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Abstract: Vision-based human activity recognition (HAR) has emerged as one of the essential research
areas in video analytics. Over the last decade, numerous advanced deep learning algorithms have
been introduced to recognize complex human actions from video streams. These deep learning
algorithms have shown impressive performance for the video analytics task. However, these newly
introduced methods either exclusively focus on model performance or the effectiveness of these
models in terms of computational efficiency, resulting in a biased trade-off between robustness
and computational efficiency in their proposed methods to deal with challenging HAR problem.
To enhance both the accuracy and computational efficiency, this paper presents a computationally
efficient yet generic spatial–temporal cascaded framework that exploits the deep discriminative
spatial and temporal features for HAR. For efficient representation of human actions, we propose
an efficient dual attentional convolutional neural network (DA-CNN) architecture that leverages
a unified channel–spatial attention mechanism to extract human-centric salient features in video
frames. The dual channel–spatial attention layers together with the convolutional layers learn to be
more selective in the spatial receptive fields having objects within the feature maps. The extracted
discriminative salient features are then forwarded to a stacked bi-directional gated recurrent unit
(Bi-GRU) for long-term temporal modeling and recognition of human actions using both forward and
backward pass gradient learning. Extensive experiments are conducted on three publicly available
human action datasets, where the obtained results verify the effectiveness of our proposed framework
(DA-CNN+Bi-GRU) over the state-of-the-art methods in terms of model accuracy and inference
runtime across each dataset. Experimental results show that the DA-CNN+Bi-GRU framework
attains an improvement in execution time up to 167× in terms of frames per second as compared to
most of the contemporary action-recognition methods.

Keywords: convolutional neural network; channel–spatial attention; activity recognition; gated
recurrent unit; pattern recognition; deep learning

1. Introduction

The recent advancements in artificial intelligence (AI), in particular, deep learning-
driven vision algorithms, and microelectronics have made possible automated surveillance
on Internet of things (IoT) and edge devices [1]. Generally, these surveillance systems are
comprised of multiple interconnected cameras deployed in public places, such as offices,
roads, shopping malls, hospitals, and airports, to enhance public safety and security [2].
The primary objective behind the deployment of surveillance systems in the aforementioned
places is to instantly detect abnormalities by recognizing the anomalous human behavior or
activity in a video stream which could result in injury or unlawful conduct. Human activity
recognition is a process to analyze the hidden sequential pattern and predict the status
of activity based on the perceptual context in input video streams. Generally, in videos,
human activity is a combination of different movements of human body parts (i.e., hands,
legs, or a combination of both). For instance, running involves rapid movement of hands
and legs; similarly, throwing object involves the backward and forward force of arms and
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hands. Human activity recognition has numerous potential applications, such as in smart
surveillance systems [3], video summarization [4], content-based video retrieval [5], sports
and healthcare [6], and human–computer interactions [7]. In video, each frame contributes
spatial information in sequential order which forms a sequential pattern containing human
activity that cannot be recognized in a single video frame. Throwing a ball or a dart (which
involves forward and backward force of an arm and hand) have the same action pose
in the starting frame and thus the discrimination between these two distinct activities is
challenging with respect to recognizing the action in a single frame. Investigating the same
movements of an arm and hand in succeeding frames together with the information from
previous frames will enable effective recognition of human activities in video stream data.

The earlier developed methods in initial research for vision-based activity recognition
are exclusively focused on activities performed by a single person/actor in simple and
controlled environments. In contrast, the current research focuses on more challenging
and realistic human activities recorded with a cluttered complex background, variation
in viewpoint, occlusion in background, inter- and intra-class variations, and pose varia-
tions. The existing vision-based human activity-recognition methods can be categorized
into two classes namely: (i) traditional handcrafted feature-based, and (ii) deep learning-
based human activity-recognition methods. The traditional handcrafted feature-based
methods [8–12] use manually designed handcrafted or hand-engineered features (which
requires extensive human efforts with prior knowledge of scene understanding) followed
by statistical machine learning models to recognize the activity. For instance, several
traditional image features have been utilized to analyze videos, such as histogram of 3D ori-
ented gradients (HOG3D), histogram optical flow (HOF) [13], motion boundary histogram
(MBH) [14], and extended speeded up robust feature (SURF) feature descriptors. The hand-
engineered features must be designed specifically for each particular environment based on
scene perceptual complexity. These types of manually designed handcrafted feature-based
methods are ineffective while tackling long-term temporal dependencies and complex
scenes. Recently, deep learning-based methods have made incredible breakthroughs in
various domains of image processing and computer vision, and have been actively used
for human activity recognition [15–19]. These deep learning-based methods have obtained
state-of-the-art performance by extracting deep progressive discriminative features using
different convolutional neural network (CNN) kernels and exploiting a gradient learning
strategy. Unlike traditional handcrafted features of an image, deep CNNs learn progres-
sively strong features (containing low-level, mid-level, and high-level features) that help to
keep track of all types of visual semantics in image data.

Deep learning-based methods have enhanced the activity-recognition solutions in
two perspectives. First, CNNs have the ability to extract more generic and semantically
rich features than those of traditional handcrafted feature descriptors. Due to this generic
feature extraction enabled by CNNs, CNNs have proliferated in a variety of complex com-
puter vision tasks including 3D image reconstruction [20], image and video captioning [21],
and text-to-image generation [22] that cannot be accomplished using traditional hand-
crafted feature-based methods due to their limitations in terms of features and learning
strategies. Secondly, deep learning offers efficient architectures called recurrent neural
networks (RNNs) which have the ability to learn representations of human activity from a
batch of frames (sequence of frames or temporal representation of human activity) rather
than a single frame. Earlier traditional methods consider frame-level classification of hu-
man activity in videos, rather than understanding the activity in a sequence of frames that
greatly limits their performance for complex and multi-person activities. To cope with this
challenge, deep learning-based methods have adopted RNNs for better understanding
and recognition of complex human activities in videos. Normally, in deep learning-based
methods, RNNs are placed right after CNNs, where the CNN architecture is responsible
for extracting deep discriminative features from videos and the RNN is responsible for
learning the hidden sequential patterns in the extracted CNN features. The performance
of these deep learning methods is good compared to traditional methods; however, these
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methods are computationally very expensive due to their hybrid and complex CNN and
RNN architectures.

The above-mentioned deep learning-based activity-recognition methods have attained
exceptional performance. Most of the existing AI-assisted activity-recognition methods
have adopted large yet effective pre-trained CNN architectures trained on a large-scale
image dataset having tens of millions of trained parameters. Fusing such a computationally
expensive feature descriptor backbone architecture with long short-term memory (LSTM)
networks or multi-layer LSTMs (LSTMs having several layers with the same settings)
greatly increases the computational complexity of the overall method, thereby compro-
mising on the better tradeoff between model accuracy and complexity. Considering the
demand for computationally efficient yet effective approaches that provide a balanced
tradeoff between model accuracy and complexity for deployment on resource-constrained
IoT and/or edge devices, in this paper, we propose a deep learning-based computationally
efficient yet effective method for activity-recognition problems that can be deployed even
on resource-constrained edge devices in the IoT-enabled surveillance environment. Our
main contributions in this work are as follows:

1. We propose a computationally efficient cascaded spatial–temporal learning approach
for human activity recognition. The proposed system utilizes deep discriminative RGB
features guided by a channel–spatial attention mechanism and long-term modeling of
action-centric features for reliable recognition of human activities in video streams.

2. We propose a light-weight CNN architecture having a total of eight convolutional
layers where the maximum number of kernels used per layer is 64 with spatial dimen-
sions 3× 3. With these constrained settings, we have developed a compact yet efficient
CNN architecture for deep discriminative feature extraction as opposed to complex
deep CNNs utilized by other contemporary works in their activity-recognition models
using transfer learning.

3. We design a stacked dual channel–spatial attention mechanism with residual skip
connection for spatial saliency extraction from video frames. The developed dual
attentional module is placed after each two-consecutive convolutional layers of the
developed CNN model which helps the network to extract saliency-aware deep
discriminative features for localizing the action-specific regions in video frames.

4. We propose a bi-directional GRU network with three bi-directional layers (having
forward and backward pass) that efficiently capture the long-term temporal patterns
of human actions in both forward and backward directions, which greatly enhances
the reusability of features, improves the feature propagation, and alleviates the issue
of gradients vanishing.

5. We demonstrate the effectiveness and suitability of the proposed encapsulated dual
attention CNN and bi-directional GRU framework (DA-CNN+Bi-GRU) for resource-
constrained IoT and edge devices by comparing the model accuracy and execu-
tion/inference time of the DA-CNN+Bi-GRU framework with various baseline meth-
ods as well as contemporary human action-recognition methods.

