications in modern data centers or servers.

42752 VOLUME 11, 2023

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

The most well-known model for modern NMT is Trans-
former [1], which is basically composed of sequence-to-
sequence (seq2seq) model. The seq2seq model is generally
composed of multiple encoders and decoders where the num-
bers of encoders and decoders are tunable hyper parameters
depending on the detailed model configuration. The internal
architecture of the encoder and decoder is same though the
encoders are executed first while the decoder layers generally
accept the outputs from the encoder layers. For the internal
architecture of the attention, the most widely used attention
mechanism is MHA. The MHA accepts the query, key, and
value as inputs. They are multiplied with the linearization
weights (WQ,WK , andWV) in the linearization step (‘linear’
in Fig. 1). This step performs a linear projection of the input
tokens, translating the words into the query, key, and value
matrices. The results from the linearization are fed into the
scaled dot-product attention. The attention results are con-
catenated (‘concat’ in Fig. 1) and finally linearized again with
the linearization weight WO (projecting the concatenated
outputmatrices into a format that can be fed into the following
feed-forward network).

Modern attention-based NMT models have a huge size
of the linearization weights. For example, in Transformer
model [1], there are 18 MHAs (6 and 12 in the encoders
and decoders, respectively) and there are 220 weight elements
for each linearization weight (WQ, WK , WV , and WO) in
each of MHA. Since there are four types of the weights,
220 ×22 ×18 linearization weight elements exist. As a single
element size is 4-byte (FP32), the total size of the lineariza-
tion weights is 288MB, which is very huge and hard to be fit
into the on-chip memory of the accelerators, GPUs, or central
processing units (CPUs). It inevitably entails a large amount
of the data transfer due to the limited on-chip data reuse.
In addition, the linearization weights are very frequently used
in the inference of attention-based NMT models as they are
used in the linearization of the multi-head attention (MHA)
in all the layers of the model.

B. DATA COMPRESSION FOR NMT MODELS
For lightweight NMT models, one of the most widely used
methods is data compression. The data compression meth-
ods can be broadly classified into two types: lossy versus
lossless compression. The lossy compression for NMT mod-
els is typically done by quantization which approximates
high-precision data to low-precision data. The low-precision
data has the less number of bits as compared to the high-
precision data, leading to data losses. The data size and
precision reduction can also result in better performance and
energy efficiency as it simplifies the operation and reduces
the amount of data transfer. However, since the data is lost
with quantization, it is important to find the best trade-off
between the data size and accuracy (i.e., NMT score).

Apart from the lossy compression, we can also employ
lossless compression. One of the most well-known loss-
less compression methods is an entropy-based approach,
for which Huffman coding and arithmetic coding are the

most prominent techniques. Huffman coding considers sym-
bols’ occurring probability in the data stream, generating a
Huffman tree (or often stored in the form of the table) for
codebook information during compression. For example, the
higher occurring probability a certain symbol shows, the less
bit sequence it requires, meaning that we can obtain better
compression ratio. Since the symbol occurring probability
will be different across the data, a unique Huffman tree is
built for each data stream. When encoding the data, based on
the Huffman tree, each symbol is encoded to a pre-defined
bit sequence. Finally, the sequence of the symbols will be
encoded as a form of the bitstream. When decompressing
(decoding) the encoded bitstream, we also need Huffman
tree which was built during the encoding. The bitstream is
sequentially decoded by referring to the codebook defined by
the Huffman tree. On the other hand, arithmetic coding maps
the data into a real number space (0, 1]. Thus, a certain bit-
stream can be translated into one real number. However, when
encoding the data into the bits, there could be an underflow,
meaning that we cannot map a certain symbol into the number
space due to the limited bit precision. Thus, we can utilize a
range scaling method (e.g., [7]) to prevent the underflow.

C. BASELINE ARCHITECTURE
ModernNMTworkloads are typically executed inGPU-based
or machine learning (ML) accelerator-based systems. Since
manyML accelerators only support reduced precision such as
fixed-point or integer while manyNMTmodels are still based
on FP32 precision, the GPUs are primarily used for NMT
acceleration in data centers or servers [15], [16]. For baseline
system architecture, we assume a generic GPU-based system,
which employ GPUs with GDDR-based off-chip memory
(or HBM-enabled 3D-stacked memory [14]). For attention
layer execution, the weights are loaded into the GDDR
memory (or HBM-enabled 3D-stacked memory) and GPU
processing cores (e.g., tensor cores) are used for computation.

III. LINEARIZATION WEIGHT COMPRESSION AND
NEAR-MEMORY DECOMPRESSION
A. OVERALL EXECUTION FLOW
Fig. 2 illustrates the overall execution flow and system archi-
tecture of our method. In the offline phase, after the lin-
earization weights (WQ, WK , WV , and WO) are generated
through the model training, we apply our weight quantization
and compression with Huffman coding to the linearization
weights. We then store the compressed weight bitstream
and metadata to the memory or storage. A Huffman table,
which has also been generated during the Huffman coding-
based compression, is stored as a form of the lookup table
in our proposed hardware decoder for decompressing the
bitstream. In the online phase (i.e., runtime NMT inference),
our compression method requires decompression before the
linearization because the compressed bitstream cannot be
directly used in the linearization. Hence, the compressed
weight bitstream and metadata are fed into our proposed

VOLUME 11, 2023 42753

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

FIGURE 1. Encoder-decoder architecture of the attention-based neural machine translation.

hardware decoder that resides in the near-memory logic.
The hardware decoder decompresses the quantized weights
(i.e., recovers the weights to the status where only quantiza-
tion is applied) from the compressed bitstream. The decom-
pressed, yet quantized weights are delivered to the processing
elements such as GPU cores for linearization.

Our system architecture is established as follows. We use
the GPU system configuration as in [14], [17]. We use 2.5D
architecture where HBM2DRAM1 and logic dies are stacked
on the silicon interposer as shown in Fig. 3. Through the high-
speed interconnection, the data is transmitted between HBM2
DRAM/logic and GPU. After decoding, the decoded weights
(or a part of the decoded weights) are temporarily stored in
the HBM2 DRAM. Since the HBM2 DRAM works as the
GPU memory, the decoded weights are directly served from
the GPUmemory to the GPU core, which will be used for the
inputs of the linearization.