The remainder of this paper is organized as follows. Section 2 provides a brief overview
of the related works covering different types of methods introduced for human activity
recognition. The proposed DA-CNN+Bi-GRU framework and its technical components are
discussed in detail in Section 3. Section 4 presents an extensive experimental evaluation
of DA-CNN+Bi-GRU as compared to other methods based on different metrics. Finally,
Section 5 concludes the paper with possible future research directions.

2. Related Works on Human Activity Recognition

In recent years, human action and activity recognition have been widely studied and
have received an exceptional amount of attention from computer vision researchers due
to the recent success of deep learning for image-classification and object-detection tasks.
Comprehensive reviews of both traditional and deep learning-based methods have been
presented in numerous surveys [23,24]. The reported literature on human action and activ-
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ity recognition can be summarized in terms of handcrafted feature-based methods, deep
learning feature-based methods, long-term temporal modeling-based methods, and atten-
tion model-based methods. This section presents a brief discussion on these representative
methods and a brief summary of previous related works.

2.1. Handcrafted Feature-Based Methods

Numerous traditional handcrafted feature-based methods have been proposed to
localize spatial and temporal variations in videos using manually hand-engineered feature
descriptors. Generally, these handcrafted feature-based methods can be structured as
a feature-extraction and -encoding pipeline having three phases including key feature
point detection (spatial and temporal feature points), quantization of detected features,
and feature encoding. The first phase involves the extraction of spatial–temporal features
from video frames, followed by feature quantization in the second phase which quantizes
local motion-centric features. Lastly, the quantized spatial–temporal features are then
encoded into feature vectors (known as action feature vectors) having fixed dimensions.
For instance, inspired by the feature-extraction mechanism of the scale-invariant feature
transform (SIFT) descriptor, Scovanner et al. [25] adopted the SIFT algorithm feature-
extraction strategy and extended their feature space from 2D to 3D for encoding hidden
action patterns. As single feature representation is not able to capture human actions,
numerous multi-feature representative descriptors have been proposed in the literature.
Laptev et al. [26] have proposed a multiscale spatial–temporal feature-based approach by
utilizing space–time extension and the Harris operator. They first extract multi-scale spatial–
temporal features from video frames and then characterize the appearance and motion of
local features using a volumetric histogram of oriented gradients (HOG). The retrieved
multi-scale spatial–temporal features are then fed to a non-linear support vector machine
(SVM) for action recognition. In [27], Ryoo and Matthies inspected the behavior of local
and global motion features to recognize first person activities in video data. Their proposed
methods exclusively focus on temporal structures depicted in first person action/activity
videos. These traditional handcrafted feature-based methods have shown progressive
improvement over the years by presenting more efficient approaches; however, these
methods are time-consuming (lacking end-to-end recognition strategy), labor-intensive
(requiring extensive human efforts to extract generic and more discriminative features),
and difficult to adopt in diverse scenarios.

2.2. Deep Learning Feature-Based Methods

Deep learning feature-based methods are the current mainstream methods to solve
the problem of complex human action and activity recognition in videos. With the recent
success in the computer vision domain for high-level vision tasks including image enhance-
ment [28], image segmentation [29], and video captioning [30], CNNs have been actively
investigated, addressing human action and activity-recognition problems. Numerous
CNN-assisted methods have been presented [31–37] with deep CNN architectures with 2D
convolution kernels applied across convolutional layers of the CNN. These convolutional
layers extract deep discriminative spatial features with translation invariance from action
video frames, offering reasonable action-recognition performance without using temporal
modeling. For instance, Karpathy et al. [31] presented a single-stage CNN architecture for
action recognition where they trained their proposed model on a large-scale sports video
dataset benchmark, namely the Sports-1M dataset. Although their method achieves better
results than traditional handcrafted feature-based methods, the presented architecture is
unable to cope with temporal modeling. To overcome this issue, several two-stream CNN
architectures were introduced [32,33,37] to obtain both spatial and temporal modeling
of human action where one architecture performs spatial modeling of spatial contextual
features and the second architecture performs temporal modeling using extracted optical
flow features. The addition of a second network improves the performance by introducing
temporal modeling to the CNN-based action-recognition approach; however, it equally in-
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creases the computational complexity of the overall two-stream CNN approach. To achieve
spatial modeling and temporal cues within a single CNN architecture without compromis-
ing on model complexity, 3D CNNs [38–40] were introduced for human action-recognition
tasks. For instance, Tran et al. [38] exploit the powerful characteristics of 3D CNN to
recognize human action in sports videos, where they trained their proposed architecture
on a large-scale benchmark dataset and have shown promising results. However, these 3D
CNN-based approaches work well with short-term temporal modeling and lack the ability
to cope with long temporal modeling. Oikonomou et al. [41] examined the effectiveness
of advanced data-driven classifiers for action recognition by focusing on a specific set
of joint coordinates (x, y, and z-axes). The underlying assumption is that observing this
particular set of joints is sufficient for accurately perceiving each action in real-life scenarios.
Their objective is to explore the capabilities of joint analysis in improving pose-based
action-recognition systems. Consequently, they established correlations between specific
joints and corresponding actions, identifying the most influential joints in the process.
Shah et al. [42] addressed the task of action recognition using joint-based information.
In contrast to alternative modalities, they leveraged the arrangement of joints and their
motion to create concise models that capture essential human motion details for activity
recognition. Their approach introduces a novel model for joint-based action recognition.
The model initially extracts motion features from individual joints independently using a
shared motion encoder, and subsequently performs collective reasoning. Holte et al. [43]
examined the latest methods in multi-view techniques for the estimation of 3D human
poses and recognition of human activities. They explored various fields where these tech-
nologies are applied and the specific needs associated with them. These areas include
advanced human–computer interaction (HCI), assisted living, interactive games based
on gestures, intelligent driver assistance systems, movies, 3D TV and animation, physical
therapy, autonomous mental development, smart environments, sport motion analysis,
video surveillance, and video annotation. They then conducted a thorough analysis of
recent approaches proposed to meet these specific requirements and categorized them
accordingly. Nandagopal et al. [44] proposed a novel method for activity recognition called
KPE-DCNN. This technique involves several stages: the input video is first transformed
into a series of frames, followed by key point extraction using a customized OpenPose
model. The extracted key points are then used to classify human activities by training an
optimized DCNN model. The goal of KPE-DCNN is to accurately extract key points and
effectively recognize different activities based on these points. Zhou et al. [45] proposed a
cascaded architecture to tackle the complex task of multi-stage, coarse-to-fine human–object
interaction (HOI) understanding. In their approach, each stage of the architecture consists
of an instance localization network that progressively refines HOI proposals. These refined
proposals are then passed on to an interaction-recognition network. Notably, both networks
maintain connections with their respective predecessors from the previous stage, facili-
tating cross-stage information exchange. The interaction-recognition network comprises
two key components: a relation ranking module for selecting high-quality HOI proposals
and a triple-stream classifier for relation prediction. These modules synergistically utilize
carefully designed human-centric relation features to achieve effective interaction under-
standing. To study instance-aware posing of human body parts, Zhou et al. [46] proposed a
novel bottom-up approach that simultaneously addresses the tasks of category-level human
semantic segmentation and multi-person pose estimation in a joint and end-to-end fashion.
This approach yields a compact, efficient, and robust framework that leverages structural
information across various levels of human granularity, thereby mitigating the challenges
associated with person partitioning. The key innovation of this work is the learning of a
dense-to-sparse projection field, which facilitates the explicit association of dense human
semantics with sparse keypoints. This projection field is progressively refined throughout
the network’s feature pyramid, resulting in an improved performance and representation of
the relationships between human semantics and pose keypoints. The resulting framework
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benefits from its ability to incorporate and enhance structural information, providing a
powerful tool for the given tasks.

2.3. Temporal Modeling-Based Methods

The temporal modeling approach has been actively used to overcome the issue of
long-term temporal modeling, where researchers have introduced a special kind of neural
network called RNN, which has the ability to deal with long-term sequences. Different vari-
ants of RNNs have been introduced for action-recognition problems including LSTM [47],
bi-directional LSTM [48], and GRU [49], which are comparatively more efficient than RNNs
in terms of memorizing contents for long periods of time. For instance, Yue et al. [34]
presented a two-stream CNN architecture to extract both spatial (edge, color and shape)
features and temporal (optical flow) features stacked with the LSTM model for temporal
modeling of human activity. Similarly, Amin et al. [47] presented a two-stream CNN
architecture followed by a multi-layer LSTM to recognize human activity in videos. They
first extracted spatial salient and optical flow features and then fed the extracted features to
multi-layer LSTM to localize human action in video sequences. Ibrahim et al. [50] proposed
a two-stream temporal modeling-based activity-recognition framework to recognize a team
or group of activities. Their proposed method consist of two LSTM networks; the first
LSTM learns the representation of a single person action, whereas the second LSTM is
responsible for understanding collective activity by aggregating individual actions in a
sequence of frames. Biswas et al. [51] presented a special variant of RNN named structural
RNN for group activity recognition. Their proposed method consists of series of intercon-
nected RNNs structured to analyze human actions and their mutual interactions in video
sequences. To accurately learn representations of human activity in feature-encoded video
frames, Shugao et al. [52] reformulated ranking loss to efficiently detect human activities.
They first extracted deep discriminative CNN features from video frames using VGG19,
which are then fed into LSTM to analyze hidden sequential patterns and recognize human
activities. Muhammad et al. [6] presented a spatio-termporal approach for recognizing
salient events in soccer videos, where they used a pretrained ResNet50 architecture for deep
feature extraction and a multilayer LSTM for event recognition from the hidden sequential
patterns. These hybrid CNN+LSTM approaches exhibited significant performance for
vision-based human action- and activity-recognition tasks; these methods are computation-
ally complex due to intensive computation caused by CNN feature extraction and human
action modeling by LSTM.

2.4. Attention Mechanism-Based Methods

In the recent past, attention-based method have demonstrated great potential for a
variety of high-level vision tasks including image segmentation [53], video captioning [54],
and visual question answering (VQA) [55]. More recently, attention mechanisms com-
bined with CNN and RNN networks have been widely used for human action-recognition
tasks and have achieved noticeable improvements in action-recognition performance. For
instance, Baradel et al. [56] introduced a novel spatio-temporal attention mechanism for
human action recognition. Their approach automatically directs attention to the most signif-
icant human hands and detects the most discriminative moments within an action. Unlike
conventional soft-attention mechanisms, they employed an RNN to handle attention in a
fully differentiable manner. Notably, they diverged from the typical practice of using the
hidden RNN state as an input to the attention model. Instead, they generated attention dis-
tributions using external information, specifically human articulated poses. Islam et al. [57]
proposed Multi-GAT, a hierarchical multi-modal HAR approach that incorporates graph-
ical attention. Their method focuses on learning complementary features from multiple
modalities in a hierarchical manner. To disentangle and extract salient modality-specific
features facilitating feature interactions, they devised a multi-modal mixture-of-experts
model. Furthermore, they introduced a novel message-passing-based graphical attention
approach, which captures cross-modal relations to extract complementary multi-modal fea-
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tures. Long et al. [58] introduced keyless attention as a sophisticated and efficient approach to
better address the sequential characteristics of data. Additionally, through a comprehensive
comparison of various multi-modal fusion techniques, they discovered that multimodal
keyless attention fusion achieves the highest success in capturing interactions between
different modalities. Song et al. [59] proposed a spatial and temporal attention model to
investigate discriminative features in human action recognition and detection using skele-
ton data. Their approach utilizes RNNs with LSTM units to build the network architecture.
Their proposed model learns to selectively focus on discriminative joints within each input
frame and assigns varying levels of attention to the outputs of different frames. To ensure
effective training for action recognition, they introduced a regularized cross-entropy loss
and devised a joint training strategy. Additionally, leveraging temporal attention, they
developed a technique to generate temporal proposals for action detection. Cho et al. [60]
introduced three variations of the self-attention network (SAN) called SAN-V1, SAN-V2,
and SAN-V3. These variants effectively extract high-level semantics by capturing long-
range correlations. The authors also incorporated a temporal segment network (TSN) into
their SAN variants, leading to notable enhancements in overall performance. Although
these attention-driven methods have been widely used for human action-recognition task
and have obtained noticeable improvements over handcrafted feature-based methods and
other non-attention deep learning methods, they perform well only on clean red, green,
and blue (RGB) video data and mostly fail while dealing with noisy color (RGB) video data.

3. Proposed Human Activity-Recognition Framework

This section presents in detail the insights of our proposed DA-CNN+Bi-GRU human
action-recognition framework and its core components. For better understanding, the pro-
posed approach is divided into three distinct modules, where each module is separately
discussed. The first core component of our method is the newly introduced lightweight
CNN architecture having a small number of trainable parameters. The second core compo-
nent is a dual attention (channel and spatial attention) module, which is used to embed a
dual attention mechanism to the CNN module to enable our CNN model to extract salient
features from video frames. The last key component of our framework is a bi-directional
GRU network for learning long-term encoded patterns of human actions. The conceptual
workflow of the DA-CNN+Bi-GRU framework is depicted in Figure 1.

Figure 1. A graphical overview of our proposed activity-recognition framework. The proposed
framework consists of three main modules: CNN architecture, dual channel and spatial attention
module, and bi-directional GRU network. The CNN module utilizes a dual-attention mechanism to
effectively extract salient CNN features from video frames, whereas the bi-directional GRU network
is used to learn the activity representation for hidden sequential patterns.

3.1. Overview of Proposed CNN Architecture

Recognizing human actions in video data is indeed a challenging problem, where
video data represent complex human actions over a series of frames in the form of dif-
ferent hidden visual contents that include temporal flow of objects in frames, varying
textures, object-specific edges, and colors. For better representation and modeling of hu-
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man actions, these visual contents need to be analyzed effectively via an approach that
allows an activity-recognition system to recognize complex human actions or activity in
video sequences. To effectively extract the defining visual features of these hidden action
contents, CNN-based approaches are widely used to recognize human actions in videos.
Although the presented CNN-based approaches have shown remarkable performance,
their computational complexity and execution/inference times are very high due to large
network architectures. To avoid such high computational complexity and long runtime,
we propose a lightweight CNN architecture coupled with channel and spatial attention.
The proposed CNN architecture contains a total of eight convolutional layers, where each
two consecutive convolutional layers are followed by a max pooling layer and a dual
attention block (containing both channel and spatial attention). The first two convolutional
layers each apply 16 kernels on input video frames with the kernel size 3× 3, whereas the
third and fourth convolutional layers each apply 32 kernels on the output of the first dual
attention block with the kernel size 3× 3.

Similarly, the fifth and sixth convolutional layers each apply 32 kernels on the output of
the second dual attention block with the kernel size 3× 3. The last pair of the convolutional
layers each apply 64 kernels on the output of the third dual attention block with the kernel
size 3× 3 and then forward the estimated feature maps to the last dual attention block.
The output of the last dual attention block is processed by a global average pooling layer,
the output of which is then flattened by a flatten layer. The output of the flatten layer
is fused with a bi-directional GRU network for later long short-term sequence learning.
The architectural details of our proposed CNN architecture are listed in Table 1. It is worth
noticing that we used at most 64 convolutional kernels per layer and a fixed 3× 3 kernel
size that greatly help to reduce the computational complexity as low as possible with a
negligible effect on model performance.

Table 1. Architectural details of our proposed CNN architecture.

Layer Input Channels Number of Kernels Kernel Size Stride Padding Output Channels

Conv 1 3 16 3× 3 1 1 16
Conv 2 16 16 3× 3 1 1 16

Max pooling

Channel Attention

Spatial Attention

Conv 3 32 32 3× 3 1 1 32
Conv 4 32 32 3× 3 1 1 32

Max pooling

Channel Attention

Spatial Attention

Conv 5 32 32 3×3 1 1 32
Conv 6 32 32 3×3 1 1 32

Max pooling

Channel Attention

Spatial Attention

Conv 7 32 64 3× 3 1 1 64
Conv 8 32 64 3× 3 1 1 64

Max pooling

Channel Attention
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Table 1. Cont.