B. LINEARIZATION WEIGHT QUANTIZATION AND
COMPRESSION
Our proposed weight quantization and compression method
is performed in two steps. Firstly, we quantize each FP32
weight element into a fixed-point element and selectively
apply Huffman coding for most of the elements (i.e., elements
which reside in the middle part of a Gaussian distribution
representing the distribution of linearization weights). In the
following subsections, we explain our quantization and selec-
tive Huffman coding-based compression method in details.

1) QUANTIZATION
For quantization of the linearization weights (WQ,WK ,WV ,
andWO), we utilize the fixed-point quantization. We use the

1High-bandwidth memory (HBM) 2 is a 3D-stacked DRAM technology.
Since it provides much higher memory bandwidth as compared to the com-
modity DRAM modules, it is typically used for data-intensive workloads.

Q-format to represent fixed-point numbers where the notation
of Qm.n means that the fixed-point numbers in this format
havem number of bits for the sign+integer part and n number
of bits for the fractional part. As in typical quantization meth-
ods, wemap each 32-bit floating point (FP32) weight element
into the nearest fixed-point values. We use the fixed-point
conversion method as shown in Fig. 4. We multiply 2n to the
FP32 value and apply the round operation to make it into a
signed binary integer format withm+n bits.2 With them+n-
bit binary, we set the integer and fractional parts with m bits
in the upper part and n bits in the lower part, respectively.

Considering the distribution of the weight values in
attention-based NMTmodels such as Transformer [1], we set
the ranges of m and n as 1∼3 and 3∼5, respectively,
and quantize them with certain m and n for each model
(for detailed configuration, see Table 3). By using the fixed-
point quantization, we can obtain at least 4× theoreti-
cal compression ratio (i.e.,32-bit/8-bit = 4 (in the case of
m=3, n=5)).
Please note that we can also apply the quantization method

to the tensor float 32-bit (TF32) format. Though the TF32
format has reduced bitwidth in the fractional part (from
23-bit to 10-bit), we can also approximate a TF32-formatted
element into the Qm.n format fixed-point value by using the
method shown in Fig. 4.

2) SELECTIVE HUFFMAN CODING
Along with quantization, we additionally apply Huffman
coding for elements whose values are distributed within a
certain range. By applying Huffman coding, we can fur-
ther achieve even higher compression ratio for linearization
weights. As shown in Fig. 5, the weights typically show

2In case we cannot fit the value into the range (i.e., out of range or
overflow) with m+ n bits, we cannot quantize this FP32 value. In this case,
we need to set higher m and n values for fixed-point quantization.

42754 VOLUME 11, 2023

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

FIGURE 2. System architecture and overall flow of our method.

FIGURE 3. The HBM-GPU integrated architecture with 2.5D integration.

FIGURE 4. The illustration of the quantization method used in this paper.
FP32 and Qm.n correspond to the floating point 32-bit value and
fixed-point value with m sign+integer bits and n fractional bits,
respectively.

Gaussian distribution andmost of the elements are distributed
within the center range. Thus, we apply Huffman coding
to the weight values distributed within the range of [X , Y]
while the rest of the elements (i.e., out of the range) are
maintained with the fixed-point elements. In the example
shown in Fig. 5, we apply Huffman coding to the weight
elements distributed within the range of [−0.2, 0.2]. The
X and Y are the tunable parameters which can be determined
by considering the distribution of the linearization weights
and desired compression ratio.

FIGURE 5. The illustrative figure of the linearization weight distribution.
In this example, we apply Huffman coding to the weight values
distributed within the range of [−0.2, 0.2] (i.e., X=−0.2, Y=0.2 if we
denote the range as [X , Y]).

For lossless compression, we also need to generate meta-
data during the compression. We first require a table
which maintains the information of mapping between the
fixed-point weight and Huffman-coded bit sequence (i.e.,
a codebook for Huffman coding). The second information we
need is the bitmap that indicates whether the corresponding
element is Huffman-coded or not. If the bit in the bitmap is 12,
the corresponding element is Huffman-coded and vice versa.
To reduce the decompression hardware complexity, we divide
the compressed bitstream in fixed size chunk(s). In this paper,
we generate each weight chunk with a size of 128B (1024b),
meaning that there can be non-usable bits in the last part of the
weight chunk. In this case, we put the zero-bit padding in the
remaining part of the chunk. It simplifies the hardware logic,
which makes a uniform size for each weight chunk (128B).
To designate how many unusable bits exist in a certain com-
pressed weight chunk, we also introduce an integer number
Nzp which indicates the number of zero-padded bits in each
weight chunk.

VOLUME 11, 2023 42755

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

FIGURE 6. A composition of the compressed weight chunk with the
metadata.

Fig. 6 shows a structure of a single compressed weight
chunk with metadata. A single compressed weight chunk has
c weights, which can be various depending on the compres-
sion ratio (i.e., the compression ratios will vary depending on
howmany weights can be compressed within a single chunk).
For remaining parts of the chunk, we fill it with the 02s as
shown in Fig. 6 (3-bits are zero-padded in this example).
In the metadata, we have c-bit bitmap to designate whether
the corresponding weight element is Huffman-coded or not
in the compressed weight chunk. In Fig. 6, we also have Nzp
of (011)2 (=3) as we have 3-bits for zero-padded bits.

We could also employ Huffman coding to the entire lin-
earization weights (i.e., WQ, WK , WV , and WO). However,
there are several reasons why we selectively employ Huff-
man coding. First, restricting the number of Huffman-coded
weights can make the hardware decoder (for restoring the
Huffman-coded bitstream to the fixed-point weights) less
complicated. It can reduce the required number of the Huff-
man codebook table entries, resulting in less cycles and
energy consumption for decoding. Second, the more the
number of possible Huffman-coded weights we have, the
longer the bit sequence we need to encode the weights with
Huffman coding. It means that employing Huffman coding
to all the weights may lead to suboptimal compression ratios
due to the weights that have relatively long bit sequence.
Moreover, these long bit sequence weights will also lead
to more latency for weight decoding due to the complex
decoding procedure for longer length of the bit sequences
(for details of our proposed hardware decoder architecture,
please see Section III-C). Thus, we selectively employ Huff-
man coding to the weights distributed within a certain range
(e.g., [−0.2, 0.2]).