Layer Input Channels Number of Kernels Kernel Size Stride Padding Output Channels

Spatial Attention

Global Average Pooling

Flatten

3.2. Dual Attention Module

To exclusively focus on the most salient regions of video frames, we propose an
attention-driven CNN architecture to efficiently localize the salient regions and enhance
feature representation. The proposed attention mechanism is formed by modifying the
convolutional block attention module (CBAM) [61] by replacing the 7× 7 convolution layer
with a 3× 3 convolution layer, followed by the fusion of the spatial attention module with
the intermediate output of the channel attention module through element-wise product
operation. A detailed graphical overview of the proposed dual attention block is presented
in Figure 2. The fusion of both channel and spatial attentions not only helps to reduce the
overall parameters overhead, but also enables the proposed CNN architecture to extract
salient features. Therefore, the formation of network layers is constructed in such a way
that we place a stacked dual attention module after each two consecutive convolutional
layers of our proposed network. The channel attention module estimates the weighted
contribution of RGB channels by applying intermediate channel attentionAC on the output
feature maps FM of the previous convolutional layer to obtain the channel attention AttC.
The computed output from AttC is then forwarded to the spatial attention module, which
localizes promising object-specific regions by applying spatial attention on the computed
channel attention feature maps AttC. Finally, the architecture obtains the refined feature
maps FRM by fusing the spatial attention feature maps AttS with the input feature maps
FM via a residual skip connection using element-wise addition operation. Mathematically,
AttC, AttS, and FRM can be formulated as follows:

AttH×W×C
C = AC(FH×W×C

M )⊗ FH×W×C
M , (1)

AttH×W×C
S = AS(AttH×W×C

C )⊗ AttH×W×C
C , (2)

FH×W×C
RM = AttH×W×C

S ⊕ FH×W×C
M (3)

Here, H, W, and C denote the height, width, and number of channels of the feature
maps, respectively. AC and AS are the intermediate channel attention and the intermediate
spatial attention, respectively. FRM is the final refined feature maps obtained by fusing
spatial attention and input feature maps FM.

3.2.1. Channel Attention

In pattern-recognition problems, particularly in image/object recognition, each color
channel contributes differently based on the appearance of color in an image. During
the training process, a CNN model generates feature maps from input image data by
extracting deep discriminative features through multiple convolutional layers. Within these
feature maps, certain channels have a higher contribution than others in the recognition
process, emphasizing their importance in capturing relevant information. Unlike the earlier
attention-based approaches that used either global max pooling layer or global average
pooling layer, DA-CNN+Bi-GRU uses both global max pooling and global average pooling
to extract more effective features. Global max pooling emphasizes highly activated values
by selecting the maximum value from the receptive field, whereas global average pooling
estimates the equally weighted feature maps for each channel.
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Figure 2. The building blocks of dual attention blocks containing channel and spatial attention mech-
anisms in detail.

The computed feature maps are then forwarded to a shared multilayer perceptron
(MLP) containing two fully connected layers, namely f c1 and f c2, having 128 and 512 nodes,
respectively. The shared MLP learns the non-linearity between the two fully connected
layers using the rectified linear unit (ReLU) activation function, and outputs two individual
feature vectors, namely V1×1×C

C−max and V1×1×C
C−avg , for global max pooling and global average

pooling, respectively. The computed feature vectors are then combined via an element-
wise addition operation, and then forwarded to a sigmoid activation function σ, which
normalizes the feature values to obtain intermediate channel attention features A1×1×C

C .
The obtained intermediate channel attention features A1×1×C

C are then fused with the
input feature maps FH×W×C

M using a residual skip connection by performing an element-
wise multiplication operation, which results in the ultimate channel attention feature
maps AttH×W×C

C as depicted in Figure 2. Mathematically, the channel attention and its
components can be expressed as follows:

V1×1×C
C−max = f c2(ReLU( f c1(maxpool(FH×W×C

M )))), (4)

V1×1×C
C−avg = f c2(ReLU( f c1(avgpool(FH×W×C

M )))), (5)

A1×1×C
C = σ(V1×1×C

C−max ⊕V1×1×C
C−avg ), (6)

AttH×W×C
C = A1×1×C

C ⊗ FH×W×C
M , (7)

Here, V1×1×C
C−max and V1×1×C

C−avg are the feature vectors obtained from global max pooling

and global average pooling operations, respectively. In the above equations, FH×W×C
M

represents the input feature maps, σ denotes the sigmoid activation function, whereas
AttH×W×C

C is the final channel attention output.

3.2.2. Spatial Attention

The spatial attention mechanism focuses on object saliency in the given feature maps
by paying more attention to important features across each color channel and localizing
salient regions. To highlight the salient object-specific regions in the feature maps, our
design exploits inter-spatial features and their relationship among channels, which greatly
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help to trace the target object in the feature maps. DA-CNN+Bi-GRU computes the relation
of inter-spatial features among channels by applying max pooling and average pooling to
the input channel attention feature maps to obtain max pooled channel attention AttH×W×1

C−max
and average pooled channel attention AttH×W×1

C−avg , respectively.

The max pooled channel attention AttH×W×1
C−max and average pooled channel attention

AttH×W×1
C−avg are concatenated and then forwarded to a single convolutional layer Conv3×3,

which applies a 3× 3 convolution kernel on pooled feature maps to form single-channel
convoluted feature maps. These convoluted feature maps are then processed by a sigmoid
activation function, which normalizes the learned features and produces intermediate
spatial attention features AH×W×1

S . Finally, the obtained intermediate spatial attention
features AH×W×1

S are fused with the input channel attention feature maps AttH×W×C
C

using a residual skip connection by performing an element-wise multiplication operation,
which results in final spatial attention feature maps AttH×W×C

S , as depicted in Figure 2.
Mathematically, spatial attention AttW×H×C

S and its component can be expressed as follows:

AttH×W×1
C−max = maxpool(AttH×W×C

C ), (8)

AttH×W×1
C−avg = avgpool(AttH×W×C

C ), (9)

AH×W×1
S = σ(Conv3×3(AttH×W×1

C−max

⊎
AttH×W×1

C−avg )), (10)

AttH×W×C
S = AH×W×1

S ⊗ AttH×W×C
C , (11)

where AttH×W×1
C−max and AttH×W×1

C−avg are the global max and average pooled features, respec-
tively. σ is the sigmoid activation function and

⊎
represents the concatenation operation.

AttH×W×C
S is the final obtained spatial attention. The representative saliency maps of

different human actions generated by our proposed method are depicted in Figure 3.

3.3. Learning Human Action Patterns via Bi-Directional GRU

Videos can be conceptualized as a stack of frames that encapsulate the sequential flow
of diverse visual contents within a specific time duration. To understand the visual contents,
mainstream computer vision approaches first extract deep discriminative features from
the video frames using CNNs and then combine the extracted features in sequential order
to maintain the semantic flow of the video. Second, the feature-encoded videos are then
processed via RNNs to learn the representation of visual contents from hidden sequential
patterns. Specifically, for human activity-recognition problems, two special variants of
RNNs are actively used by researchers that include LSTMs and GRUs. The LSTM unit
is comprised of different gates including input, output, forget gates, and other memory
components, whereas the GRU contains an update gate, a reset gate, and an activation
function. The LSTM is comparatively more complex than the GRU in terms of the number
and formation of gates which leads to relatively higher computational complexity requiring
more computational resources. Therefore, in this paper, we propose to use GRU with
bi-directional flow of learning strategy, which effectively learns from the encoded hidden
sequential pattern.
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Figure 3. Visual representation of the salient object-specific regions computed with our dual atten-
tion mechanism.

The bi-directional GRU consists of two layers, namely forward and backward layer,
where both layers process the same sequence in different sequential order. The forward
layer reads the input sequence from left to right, that is, from Xt−1 to Xn where n is the
length of sequence. On the other hand, the backward layer reads the input sequence in
reverse order from right to left, that is, from Xt+n to Xt−1 as shown in Figure 4. Both
forward and backward GRU layers consist of GRU cells, where each cell consists of two
gates, namely a reset r and an update gate µ, with two activation functions that include
sigmoid and tanh. The reset gate decides whether the GRU needs to forget or retain the
portion of information based on its values (between 0 and 1). When the output value of
the reset gate is near 0, the reset gate forgets the information from the previous portion of
the sequence, whereas if the reset gate value is near 1, the reset gate retains the previous
portion of the sequence. The update gate decides the amount of information from the
previous hidden state to be retained to the current hidden state based on its values (between
0 and 1). When the value of the update gate is near 0, the updated gate simply forgets the
portion of information from the previous hidden state and retains the portion of information
from the previous hidden state to the current hidden state when the value is close to 1.
Mathematically, the operation of these gates can be expressed as follows:

rt = σ(wr · xt + ur · ht−1), (12)

µt = σ(wµ · xt + uµ · ht−1), (13)

h̃t = tanh(w · xt + rt · u · ht−1), (14)
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ht = (1− µt) · ht−1 + µt · h̃t, (15)

yt = σ(wo · ht), (16)

where rt and µt represent the reset and update gates, respectively, having values between
0 and 1. In the above equations, w and u are the weight variables, xt is the input to the
GRU layer, wo is the weight variable between input and output layer, yt represents the
output layer node at time step t. h̃t is the candidate hidden state of the current node, ht is
the current hidden state, and ht−1 is the hidden state of the previous node.

Figure 4. The building block of bi-directional single GRU layer.