C. NEAR-MEMORY HARDWARE DECODER ARCHITECTURE
1) ARCHITECTURE AND DESIGN
Since we compress the linearization weight elements with
Huffman coding, we need to decompress the elements when
executing the NMT inference. During compression, we selec-
tively compress the weight elements with Huffman coding.
By referring to the bitmap values, we can specify whether a
certain element is Huffman-coded or not. When decompress-
ing the elements with only quantization (i.e., not compressed
with Huffman coding), we can just pass them to the com-
putation units such as GPU. However, when decompressing

the elements with quantization and Huffman coding, we need
to search for the codebook table stored in the hardware and
convert them into the quantized (i.e., fixed-point) weight ele-
ments. Decompressing the Huffman-coded bitstream requires
non-negligible latency because the Huffman-coded bitstream
should be decompressed sequentially. As we need the entire
weight elements (WQ, WK , WV , and WO) for the lineariza-
tion, the fast in-situ weight decoding is crucial for system
performance and energy efficiency.
As shown in Fig. 7, the decoding procedure works as

follows. The compressed weight bitstream is managed as
multiple chunks while a single weight chunk size is 128B3

(please refer to Section III-B2 for further details). The cor-
responding bitmap is sliced and managed as multiple blocks
of the bitmaps, which is maintained in a pair-wise manner
with the compressed weight chunk. The access to the weight
bitstream is performed with the sliding window, which desig-
nates a sliced weight bitstream. The sliced weight bitstream
is fed into the lookup table (or just passed in the case of
non-Huffman-coded weight elements) and decoded weight
elements are delivered to the GPU memory for the matrix
multiplication (i.e., linearization) with input token or concate-
nated matrix.
Fig. 7 illustrates the hardware architecture of a single hard-

ware decoder unit for in-situ weight decompression. There
are two input memory arrays: compressed weight chunk and
bitmap. The compressed weight chunk and bitmap arrays
act as an on-chip input buffer, which temporarily contains
the compressed weight chunk and corresponding bitmap. The
compressed weight chunk and bitmap are accessed by the
idxw and idxb, respectively (1⃝ in Fig. 7), which are set to
zero at the beginning of the weight chunk decoding. The com-
pressed weight chunk is accessed with max-bits4 and m+ n-
bits because the compressed weights have a variable length
depending on whether Huffman-coded or not and how many
bits are used for Huffman coding (2⃝-1 and 2⃝-2 in Fig. 7).
Please note that the registers indicated by 2⃝-1 and 2⃝-2
in Fig. 7 are required for non-Huffman-coded and Huffman-
coded elements, respectively. The appropriate bit length will
be selected later by referring to the bit from the bitmap
and codebook lookup table (LUT). The accessed compressed
bit sequence (max-bits) are fed into the LUT5 that contains
the codebook information between the Huffman-coded bits
and original fixed-point weights (3⃝ in Fig. 7). Once the
LUT access finishes, the decoded weight element from the
LUT and the passed weight element are fed into the right-
most MUX as inputs (4⃝ in Fig. 7). By referring to the
corresponding bit from the bitmap, we select either only

3Though we use 128B for the compressed weight chunk size in this paper,
it is a tunable design parameter that can be determined considering the
hardware decoder design.

4The size of max is determined by the maximum length of the
Huffman-coded weight bit sequence.

5Even though we cannot find the corresponding bit sequence from the
table in the case of non-Huffman-coded weights, the MUX in front of
the decoded weight array can filter out the wrong values, avoiding the
malfunction.

42756 VOLUME 11, 2023

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

FIGURE 7. Near-memory decoder processing element architecture. Please note that m and n refer to the bitwidth of the sign+integer part
and fractional part, respectively, in the fixed-point value (Qm.n notation).

quantized or quantized+Huffman-coded weight element as
output. In the case of the Huffman-coded weight element
decoding, the length of the element is also determined by
the MUX (below) and we increment the idxw by the selected
length (4⃝ in Fig. 7). The decoded weight elements are stored
into a temporary on-chip buffer shared across the decoder unit
and finally delivered to the memory in the computation units
(i.e., GPUs), which are used as the inputs for linearization
(WQ, WK , WV , and WO). After that, the sliding windows in
the weight chunk and bitmap move towards the next element
decoding by adjusting the idxw and idxb (5⃝ in Fig. 7).
For correct decoder operations, we need two more inputs:

LUT table numbers and Nzp. The LUT table number is
required to select the correct Huffman codebook LUT among
the different types of the weights. For example, in our
case of Transformer model, we have two types (encoder
and decoder) of the layers × 4-type weights = 8 code-
book LUTs.6 The integer number Nzp specifies how many
bits are zero-padded for each weight chunk as explained in
Section III-B2. We compare the current idxw with Nzp and
decoding is performed as long as the idxw + selectedLen
(selectedLen is determined by how many bits in the current
weight element exist) is less than 1024 (the weight chunk bit
size) - Nzp.

2) TIMELINE ANALYSIS AND LATENCY HIDING
During NMT model inferences, we need to execute multiple
layers, which are sequentially executed in general. Since we
need the decoding of the WQ, WK , WV , and WO weights
before the linearization execution, there would be additional
latency overhead if we do not overlap the weight decoding

6In other words, we apply Huffman coding for each WQ, WK , WV , and
WO of all the encoder layers and all the decoder layers, deriving total eight
Huffman tables in the case of Transformer model.

latency. In order to hide the decoding latency, we try to
hide the latency of the weight decoding to that of the other
computations in the MHA, which is a similar approach to [7].

Before linearization of the input tokens withWQ,WK , and
WV , we need to decode those WQ, WK , and WV weights,
respectively. In the encoder or decoder layers except the first
layer, we can hide the WQ, WK , and WV decoding latency
with the latency of the previous layers in the GPU. For
WO decoding in the certain attention layer, it can be done
during the linearization of WQ, WK , and WV of the layer
itself. Consequently, the only latency overhead comes from
the WQ, WK , and WV decoding latency of the first layer.
However, modern attention-based NMT models are adopting
many layers in the encoder and decoder, which makes the
latency overhead of the first layer decoding marginal.

In this paper, we consider two scenarios: w/ and w/o
weights loading and initialization, which are referred to as
scenario A and B, respectively. In the case of multi-tenant
GPU environments where the multiple models can be exe-
cuted simultaneously, the latency for data transfer between
the storage/host memory and GPU memory is significant
due to a large amount of the data transfer. In addition, GPU
initialization and warmup also require non-negligible latency.
In this case, our proposed method can effectively reduce the
data transfer latency due to our proposed data compression
method.

As shown in Fig. 8, in the case of Transformer, the data
transfer time is reduced by 9.5% before starting the decoding
and computation (from 1429.5ms in Fig. 8 (a) to 1294.2ms
in Fig. 8 (b)). During the NMT inference (i.e., after the
data transfer and initialization), the decoding latency can be
hidden by other computation latency, making the decoding
latency overhead negligible. As shown in Fig. 8 (b), the
decoding can begin as soon as the data transfer and initializa-
tion finishes and the linearization can also begin as soon as the

VOLUME 11, 2023 42757

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

FIGURE 8. Timeline analysis when executing the Transformer model in
the case of scenario A. The execution times for data transfer,
linearization, concatenation, and scaled dot-product attention are
obtained from the GPU execution with NVIDIA RTX 3080TI.

FIGURE 9. Timeline analysis when executing the Transformer model in
the case of scenario B. The execution times for linearization,
concatenation, and scaled dot-product attention are obtained from the
GPU execution with NVIDIA RTX 3080TI.

decoding of theWQ,WK , andWV for the first layer finishes.
For decoding of the remainingweights, it can be hidden by the
latencies of the linearization forWQ,WK , andWV and scaled
dot-product attention. Please note that this scenario can occur
very often in the case of multi-tenant GPU in modern data
centers. As the multiple DNN workloads will compete with
each other to reside in the GPU memories, resulting in the
shortage of the memory. In this case, weight loading from the
host memory (or storage) will also occur very often. It makes
our weight compression effective due to the reduction of the
size and the loading latency of the weights.

In the case where the compressed weights are stored in
the GPU memory while not decoded yet (i.e., in the case
without weight loading and initialization), we may not be
able to obtain performance improvement. The decoding of
the WQ, WK , and WV for the first layer incurs latency
overhead because it cannot be hidden (323.8µs in Fig. 9 (b)
<1st layer>). On the contrary, for the other layers, we can
hide the decoding latency to that of other operations such as
linearization and scaled dot-product as shown in Fig. 9 (b)

TABLE 1. Logic synthesis and CACTI-based SRAM array estimation results.

<the other layer>. Though we cannot obtain performance
gain in this scenario, weight compression is still effective
when maintaining the weight in the memory or storage by
reducing the required capacity and energy for maintaining the
weights.

3) LOGIC SYNTHESIS AND SRAM ARRAY ESTIMATION
RESULTS
We have implemented our proposed hardware decoder with
Verilog hardware description language and synthesized with
32nm process library at 500MHz clock frequency. Table 1
shows the latency, power, and area of our hardware decoder.
Our single decoder takes 8.7 cycles per single weight element
decoding,7 on average, with consuming 0.55mW. Since we
need real-time decoding during the NMT inference, to meet
the latency requirements, we employ multiple decoders
which perform the decoding of the multiple compressed
weight bitstreams in parallel. In this paper, we use 1,408
decoders, which can fully overlap the decoding latency to the
data transfer and other computations (e.g., scaled dot-product
attention) latency. Since our single decoder decompresses
128B weight bitstream at once, decoding the whole weights
for linearization (WQ, WK , WV , and WO) requires 7.8ms
for Transformer model. As we explained in Section III-C2,
the other execution steps such as scaled dot-product or other
linearization steps can sufficiently hide the decoding latency,
meaning that the performance overhead of the runtime decod-
ing is marginal. The logic synthesis results are summarized
in Table 1.
For SRAM arrays in the HBM2 logic die, we have used

CACTI [18] for latency, power, and area estimation with
32nm process technology. The results are also summarized
in Table 1. We use 176KB and 660KB for input and out-
put buffers, respectively, which are shared across multiple
decoders. Considering the clock cycle time of the synthesized
logic, accessing the input and output buffers can be done
within a single clock cycle. For area, when employing 1,408
decoders with 836KB SRAM arrays, the total area will be
25.1mm2, implying that the decoders can be placed in the
processing-in-memory (PIM) cluster of the HBM2 logic die
(26.27mm2 [17]).

IV. EVALUATIONS
A. METHODOLOGY
For accuracy (i.e., NMT score) evaluations of our pro-
posed method, we have used the PyTorch framework [19]

7In our implementation, LUT is implemented as a form of finite state
machine, meaning that the number of cycles required for decoding is pro-
portional to the length of the encoded bit sequences.

42758 VOLUME 11, 2023

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

with five widely used attention-based NMT models:
Transformer (Tf) [1], Transformer-XL-base (Tf-XL-b)
and Transformer-XL-large (Tf-XL-l) [20], and BERT-base
(BERT-b) and BERT-large (BERT-l) [2]. To quantify model
accuracy, we have used various metrics: SacreBLEU score
for Transformer, perplexity for Transformer-XL-base and
Transformer-XL-large, and F1 score for BERT-base and
BERT-large. The reason why we use different metrics for
models is that we have used in-built accuracy quantification
codes in the framework, which report more stable and trust-
worthy accuracy results. Please note that WMT14 English-
German [21], wikiText-103 [22], and SQuAD v1.1 [23] have
been used as the dataset for Transformer, Transformer-XL
(both base and large), and BERT (both base and large),
respectively. Since our proposed quantization and com-
pression method can also be employed to any FP32-based
weights, the arbitrary (or trained by ourselves) weight ele-
ment values could also be used for our evaluations. However,
we have used the linearization weights provided by NVIDIA
NGC Catalog [24], [25], [26], [27], [28] because they are
more stable, trustworthy, and widely used for research.