4. Experimental Results and Discussion

In this section, we present a detailed experimental evaluation of our proposed DA-
CNN+Bi-GRU human activity-recognition framework. We evaluate the effectiveness of our
proposed framework by analyzing the performance with and without the key components
(channel attention, spatial attention, bi-directional GRU) of our framework. First, we
describe the implementation details and performance evaluation metrics that we used in
this research. Next, we briefly discuss the datasets we used for benchmarking experiments.
We then compare the DA-CNN+Bi-GRU framework with state-of-the-art human action-
recognition methods across each tested dataset. Finally, we present the human action-
recognition visualization and then conduct runtime analysis of our proposed approach for
real-time human activity recognition.

4.1. Implementation Details

The DA-CNN+Bi-GRU framework is implemented using a well-known deep learning
framework called TensorFlow version 2.0 in Python language 3 on a computing system
with an Intel Xeon (R) processor with processor frequency 3.50 GHz and 32 GB of dedicated
main memory. The computing system is also equipped with an NVIDIA GeForce GTX
1080 graphics processing unit (GPU) having a graphics random-access memory of 8 GB.
For training and validation, we divided the datasets into a ratio of 70% and 30%, where
for training we used 70% of the data and the remaining 30% of the data were used for
validation. The training process is run for 300 epochs and the weights are initialized with
a random weight initializer, whereas the batch size is set to 16. To adjust weight values
during training, we used the Adam optimizer with static learning rate of 0.0001. The DA-
CNN+Bi-GRU network utilizes categorical cross-entropy loss, which controls the weight
adjustment based on network prediction during training. For sequence learning, we used a
sequence length of 16 frames without overlapping for both forward and backward pass
of bi-directional GRU, where we used three bi-directional GRU layers with 32 GRUs per
layer. Moreover, we used two different performance evaluation metrics to assess the overall
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performance of our proposed method. The first metric is the accuracy metric, which is used
to evaluate the activity-recognition performance of our framework and other contemporary
methods. The second metric is frames per second (FPS) or alternatively seconds per frame (SFP),
which measures the runtime of our proposed framework and other contemporary methods.

4.2. Datasets

To verify the effectiveness of the DA-CNN+Bi-GRU framework, we conducted exten-
sive experiments on three challenging human action datasets that include YouTube action,
UCF50, HMDB51, UCF101, and Kinetics-600 datasets. Each dataset consists of multiple
action videos having varying duration, different viewpoints, and FPS. These datasets are
discussed in detail in the following subsections.

4.2.1. YouTube Action Dataset

The YouTube action dataset [62] is a commonly used action-recognition dataset con-
taining diverse sports and other action video clips collected from YouTube. The collected
videos clips are very challenging due to variations in viewpoint, camera motion, cluttered
background, and varying poses and appearances of objects in the scene. The dataset con-
tains 1640 video clips categorized into 11 action categories, where the duration of videos
ranges between 2 and 5 s having a frame rate of 29 FPS and a resolution of 320× 240.
The collected action clips in all action categories are grouped into 25 distinct groups con-
taining four or more video clips, where each video clip in the same group shares common
visual features, such as background, viewpoint, and the person or actor.

4.2.2. UCF50 Dataset

The UCF50 dataset [63] is one of the challenging large-scale human activity-recognition
datasets, containing videos of diverse human actions captured with varying viewpoints,
camera motions, object poses and appearances, and background clutter. The dataset
contains a total of 6676 video clips categorized into 50 different classes, where the duration
of video clips ranges between 2 and 3 s with a frame rate of 25 FPS and a resolution of
320× 240. The video clips in all 50 categories are further grouped into 25 groups, where
each group comprises at least four video clips, where a video clip in a single group shares
common features of actions, such as the same person performing an action, the same
viewpoint, and the same background.

4.2.3. HMDB51 Dataset

HMDB51 [64] is one of the challenging datasets commonly used for human action
recognition in videos. The videos in this dataset are collected from difference sources
including movies, public databases, YouTube, and Google videos. The dataset comprises a
total of 6849 action video clips categorized into 51 classes, where each class contains at least
101 video clips having a duration of 2 to 3 s with a frame rate of 30 FPS and a resolution of
320× 240. The collected action video clips can be generally categorized into five different
types of actions that include facial actions, facial actions with object manipulation, general
body movements, body movements and interaction with objects, and body movements
while interacting with humans.

4.2.4. UCF101 Dataset

According to the literature based on human action/activity recognition, UCF101 [65]
is a very challenging dataset comprising videos which resemble real-world activities.
The dataset consists of 13,320 videos collected from YouTube, which are categorised into
101 action classes, where in each class there are 100 to 200 video clips of human actions
performed by different subjects. The duration of each clip is between 2 and 3 s with a
frame rate of 25 FPS and a frame resolution of 320× 240. The collected video clips are
retrieved based on five major human activities that include human interaction with objects,
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human interaction with humans, human body motion only, playing of musical instruments,
and humans performing sports activities.

4.2.5. Kinetics-600 Dataset

Kinetics-600 [66] is an extremely large human action video dataset, comprising 480 K
video clips (∼10 s) of different human actions that are categorized into 600 actions classes.
The video clips in the dataset are collected from YouTube videos which are then labeled
based on the action in video clips, where each video clip has a variable resolution, field of
view, and frame rate. The dataset has three distinct sets, namely train, validation, and test.
The train set contains 500∼950 videos per class, whereas in the validation set, each class has
45∼50 videos. The test set and validation set have the same number of videos; however,
the test set is not labeled.

4.3. Assessment of Our Framework with Baseline Methods

This research is built up on the exploration of various possible solutions for vision-
based human action recognition, where we developed several spatial–temporal methods,
assessed their performances, and developed our final proposed method. To obtain the opti-
mal approach, we explored different spatial–temporal solutions and successively developed
four different baseline methods that include CNN+LSTM, CNN+Bi-LSTM, CNN+GRU,
and CNN+Bi-GRU, and we analyzed their performances in terms of model precision. To ob-
tain a fair comparison, we trained each baseline method on five different datasets (i.e.,
YouTube action, UCF50, HMDB51, UCF101, and Kinetics-600 datasets). These datasets are
then used for training the DA-CNN+Bi-GRU framework. The network settings of these
baseline methods are listed in detail in Table 2, where it can be perceived that CNN+LSTM
and CNN+GRU methods use a total of 11 spatial–temporal layers including 8 convolutional
and 3 temporal layers. Similarly, CNN+Bi-LSTM and CNN+Bi-GRU methods use a total of
14 layers, including 8 convolutional and 6 temporal layers (with 3 forward and 3 backward
pass layers). Finally, the proposed framework (DA-CNN+Bi-GRU) has a total of 18 layers
comprising 12 convolutional layers (8 convolutional and 4 attentional) and 6 temporal
layers (3 forward and 3 backward pass layers).

Table 2. Network settings of experimented baseline methods and our proposed framework.

Method Spatial Block Layers Temporal Block Layers

CNN+LSTM 8 convolutional 3 LSTM
CNN+Bi-LSTM 8 convolutional 6 LSTM (3 forward and 3 backward)
CNN+GRU 8 convolutional 3 GRU
CNN+Bi-GRU 8 convolutional 6 GRU (3 forward and 3 backward)
DA-CNN+Bi-GRU 12 convolutional (8 convolutional and 4 attentional) 6 GRU (3 forward and 3 backward)

The training performance (in terms of accuracy) of each baseline method along with
our proposed method is depicted in Figure 5. It can be seen from Figure 5 that DA-CNN+Bi-
GRU performs better than other baseline methods in terms of accuracy. For instance,
in Figure 5a for the YouTube action dataset, our method achieves the best accuracy score
throughout 300 epochs. In Figure 5b for the HMDB51 dataset, our method (DA-CNN+Bi-
GRU) starts as the second-best method in early training epochs where CNN+Bi-GRU
dominates; however, after 20 epochs, DA-CNN+Bi-GRU attains the best accuracy as com-
pared to the other baseline methods and remains the best till the end of the training.
Similarly, in Figure 5c for the UCF50 dataset, our method (DA-CNN+Bi-GRU) does not
perform the best in the first 35 epochs, where CNN+Bi-GRU dominates; however, after
35 epochs, the DA-CNN+Bi-GRU starts improving and finally trains with the best accuracy
at the 300th epoch. In Figure 5d for the UCF101 dataset, the proposed DA-CNN+Bi-GRU
starts with the best training accuracy in the very early epochs and shows the best perfor-
mance throughout the training phase (for 300 epochs) and finishes with the best training
accuracy. Finally, in Figure 5e for the Kinetics-600 dataset, the proposed method obtains
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the best training accuracy throughout the training phase followed by the CNN+Bi-GRU
method with the second best performance in terms of training accuracy.