For performance evaluation, we have used GPU-based
emulation. We have assumed that the operations for the atten-
tion layers are performed in the GPU. Therefore, we have
measured the execution time of each layer by using NVIDIA
RTX3080 TI [29]. For the baseline, we use architecture
explained in Section II-C. For the baseline performance,
we use the execution time measured from the GPU. For
the case with our proposed method, the decoding time is
estimated from our synthesis results and the layer execution
time is measured from the GPU. The full decoding time is
added to the layer execution time when the latency cannot
be fully hidden. In the case where the latency hiding can
be employed, we assume that the decoding latency can be
hidden by execution latency of other parts such as MHA.
By transferring the decoded weights from the decoder output
buffer to the GPU memory, which can also be performed in
background, the GPU can seamlessly access the linearization
weights.

B. PERFORMANCE
We compare performance of our method and hardware
architecture to that of the GPU-based system explained in
Section II-C.We set the GPU-based execution as our baseline
because recently, the execution for NMT models is typically
done in the GPUs. For GPU-based execution, we use non-
quantized FP32-based weights for Tf, Tf-XL-b, Tf-XL-l,
and BERT-b, and FP16 weights for BERT-l. By employ-
ing our proposed method, we perform the quantization and
Huffman coding-based compression offline. As presented in
Section III-C2, we consider two different scenarios:
w/ (A in Fig. 10) and w/o weights loading and initialization
(B in Fig. 10). For the scenario B, we show the speedup when
executing the entire layers, only the first layer, and the rest of
the layers except for the first layer. Please note that we have

FIGURE 10. Speedup of our proposed method with near-memory
processing as compared to the baseline. Please note that ‘A’ and ‘B’ refer
to the scenario A and B, respectively.

only measured the execution time of multi-head attention
because it is a key part of the modern NMT models. The
speedup of our proposed method as compared to the baseline
can be calculated as follows:

Speedup =
Tbase
Tprop

(1)

where Tprop and Tbase correspond to the execution time when
employing proposed method and the baseline, respectively.

In the case of scenario A where we consider the
weight loading and initialization, our NMP architecture with
the quantization and compression leads to a performance
improvement of 13.3%, on average, across various NMT
models. The reason why we can obtain the performance
improvements is that we can reduce the weight loading and
initialization latency due to the reduced weight size. As pre-
sented in Section III-C2, even with the first layer decoding
latency which cannot be hidden, the performance gain from
our weight compression when executing the weight loading
and initialization is significant. Results depicted in Fig. 8
reveal that most performance gain from our proposed method
comes from the first layer execution in scenario A. This is
because the weight loading and model initialization latency
is included in the first layer execution time. For the other
layers, our proposed technique shows similar performance
as compared to the baseline due to the decoding latency
hiding, thusminimizing the decoding latency overhead. As an
outlier, in the case of Transformer-XL models (Tf-XL-b and
Tf-XL-l), our method leads to similar performance as com-
pared to the baseline. The linearization weights account for
only a 3%–9% of the entire weights in the Transformer-XL
models, meaning that the performance gain from the loading
and initialization latency reduction from linearization weight
compression is small.

In the case of scenario B, our proposed method leads to
the performance comparable to the baseline across the NMT
models (a performance loss of only 1.1% for the entire layer
execution). Since we have decoding latency overhead in the
first layer, there is an additional latency overhead of 15.1%
when executing the MHA execution in the first layer. On the
contrary, for the other layers, there is a negligible latency

VOLUME 11, 2023 42759

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

TABLE 2. Memory energy consumption (uJ) of the baseline and the
proposed method across the models.

difference between the baseline and our proposed method.
It means that we can successfully hide the decoding latency
with other computation latency.

C. MEMORY ENERGY DURING DATA TRANSFER
We also present the results of the memory energy consump-
tion in the case of the baseline and our proposed method.
For the baseline, the memory energy consumption can be
calculated as follows:

Ebase = Ew_r + Estatic (2)

where Ebase, Ew_r , and Estatic correspond to the memory data
transfer energy consumption in the case of baseline, weight
read energy from the memory, and static energy during the
memory data transfer, respectively. In case of our proposed
method, the memory energy consumption is calculated with
the following equation:

Eprop = Ewcomp_r + Edec + Equant_w + Estatic (3)

where Eprop, Ewcomp_r , Edec, and Equant_w correspond to the
memory data transfer energy consumption in the case of our
proposed method, compressed weight read energy from the
memory, decoding energy from our hardware decoder, and
quantized weight write energy to the memory, respectively.
For energy evaluations, we have used HBM2 as our baseline
memory for conservative evaluations.

As shown in Table 2, our method leads to an energy savings
of 26.8%, on average, as compared to the baseline in the cases
of Tf, Tf-XL-b, Tf-XL-l, and BERT-b. Since our proposed
method reduces the size of the weights stored in the memory,
our proposed method leads to a reduction of the memory
read and static energy. Consequently, even with the decoding
energy andweight write energy, total energy consumption can
be reduced by leveraging our proposed method.

As an outlier, in the case of BERT-l, the energy consump-
tion of our proposed method is rather increased as compared
to the baseline. The main reason for this result is that the
BERT-l uses FP16 as the baseline. When employing our
proposed compression method, using FP16 as the baseline
leads to a relatively lower compression ratio as compared to
the case of using FP32 as the baseline. It makes the energy
overhead from our decoders and buffers relatively higher than
the case of using FP32, leading to a higher energy consump-
tion. However, many contemporary NMT models are still
using FP32 for the default precision, and thus our proposed
method can still lead to energy savings in many cases.

D. TRADEOFF BETWEEN ACCURACY AND DATA SIZE
(COMPRESSION RATIO)
We have summarized the tradeoff between accuracy of the
NMT models and compression ratio. The compression ratio
can be calculated as SizeB

SizeM+SizeC
where the SizeB, SizeM ,

and SizeC are size of the uncompressed data, metadata, and
compressed data, respectively. In order to figure out which
configuration of Qm.n shows the best tradeoff between the
accuracy and data size for each model, we have profiled the
accuracy (e.g., scores or perplexity) and data size of NMT
models and select one configuration (i.e., m and n) for each
model that shows the best tradeoff.

As summarized in Table 3, our fixed-point quantization and
Huffman coding-based compression show significant com-
pression ratios of 4.94 – 10.04. In the case of BERT-l, the
compression ratio is lower than the other models. This is due
to the fact that the BERT-l model uses FP16 while the other
models use FP32, meaning that the baseline weight element
size of the BERT-l model is a half of that of the other models.
For Tf-XL-b, BERT-b, and BERT-l, we adopt Q1.5 fixed-
point weight elements. Based on our observation that most
of the linearization weight elements of Tf-XL-b, BERT-b, and
BERT-l are distributed between−1.0 and+1.0, we only need
a sign-bit for the integer part.

Since quantization is a lossy compression, there would
be an accuracy loss. For various NMT models, there are
many quantifying metrics for accuracy. In this paper, the
accuracy metrics used for NMT models are different across
the models for the sake of fair comparison. In the case of Tf,
we only see 0.61 SacreBLEU score drop with our fixed-point
quantization, which is negligible. Tf-XL models’ perplexity
scores (the lower, the better) show only a marginal increase
by 1.34 – 1.62. In the case of BERT, F1 score drop is only
0.50–0.74. By adopting our proposed quantization and Huff-
man coding-based compression, we can obtain significant
data size reduction with only small accuracy losses.

V. RELATED WORK
Recent advancements of attention-based NMT models have
primarily focused on increasing sparsity, eventually reduc-
ing the computation complexity with sparsity-aware hard-
ware and storage requirements. In [30], a sparse attention
mechanism is proposed to reduce the computation com-
plexity and memory requirements. The sparse attention
mechanism enables 8× longer sequence modeling with the
identical hardware as compared to the full attention mecha-
nism. In [31], a rectified linear unit (ReLU)-based activation
is used instead of the complex softmax activation, which
increases the sparsity and yields better scalability for mod-
eling the long sequences. In [32], a sparse attention mask is
employed for video captioning, which exploits dense sam-
pling of the frames while trying to minimize the processing
of the redundant frames. In [33], content-awareness is consid-
ered in sparse attention mechanism by clustering the queries
and keys. With k-means clustering, only in the case where the

42760 VOLUME 11, 2023

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

TABLE 3. The accuracy and compression ratio comparisons across the five attention-based NMT models. Please note that the accuracy metrics used for
NMT models are different across the models due to the lack of the required model parameters and for the sake of the fair comparison.

queries and keys are in the same cluster, the attention mech-
anism can be performed. In [34], instead of static sparsity,
dynamic sparsity (i.e., sparsity patterns are changed along
with the execution of attention mechanism) is considered for
Transformer model. Their work demonstrates the accelera-
tion of the dynamic sparsity-aware attention mechanism in
GPUs and accelerators. For dynamic sparsity awareness and
acceleration of the sparse attention, algorithm-hardware co-
design approach is also proposed [35], which is called as
Energon. It identifies the important query and key pairs at
runtime with the filtering approach, which is performed by
the dedicated hardware accelerator. The accelerator also per-
forms attention layer execution, resulting in an 8.7× speedup
as compared to the GPU-based execution. Another algorithm-
hardware co-design approach with online pruning is pro-
posed in [36]. The bit-serial accelerator, which is called as
LEOPARD, performs the online pruning and other compu-
tations required for the attention mechanism, leading to a
1.9× speedup with a negligible loss in accuracy. In another
work, an in-memory pruning approach with the hardware
accelerator is proposed [37]. By converting the low attention
score values (thus, can be regarded as less important) into
zero with the thresholding circuitry inside of the resistive
random-access memory (ReRAM) arrays, it simply imple-
ments dynamic runtime pruning in hardware. In addition, the
dedicated hardware accelerator further expedites the attention
computation, resulting in a 7.5× speedup with a negligible
loss in accuracy. Another way to reduce the memory require-
ments and computation complexity is low-rank approxima-
tion [38]. In [39], a method which exploits both sparsity and
low-rank approximation is proposed, which is also called as
Scatterbrain. It is shown that the Scatterbrain can outperform
the methods which employ only either sparsity or low-rank
approximation, illustrating that the sparsity and low-rank
approximation can be exploited synergistically. To reduce
the computation complexity, a hardware-software co-design
approach (which is called as ELSA) is proposed in [40]
to reduce the computation complexity of the self-attention.
By calculating a similarity measure, their results show that
the ELSA achieves approximately a speedup of 58× with a
negligible loss in accuracy.

As the NMT models get larger and more complex, the size
of weights for attention-based NMT models has also been
increased. Thus, reducing the weight size of NMTmodels has
gained huge attention as a promising research topic. In [13],
Zadeh et al. have proposed a quantization-based weight

compression technique, which utilizes post-training weight
distribution information. The quantization is performed for
each layer where each layer has a centroid and 3-bit indices.
To obtain a sufficient accuracy, 0.1% outliers for each layer
are maintained as FP32. In [8], all trainable variable matrices
and activation matrices are quantized to 8-bit integer format,
resulting in 4× compression ratio with less than 1.0 BLEU
score drop. In [12], a progressive quantization method is
employed, which primarily maintains most significant bits
(MSBs) for each weight. Since the computation can also be
done with only MSB part, the computation complexity can
also be lowered. For certain cases, the LSB parts can also
be used to sustain the satisfactory accuracy. As a result, the
method proposed in [12] reduces DRAM accesses by 10×
and computations by 2× without accuracy drop. In [10],
the fixed-point quantization method is employed for size
reduction of the query and keymatrices. In [11], low-bit quan-
tization (i.e., 4-bit quantization) to the input query and key
matrices is employed. In addition, computation complexity
has been reduced by using the sparse attention mask due to
the increased sparsity.