Figure 5. Validation history of our proposed DA-CNN+Bi-GRU framework along with other tested
baseline methods for 300 epochs over three benchmark action datasets: (a) Validation history for
YouTube action dataset, (b) Validation history for UCF50 dataset, (c) Validation history for HMDB51
dataset, (d) Validation history for UCF101 dataset, and (e) Validation history for Kinetics-600 dataset.

We also demonstrate the performance of our proposed DA-CNN+Bi-GRU method
on YouTube action, HMDB51, UCF50, UCF101, and Kinetics-600 datasets using confu-
sion matrix and category-wise accuracy metrics. The obtained results for the confusion
matrix and category-wise accuracy metrics are depicted in Figures 6 and 7, respectively.
The obtained performances of these baseline methods along with our proposed method
across five benchmark datasets are presented in Table 3. From Table 3, it can be noticed
that DA-CNN+Bi-GRU dominates all the baseline methods across each dataset. For in-
stance, the proposed framework attains the best accuracy score of 98.0% over the YouTube
action dataset as compared to all the baseline methods, whereas CNN (spatial attention
only) + Bi-GRU obtains the second-best accuracy score of 95.6%. Similarly, on the UCF50
dataset, the proposed framework obtains the highest accuracy score of 98.5%, whereas the
runner-up is CNN (spatial attention only) + Bi-GRU with an accuracy of 95.7%. For the
HMDB51 dataset, it can be seen that our proposed method dominates all the baseline
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methods by achieving the best accuracy score of 79.3%, whereas CNN (spatial attention
only) + Bi-GRU is the runner-up method, attaining the second-best accuracy score of 74.5%.
For the HMDB51 dataset, the proposed framework attains the highest accuracy score of
79.3%, whereas CNN (spatial attention only) + Bi-GRU is the runner-up method, obtaining
the second-best accuracy of 74.5%. For the UCF101 dataset, the proposed DA-CNN+Bi-
GRU outperforms all the baseline methods by obtaining an accuracy of 97.6%, whereas the
runner-up is the baseline method CNN (spatial attention only) + Bi-GRU which obtains an
accuracy of 95.8%. Finally, for the Kinetics-600 dataset, the proposed DA-CNN+Bi-GRU
achieves the best accuracy of 86.7% amongst all the baseline approaches, whereas the
CNN (spatial attention only) + Bi-GRU method attains the second best accuracy of 85.6%.
The best and the runner-up results are indicated in bold and italics, respectively, in Table 3.

Table 3. Quantitative comparative analysis of our proposed framework with other baseline methods.
The best and the runner-up results are highlighted in bold and italic, respectively.

Method Dataset Accuracy (%)

CNN+LSTM YouTube action 64.7
CNN+Bi-LSTM YouTube action 84.2
CNN+GRU YouTube action 88.5
CNN+Bi-GRU YouTube action 92.1
CNN (channel attention only)+Bi-GRU YouTube action 94.2
CNN (spatial attention only)+Bi-GRU YouTube action 95.6
DA-CNN+Bi-GRU (Proposed) YouTube action 98.0

CNN+LSTM UCF50 76.3
CNN+Bi-LSTM UCF50 83.3
CNN+GRU UCF50 87.6
CNN+Bi-GRU UCF50 93.6
CNN (channel attention only)+Bi-GRU UCF50 95.1
CNN (spatial attention only)+Bi-GRU UCF50 95.7
DA-CNN+Bi-GRU (Proposed) UCF50 98.5

CNN+LSTM HMDB51 56.7
CNN+Bi-LSTM HMDB51 63.2
CNN+GRU HMDB51 68.0
CNN+Bi-GRU HMDB51 72.4
CNN (channel attention only)+Bi-GRU HMDB51 73.9
CNN (spatial attention only)+Bi-GRU HMDB51 74.5
DA-CNN+Bi-GRU (Proposed) HMDB51 79.3

CNN+LSTM UCF101 83.9
CNN+Bi-LSTM UCF101 86.8
CNN+GRU UCF101 90.7
CNN+Bi-GRU UCF101 94.2
CNN (channel attention only)+Bi-GRU UCF101 95.1
CNN (spatial attention only)+Bi-GRU UCF101 95.8
DA-CNN+Bi-GRU (Proposed) UCF101 97.6

CNN+LSTM Kinetics-600 73.2
CNN+Bi-LSTM Kinetics-600 77.9
CNN+GRU Kinetics-600 81.5
CNN+Bi-GRU Kinetics-600 84.3
CNN (channel attention only)+Bi-GRU Kinetics-600 84.9
CNN (spatial attention only)+Bi-GRU Kinetics-600 85.6
DA-CNN+Bi-GRU (Proposed) Kinetics-600 86.7
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Figure 6. Confusion matrices computed for the proposed DA-CNN+Bi-GRU for the test sets of five
tested datasets: (a) YouTube Action dataset, (b) HMDB51 dataset, (c) UCF50 dataset, (d) UCF101
dataset, and (e) Kinetics-600 dataset.
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Figure 7. Category-wise accuracy of the proposed DA-CNN+Bi-GRU on the test sets of five tested
datasets: (a) YouTube Action dataset, (b) HMDB51 dataset, (c) UCF50 dataset, (d) UCF101 dataset,
and (e) Kinetics-600 dataset.

4.4. Comparison with State-of-the-Art Methods

To show the effectiveness of the DA-CNN+Bi-GRU framework for the human activity-
recognition task, we conducted an extensive comparative analysis of our method with
the state-of-the-art methods in terms of overall accuracy. The quantitative comparisons
of our method with the state-of-the-art methods for YouTube action, UCF50, HMDB51,
UCF101, and Kinetics-600 datasets are listed in Tables 4–8, respectively. The best results
in these tables are represented in bold, whereas the runner-up results are highlighted in
italics. Considering the presented results, it can be noticed that DA-CNN+Bi-GRU out-
performs state-of-the-art methods on UCF50, HMDB51, and UCF101 datasets, whereas it
attains runner-up performance on the YouTube action and Kinetics-600 datasets. For the
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YouTube action dataset, the STDN [67] has the best performance with an accuracy of
98.2%, whereas DA-CNN+Bi-GRU attains the runner-up performance by obtaining an
accuracy of 98.0%, which is within 0.2% accuracy of the best-performing STDN [67]. Thus,
for most practical purposes, the DA-CNN+Bi-GRU framework attains performance com-
parable to STDAN [67]. Other methods compared include multi-task hierarchical cluster-
ing [68], BT-LSTM [69], deep autoencoder [70], two-stream attention LSTM [71], weighted
entropy-variance-based feature selection [72], dilated CNN+BiLSTM+RB [73], DS-GRU [52],
and local-global features + QSVM [74], which obtain 89.7%, 85.3%, 96.2%, 96.9%, 94.5%,
89.0%, 97.1%, and 82.6% accuracies, respectively.

Table 4. Quantitative comparative analysis of our proposed method with the state-of-the-art action-
recognition methods on YouTube action dataset. The best and the runner-up results are highlighted
in bold and italic, respectively.

Method Year Accuracy (%)

Multi-task hierarchical clustering [68] 2017 89.7
BT-LSTM [69] 2018 85.3
Deep autoencoder [70] 2019 96.2
STDAN [67] 2020 98.2
Two-stream attention LSTM [71] 2020 96.9
Weighted entropy-variance-based feature selection [72] 2021 94.5
Dilated CNN+BiLSTM+RB [73] 2021 89.0
DS-GRU [52] 2021 97.1
Local-global features + QSVM [74] 2021 82.6
DA-CNN+Bi-GRU (Proposed) 2023 98.0

Table 5. Quantitative comparative analysis of our proposed method with the state-of-the-art action-
recognition methods for UCF50 dataset. The best and the runner-up results are highlighted in bold
and italic, respectively.

Method Year Accuracy (%)

Multi-task hierarchical clustering [68] 2017 93.2
Deep autoencoder [70] 2019 96.4
Ensemble model with swarm-based optimization [75] 2021 92.2
DS-GRU [52] 2021 95.2
Local-global features + QSVM [74] 2021 69.4
ViT+LSTM [76] 2021 96.1
(LD-BF) + (LD-DF) [77] 2022 97.5
DA-CNN+Bi-GRU (Proposed) 2023 98.5

For the UCF50 dataset, DA-CNN+Bi-GRU dominates the state-of-the-art methods
by obtaining the best accuracy of 98.5%, whereas (LD-BF) + (LD-DF) [77] obtains the
second-best accuracy of 96.7%. Local-global features + QSVM [74] achieves the lowest
accuracy of 69.4%, whereas the rest of the methods including multi-task hierarchical clus-
tering [68], deep autoencoder [70], ensemble model with swarm-based optimization [75],
DS-GRU [52], and ViT+LSTM [76] obtain 93.2%, 96.4%, 92.2%, 95.2%, and 96.1% accuracies,
respectively. For the HMDB51 dataset comprising challenging action videos, our proposed
method achieves the best results by obtaining an accuracy of 79.3%, whereas the runner-up
method is evidently deep learning [78] which attains an accuracy of 77.0%. The multi-task
hierarchical clustering method [68] achieves an accuracy of 51.4%, which is the lowest
among all the comparative methods on the HMDB51 dataset. The rest of the compara-
tive methods including STPP+LSTM [79], optical flow + multi-layer LSTM [47], TSN [80],
IP-LSTM [81], deep autoencoder [70], TS-LSTM + temporal-inception [82], HATNet [83],
correlational CNN+LSTM [84], STDAN [67], DB-LSTM+SSPF [48], DS-GRU [52], TCLC [85],
ViT+LSTM [76], semi-supervised temporal gradient learning [86], AdaptFormer [87], SVT
(Linear) [88], SVT (Fine-tune) [88], SVFormer-S [89], and SVFormer-B [89] obtain accuracies
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of 70.5%, 72.2%, 70.7%, 58.6%, 70.3%, 69.0%, 74.8%, 66.2%, 56.5%, 75.1%, 72.3%, 71.5%,
73.7%, 75.9%, 55.6%, 57.8%, 67.2%, 59.7%, and 68.2%, respectively.

For the UCF101 dataset, the proposed DA-CNN+Bi-GRU outperforms all the com-
parative methods by achieving the best accuracy of 97.6% followed by the runner-up
method RTS [90], which attains an accuracy of 96.4%. The multi-task hierarchical clus-
tering method [68] attains the lowest accuracy of 76.3% amongst all the comparative
methods, followed by SVFormer-S [89], which achieves the second-lowest accuracy of
79.1% amongst the other considered comparative methods on the UCF101 dataset. The rest
of the comparative methods including saliency-aware 3DCNN with LSTM [91], spatiotem-
poral multiplier networks [92], long-term temporal convolutions [39], OFF [93], TVNet [94],
attention cluster [95], CNN with Bi-LSTM [96], Videolstm [97], two-stream convnets [98],
mixed 3D-2D convolutional tube [99], TS-LSTM+temporal-inception [82], TSN+TSM [100],
STM [101], correlational CNN+LSTM [84], SVT (Linear) [88], SVT (Fine-tune) [88], ConvNet
Transformer [102], and SVFormer-B [89] achieve accuracies of 84.0%, 87.0%, 82.4%, 96.0%,
95.4%, 94.6%, 92.8%, 89.2%, 84.9%, 88.9%, 91.1%, 94.3%, 96.2%, 92.8%, 90.8%, 93.7%, 86.1%,
and 86.7%, respectively. Finally, for the Kinetics-600 dataset, the MTV-H [103] achieves the
best accuracy of 89.6%, followed by the proposed DA-CNN+Bi-GRU method which attains
an accuracy of 86.7%, whereas the MTV-B [103] (variant of MTV-H) achieves an accuracy of
84.0%. The GCF-Net [104] and global and local-aware attention [105] methods attain the
lowest accuracies of 70.0% and 70.0%, respectively. The rest of the comparative methods
including SlowFast [106], Stnet [107], LGD-3D [108], D3D+S3D-G [109], MoviNet [110],
MM-ViT [111], Swin-B [112], and Swin-L [112] achieve accuracies of 81.8%, 76.3%, 82.7%,
79.1%, 83.5%, 83.8%, and 85.9%, respectively. Considering the overall comparative analysis,
DA-CNN+Bi-GRU obtains performance comparable to the best-performing method on
the YouTube action and Kinetics-600 datasets, and greatly dominates the state-of-the-art
comparative methods on UCF50, HMDB51, and UCF101 datasets, thus demonstrating the
superiority of our proposed method over the existing action-recognition methods.

Table 6. Quantitative comparative analysis of our proposed method with the state-of-the-art action-
recognition methods for HMDB51 dataset. The best and the runner-up results are highlighted in bold
and italic, respectively.

Method Year Accuracy (%)

Multi-task hierarchical clustering [68] 2017 51.4
STPP+LSTM [79] 2017 70.5
Optical flow + multi-layer LSTM [47] 2018 72.2
TSN [80] 2018 70.7
IP-LSTM [81] 2019 58.6
Deep autoencoder [70] 2019 70.3
TS-LSTM + temporal-inception [82] 2019 69.0
HATNet [83] 2019 74.8
Correlational CNN + LSTM [84] 2020 66.2
STDAN [67] 2020 56.5
DB-LSTM+SSPF [48] 2021 75.1
DS-GRU [52] 2021 72.3
TCLC [85] 2021 71.5
Evidential deep learning [78] 2021 77.0
ViT+LSTM [76] 2021 73.7
Semi-supervised temporal gradient learning [86] 2022 75.9
AdaptFormer [87] 2022 55.6
SVT (Linear) [88] 2022 57.8
SVT (Fine-tune) [88] 2022 67.2
SVFormer-S [89] 2023 59.7
SVFormer-B [89] 2023 68.2
DA-CNN+Bi-GRU (Proposed) 2023 79.3
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Table 7. Quantitative comparative analysis of our proposed method with the state-of-the-art action-
recognition methods for UCF101 dataset. The best and the runner-up results are highlighted in bold
and italic, respectively.

Method Year Accuracy (%)

Multi-task hierarchical clustering [68] 2017 76.3
Saliency-aware 3DCNN with LSTM [91] 2017 84.0
Spatiotemporal multiplier networks [92] 2017 87.0
Long-term temporal convolutions [39] 2017 82.4
RTS [90] 2018 96.4
OFF [93] 2018 96.0
TVNet [94] 2018 95.4
Attention cluster [95] 2018 94.6
CNN with Bi-LSTM [96] 2018 92.8
Videolstm [97] 2018 89.2
Two stream convnets [98] 2018 84.9
Mixed 3D-2D convolutional tube [99] 2018 88.9
TS-LSTM + temporal-inception [82] 2019 91.1
TSN+TSM [100] 2019 94.3
STM [101] 2019 96.2
Correlational CNN + LSTM [84] 2020 92.8
SVT (Linear) [88] 2022 90.8
SVT (Fine-tune) [88] 2022 93.7
ConvNet Transformer [102] 2023 86.1
SVFormer-S [89] 2023 79.1
SVFormer-B [89] 2023 86.7
DA-CNN+Bi-GRU (Proposed) 2023 97.6

Table 8. Quantitative comparative analysis of our proposed method with the state-of-the-art action-
recognition methods for Kinetics-600 dataset. The best and the runner-up results are highlighted in
bold and italic, respectively.

Method Year Accuracy (%)

SlowFast [106] 2019 81.8
Stnet [107] 2019 76.3
LGD-3D [108] 2019 82.7
GCF-Net [104] 2020 70.0
D3D+S3D-G [109] 2020 79.1
MoviNet [110] 2021 83.5
Global and local-aware attention [105] 2021 70.0
MM-ViT [111] 2022 83.5
Swin-B [112] 2022 83.8
Swin-L [112] 2022 85.9
MTV-B [103] 2022 84.0
MTV-H [103] 2022 89.6
DA-CNN+Bi-GRU (Proposed) 2023 86.7

4.5. Action-Recognition Visualization

To validate the recognition efficiency of DA-CNN+Bi-GRU, we tested DA-CNN+Bi-
GRU on 15% of test videos taken from each dataset (including YouTube action, UCF50,
HMDB51, UCF101, and Kinetics-600 datasets). The prepared test sets are validated for
the action-recognition task using our proposed framework and the visual results from
the test experiments are depicted in Figure 8. In Figure 8, the representative frames of
the predicted action clips are presented along with their ground truths, model predicted
actions, and confidence scores over the probability prediction bar graphs for better un-
derstanding of readers. It can be perceived from the presented visual results that the
DA-CNN+Bi-GRU framework predicts most of the actions including brush hair, volleyball
spiking, basketball, climb, fall floor, bench press, horse race, billiards, diving, baseball pitch,
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and hula hoop with 0.99% probability or 99% confidence. However, for some action classes,
such as clap, fencing, golf swing, and high jump, the DA-CNN+Bi-GRU framework also
generates non-zero probabilities for wrong action classes; however, these probabilities for
wrong action classes are still very low and thus do not affect the prediction of actual action
class. Hence, the obtained qualitative visual results verify the effectiveness of our pro-
posed framework for practical use in different vision-based human action-recognition and
-monitoring environments.