The works introduced above have mostly focused on the
reducing the computation complexity and memory require-
ments via sparsity, low-rank approximation, algorithmic opti-
mization, quantization, and hardware acceleration for atten-
tion layer operation. Those works have mostly focused on
the scaled dot-product attention while the linearization step
is largely overlooked. On the contrary, our work employs
selective Huffman coding as well as quantization, resulting in
a better compression ratio for linearization weights. In addi-
tion, we have proposed a fast in-situ near-memory decoding
hardware, which makes the decoding procedure fast and fur-
ther hides the decoding latency by the execution latency of
other MHA operations (e.g., scaled dot-product attention),
thus minimizing the potential latency overhead.

VI. CONCLUSION
The contemporary NMT models have huge weight size
for satisfactory accuracy scores. Particularly, the weights
(WQ, WK , WV , and WO) for the linearization occupy
non-negligible memory and storage capacity when employ-
ing huge NMT models. In this paper, we propose a lin-
earization weight quantization and Huffman coding-based
compression method. Our proposed method results in com-
pression ratios of 4.9–10.0 across the five widely used
attention-based NMT models with only marginal accuracy

VOLUME 11, 2023 42761

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

drops. For fast in-situ weight decompression, we also pro-
pose near-memory decompression hardware architecture.
The weight decompression (decoding) latency can be eas-
ily hidden by the latency required for other computations
during the MHA execution. As a result, when considering
the weight loading and initialization, our proposed method
leads to 13.3% performance improvement as compared to the
baseline (i.e., without using our method). In the case without
the weight loading and initialization, the only latency over-
head comes from the first layer execution, which accounts for
only 1.1% overall performance overhead as compared to the
baseline. Moreover, our proposed method and near-memory
hardware lead to memory data transfer energy savings by
16.1%, on average, as compared to the baseline. As our future
work, we plan to employ our quantization and compression
method to other types of weights in attention-based NMT
models and extend our hardware decoder for in-situ decom-
pression of these weights.

REFERENCES
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–10.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, ‘‘Language models are few-shot learners,’’ 2020,
arXiv:2005.14165.

[4] (2021). Openai, Chatgpt. [Online]. Available: https://openai.
com/blog/chatgpt

[5] R. Thoppilan et al., ‘‘Lamda: Language models for dialog
applications,’’ CoRR, vol. abs/2201.08239, 2022. [Online]. Available:
https://arxiv.org/abs/2201.08239

[6] J. Kwon, J. Kong, and A. Munir, ‘‘Sparse convolutional neural network
acceleration with lossless input feature map compression for resource-
constrained systems,’’ IET Comput. Digit. Techn., vol. 16, no. 1, pp. 29–43,
Jan. 2022.

[7] J. H. Lee, J. Kong, and A. Munir, ‘‘Arithmetic coding-based 5-bit weight
encoding and hardware decoder for CNN inference in edge devices,’’ IEEE
Access, vol. 9, pp. 166736–166749, 2021.

[8] S. Lu, M. Wang, S. Liang, J. Lin, and Z. Wang, ‘‘Hardware accelerator for
multi-head attention and position-wise feed-forward in the transformer,’’
in Proc. IEEE 33rd Int. Syst., Chip Conf. (SOCC), Dec. 2020, pp. 84–89.

[9] M. Zhou, W. Xu, J. Kang, and T. Rosing, ‘‘TransPIM: A memory-based
acceleration via software-hardware co-design for transformer,’’ in Proc.
IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Apr. 2022,
pp. 1071–1085.

[10] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,
S. Lee, K. Park, J. W. Lee, and D.-K. Jeong, ‘‘A3: Accelerating attention
mechanisms in neural networks with approximation,’’ in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), May 2020, pp. 328–341.

[11] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, ‘‘Sanger: A
co-design framework for enabling sparse attention using reconfigurable
architecture,’’ in Proc. 54th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, Oct. 2021, pp. 977–991.

[12] H. Wang, Z. Zhang, and S. Han, ‘‘SpAtten: Efficient sparse attention
architecture with cascade token and head pruning,’’ in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit. (HPCA), Feb. 2021, pp. 97–110.

[13] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, ‘‘GOBO: Quan-
tizing attention-based NLP models for low latency and energy efficient
inference,’’ in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2020, pp. 811–824.

[14] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, ‘‘Performance evalu-
ation and optimization of HBM-enabled GPU for data-intensive applica-
tions,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017,
pp. 1245–1248.

[15] (2021). Achieving Fp32 Accuracy for int8 Inference Using
Quantization Aware Training With Nvidia Tensorrt. [Online]. Available:
https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-
inference-using-quantization-aware-training-with-tensorrt/

[16] A. Álvarez, V. R. Gómez, I. G. Torre, T. Etchegoyhen, H. Gete, and
J. Arellano, ‘‘Iassist: Low-cost, portable and embedded assistants for on-
premise automated transcription and translation services,’’ in Proc. Annu.
Conf. Spanish Assoc. Natural Lang. Process., Sep. 2022, pp. 75–78.

[17] S. Kim, S. Kim, K. Cho, T. Shin, H. Park, D. Lho, S. Park, K. Son, G. Park,
S. Jeong, Y. Kim, and J. Kim, ‘‘Signal integrity and computing perfor-
mance analysis of a processing-in-memory of high bandwidth memory
(PIM-HBM) scheme,’’ IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 11, no. 11, pp. 1955–1970, Nov. 2021.

[18] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, ‘‘CACTI 7: New tools for interconnect exploration in innova-
tive off-chip memories,’’ ACM Trans. Archit. Code Optim., vol. 14, no. 2,
pp. 1–25, Jun. 2017.

[19] A. Paszke et al., ‘‘Pytorch: An imperative style, high-performance deep
learning library,’’ in Proc. NIPS, Feb. 2019, pp. 8024–8035.

[20] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdi-
nov, ‘‘Transformer-XL: Attentive language models beyond a fixed-length
context,’’ 2019, arXiv:1901.02860.