Figure 8. The visual recognition results of our proposed DA-CNN+Bi-GRU framework with pre-
dicted classes and their confidence scores for the test videos taken from the YouTube action, UCF50,
and HMDB51 datasets.

4.6. Runtime Analysis

To analyze the effectiveness and feasibility of the DA-CNN+Bi-GRU framework for
practical applications in real-time environments, we estimated the runtime of our method
for action-recognition tasks in terms of SPF and FPS with and without using GPU resources.
The obtained runtime results are then compared with the state-of-the-art methods. Table 9
presents and compares the runtime of our proposed framework with the running times
of the contemporary action-recognition methods. Results in Table 9 demonstrate that the
DA-CNN+Bi-GRU framework outperforms the state-of-the-art methods when executing on
both GPU and central processing unit (CPU) platforms. Results indicate that our proposed
framework attains 0.0036 SPF and 300 FPS while running on GPU, whereas it attains
0.0049 SPF and 250 FPS while running on CPU. Results further show that the second-best
execution time results on GPU are achieved by [93], which are 0.0048 SPF and 206 FPS.
In Table 9, the best runtime results are indicated with bold text and the runner-up results
are indicated with italics. Experimental results indicate that for the SPF metric, the DA-
CNN+Bi-GRU framework can provide an improvement of up to 26.1× when running
on GPU and an improvement of 87.76× when running on CPU as compared to other
contemporary activity-recognition methods. Experimental results further reveal that for
the FPS metric, the DA-CNN+Bi-GRU framework can provide an improvement of up to
28.3× when running on GPU and an improvement of up to 166.6× when running on CPU
as compared to other contemporary activity-recognition methods.
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Table 9. Runtime analysis of our proposed framework with the state-of-the-art human action-
recognition methods (without scaling). The best and the runner-up results are highlighted in bold
and italic, respectively.

Method
Seconds per Frame (SPF)

Year
Frames per Second (FPS)

GPU CPU GPU CPU

STPP+LSTM [79] 0.0053 - 2017 186.6 -
CNN with Bi-LSTM [96] 0.0570 - 2017 20 -

OFF [93] 0.0048 - 2018 206 -
Videolstm [97] 0.0940 - 2018 10.6 -

Optical flow + multi-layer LSTM [47] 0.0356 0.18 2018 30 3.5
Deep autoencoder [70] 0.0430 0.43 2019 24 1.5

TSN+TSM [100] 0.0167 - 2019 60 -
IP-LSTM [81] 0.0431 - 2019 23.2 -

STDN [67] 0.0075 - 2020 132 -
DS-GRU [52] 0.0400 - 2021 25 -

MoviNet [110] 0.0833 - 2021 12 -
(LD-BF) + (LD-DF) [77] 0.0670 - 2022 14 -

DA-CNN+Bi-GRU (Proposed) 0.0036 0.0049 2023 300 250

We also scaled the runtime inference results of the state-of-the-art human action-
recognition methods in Table 9 to the hardware specifications used in our framework
(i.e., 3.5 GHz CPU and 1607 MHz GPU) to provide a fair comparison of the inference
speed. The scaled runtime inference results of the state-of-the-art human action-recognition
methods are presented in Table 10. Although scaling does not provide 100% accuracy
for processor/GPU runtime because of different instruction set architectures and memory
subsystems utilized by different processor/GPU architectures, scaling provides plausible
estimates and facilitates relative comparisons [113,114]. From the scaled results in Table 10,
it can be seen that the STTP+LSTM [79] method has the best SPF and FPS values of 0.0023
and 423.58, respectively, for the GPU inference. The OFF [93] method has the runner up
SPF and FPS of 0.0029 and 331.04, respectively, for the GPU inference, followed by our
proposed method which has SPF and FPS of 0.0036 and 300, respectively. Our proposed
method thus obtains the third-best SPF and FPS values for the GPU inference. On the
other hand, for inference on the CPU, our proposed method delivers the best SPF and FPS
values of 0.0049 and 250, respectively, followed by Optical flow + multi-layer LSTM [47],
which attains the runner up SPF and FPS values of 0.17 and 3.71, respectively. We note
that our method, however, provides a better accuracy on human activity-recognition tasks
than the STTP+LSTM [79] method and the OFF [93] method. For the scaled experimental
results, it can be observed that for the FPS metric, the DA-CNN+Bi-GRU framework can
provide an improvement of 2.82×, on average, when running on GPU and an improvement
of up to 94.34×, on average, when running on CPU as compared to other contemporary
activity-recognition methods. It is also worth mentioning here that the storage requirement
of the DA-CNN+Bi-GRU framework is just 5.4 MB, and thus our framework can be run on
resource-constrained IoT and edge devices with very limited memory including today’s
smart cameras, Arduino, and Raspberry pi. These runtime and storage requirement
results demonstrate that the proposed framework is a suitable candidate for deployment
on resource-constrained IoT and edge devices as the proposed framework exhibits better
accuracy, lower execution time, and low storage requirements as compared to contemporary
activity-recognition methods.
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Table 10. Runtime analysis of our proposed framework with the state-of-the-art human action-
recognition methods scaled to our framework’s hardware specifications. The best and the runner-up
results are highlighted in bold and italic, respectively.

Method
Seconds per Frame (SPF)

Year
Frames per Second (FPS)

GPU CPU GPU CPU

STPP+LSTM [79] 0.0023 - 2017 423.58 -
CNN with Bi-LSTM [96] 0.0354 - 2017 32.14 -

OFF [93] 0.0029 - 2018 331.04 -
Videolstm [97] 0.0584 - 2018 17.03 -

Optical flow + multi-layer LSTM [47] 0.0221 0.17 2018 48.21 3.71
Deep autoencoder [70] 0.0267 0.40 2019 38.56 1.59

TSN+TSM [100] 0.0167 - 2019 60 -
IP-LSTM [81] 0.0268 - 2019 37.28 -

STDN [67] 0.0046 - 2020 212.12 -
DS-GRU [52] 0.0248 - 2021 40.17 -

MoviNet [110] 0.0645 - 2021 15.48 -
(LD-BF) + (LD-DF) [77] 0.0416 - 2022 22.49 -

DA-CNN+Bi-GRU (Proposed) 0.0036 0.0049 2023 300 250

5. Conclusions and Future Research Directions

In this work, we proposed a cascaded spatial–temporal discriminative feature-learning
framework for human activity recognition in video streams. The proposed method encap-
sulates the attentional (channel and spatial attention) CNN architecture and bi-directional
GRU network as a unified framework for single instance training and efficient spatial
temporal modeling of human actions. The attentional CNN architecture comprises channel
and spatial attentions, which help retrieve the prominent discriminative features from
the object-specific regions, and thus generate high quality saliency-aware feature maps.
The bi-directional GRU learns the temporal modeling of long-term human action sequences
using two-way gradient learning (i.e., forward and backward pass), which allows the
DA-CNN+Bi-GRU framework to utilize the learned knowledge not only from the previous
frames but also from the upcoming/next frames. Such bi-directional modeling of human
actions greatly helps our method to improve the learning ability while training and the
prediction precision while inferencing. To evaluate the efficiency of DA-CNN+Bi-GRU,
we conducted extensive experiments on five publicly available human action benchmark
datasets. The obtained experimental results are compared with the state-of-the-art methods
on five benchmark human action-recognition datasets, including YouTube action, UCF50,
HMDB51, UCF101, and Kinetics-600 datasets. Experimental results verify the effectiveness
of our method in terms of both model robustness and computational efficiency. Further,
we analyzed the runtime performance of our proposed framework in terms of seconds per
frame (SPF) and frames per second (FPS) for both CPU and GPU execution environments.
The obtained runtime assessment results reveal that our proposed framework can attain
an improvement of up to 88× for the SPF metric and up to 167× for the FPS metric as
compared to other contemporary action-recognition methods. Additionally, our proposed
framework requires a storage of only 5.3 MB, which makes it feasible for deployment on
devices with limited memory. Thus, the overall efficiency of our framework in terms of
recognition performance (accuracy), low execution time, and low storage requirements,
makes DA-CNN+Bi-GRU a strong candidate for real-time IoT and edge applications.

Currently, the DA-CNN+Bi-GRU method only uses the spatial attention (channel
and spatial attention) mechanism, which is indeed very effective. However, in the fu-
ture, we plan to use the temporal attention mechanism together with spatial attention be-
cause such hybrid attention has a great potential to improve the human activity-recognition
performance.
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CNN Convolutional neural network
DA-CNN Dual attention convolutional neural network
CBAM Convolutional block attention module
IoT Internet of things
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GRU Gated recurrent unit
Bi-GRU Bi-directional gated recurrent unit
SPF Seconds per frame
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