[21] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and
A. Tamchyna, ‘‘Findings of the 2014 workshop on statistical machine
translation,’’ in Proc. 9th Workshop Stat. Mach. Transl., Baltimore, MD,
USA, May 2014, pp. 12–58.

[22] S. Merity, C. Xiong, J. Bradbury, and R. Socher, ‘‘Pointer sentinel mixture
models,’’ 2016, arXiv:1609.07843.

[23] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, ‘‘Squad: 100,000+
questions for machine comprehension of text,’’ 2016, arXiv:1606.05250.

[24] (2020). Transformer EN-DE Checkpoint. [Online]. Avail-
able: https://catalog.ngc.nvidia.com/orgs/nvidia/models/
transformer_pyt_ckpt_tf32/version

[25] (2021). Transformer-XL Pytorch Checkpoint (Base, Amp). [Online].
Available: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/
models/transformerxl_base_pyt_ckpt/files

[26] (2021). Transformer-XL Pytorch Checkpoint (Large, Amp). [Online].
Available: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/models/
transformerxl_large_pyt_ckpt/files

[27] (2021). Bert Pytorch Checkpoint (Base, QA, Squad1.1, Amp. [Online].
Available: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/models/
bert_base_pyt_ckpt_mode-qa_ds-squad11

[28] (2021). Bert Pytorch Checkpoint (Large, QA, Squad1.1, Amp). [Online].
Available: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/models/
bert_large_pyt_ckpt_mode-qa_ds-squad11

[29] (2021). Nvidia RTX 3080 TI. [Online]. Available:
https://www.nvidia.com/en-us/geforce/graphics-cards/
30-series/rtx-3080-3080ti/

[30] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, ‘‘Big bird: Trans-
formers for longer sequences,’’ 2020, arXiv:2007.14062.

[31] B. Zhang, I. Titov, and R. Sennrich, ‘‘Sparse attention with linear units,’’
2021, arXiv:2104.07012.

[32] K. Lin, L. Li, C.-C. Lin, F. Ahmed, Z. Gan, Z. Liu, Y. Lu, and L. Wang,
‘‘SwinBERT: End-to-end transformers with sparse attention for video
captioning,’’ 2021, arXiv:2111.13196.

[33] A. Roy, M. Saffar, A. Vaswani, and D. Grangier, ‘‘Efficient content-
based sparse attention with routing transformers,’’ Trans. Assoc. Comput.
Linguistics, vol. 9, pp. 53–68, Feb. 2021.

[34] L. Liu, Z. Qu, Z. Chen, Y. Ding, and Y. Xie, ‘‘Transformer acceleration
with dynamic sparse attention,’’ 2021, arXiv:2110.11299.

[35] Z. Zhou, J. Liu, Z. Gu, and G. Sun, ‘‘Energon: Towards efficient
acceleration of transformers using dynamic sparse attention,’’ 2021,
arXiv:2110.09310.

[36] Z. Li, S. Ghodrati, A. Yazdanbakhsh, H. Esmaeilzadeh, and M. Kang,
‘‘Accelerating attention through gradient-based learned runtime pruning,’’
in Proc. 49th Annu. Int. Symp. Comput. Archit., Jun. 2022, pp. 902–915.

42762 VOLUME 11, 2023

M. Go et al.: Linearization Weight Compression and In-Situ Hardware-Based Decompression

[37] A. Yazdanbakhsh, A. Moradifirouzabadi, Z. Li, and M. Kang, ‘‘Sparse
attention acceleration with synergistic in-memory pruning and on-chip
recomputation,’’ in Proc. 55th IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2022, pp. 744–762.

[38] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, ‘‘Linformer: Self-
attention with linear complexity,’’ 2020, arXiv:2006.04768.

[39] B. Chen, T. Dao, E. Winsor, Z. Song, A. Rudra, and C. Ré, ‘‘Scat-
terbrain: Unifying sparse and low-rank attention approximation,’’ 2021,
arXiv:2110.15343.

[40] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and
J. W. Lee, ‘‘ELSA: hardware-software co-design for efficient, lightweight
self-attention mechanism in neural networks,’’ in Proc. ACM/IEEE 48th
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 692–705.

MIJIN GO (Student Member, IEEE) received
the B.S. degree in electronics engineering from
Kyungpook National University, in 2021, where
she is currently pursuing the M.S. degree with
the School of Electronic and Electrical Engi-
neering. Her research interests include neural
machine translation model acceleration, data com-
pression, near-memory processing, and FPGA-
based design.

JOONHO KONG (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer sci-
ence from Korea University, in 2007, 2009,
and 2011, respectively. He was a Postdoctoral
Research Associate with the Department of Elec-
trical and Computer Engineering, Rice University,
from 2012 to 2014. Before joining Kyungpook
National University, he was a Senior Engineer with
Samsung Electronics, from 2014 to 2015. He is
currently an Associate Professor with the School

of Electronics Engineering, Kyungpook National University. His research
interests include computer architecture, heterogeneous computing, embed-
ded systems, deep learning acceleration, and hardware/software co-design.

ARSLAN MUNIR (Senior Member, IEEE)
received the M.A.Sc. degree in electrical and com-
puter engineering from The University of British
Columbia, Vancouver, Canada, in 2007, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Florida, Gainesville,
FL, USA, in 2012.

He is currently an Associate Professor with
the Department of Computer Science, Kansas
State University. He was a Postdoctoral Research

Associate with the Electrical and Computer Engineering Department,
Rice University, Houston, TX, USA, from May 2012 to June 2014.
From 2007 to 2008, he was a Software Development Engineer with Mentor
Graphics Corporation, Embedded Systems Division. His current research
interests include embedded and cyber-physical systems, secure and trustwor-
thy systems, parallel computing, artificial intelligence, and computer vision.
He received many academic awards, including the Doctoral Fellowship
from the Natural Sciences and Engineering Research Council (NSERC)
of Canada. He received gold medals for best performance in electrical
engineering, gold medals and academic roll of honor for securing rank one
in pre-engineering provincial examinations (out of approximately 300,000
candidates).

VOLUME 11, 2023 42763

