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ABSTRACT Transferring an all-electric spacecraft from a launch injection orbit to the geosynchronous
equatorial orbit (GEO) using a low thrust propulsion system presents a significant challenge due to the long
transfer time typically spanning several months. To address the challenge of determining such long time-scale
orbit-raising maneuvers to GEO, this paper presents a novel technique to compute transfers starting from
geostationary transfer orbit (GTO) and super-GTO. The transfer is complex, involving multiple eclipses and
revolutions. To tackle this challenge, we introduce a cascaded deep reinforcement learning (DRL) model to
guide a low-thrust spacecraft towards the desired orbit by determining an appropriate thrust direction at each
state. To ensure mission requirements, a gradient-aided reward function incorporating the orbital elements,
guides the DRL agent to obtain the optimal flight time. The obtained results demonstrate that our proposed
approach yields optimal or near-optimal time-efficient spacecraft orbit-raising. DRL implementation is
important for spacecraft autonomy; in this context, we demonstrate that our DRL-based trajectory planning
provides significantly better transfer time as compared to state-of-the-art approaches that allow for automated
trajectory computation.

INDEX TERMS Deep reinforcement learning, cascaded reinforcement learning, soft actor-critic algorithm,
spacecraft orbit-transfer, solar-electric propulsion, optimization, low-thrust orbit-raising.

I. INTRODUCTION
Over the last two decades, autonomy has gained consid-
erable attention within the space industry. Autonomous
decision-making onboard a spacecraft can significantly
improve the flexibility of space missions, as well as respon-
siveness to unplanned or uncertain events. Onboard trajectory
planning is one of such autonomous operations that can have
great value for space mission planning and operations; espe-
cially, it reduces the reliance on ground personnel support
for mission operations that involve complex maneuvering
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by the spacecraft. The utilization of a computationally
efficient onboard autonomous guidance system can assist
the spacecraft during the low-thrust multi-revolution orbit-
transfer in the context of trajectory adjustment/optimization.

It is common for Earth-orbiting satellites to be equipped
with chemical propulsion systems for the purpose of con-
ducting orbital transfers and station-keeping. With the advent
of solar-electric propulsion systems, many satellite operators
have been shifting to satellites that are capable of conducting
all orbital maneuvers (transfers as well as station-keeping)
using electric thrusters. The development of such all-electric
propulsion architectures by Boeing and Airbus have allowed
the manufacture of all-electric satellites. Conducting large
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transfers such as orbit-raising is challenging, primarily due
to the low thrust levels produced by electric propulsion
devices. Low thrust implies large transfer times, often of
the order of months to reach geosynchronous equatorial
orbit (GEO) starting from a geosynchronous transfer orbit
(GTO). The propulsion system derives power from the solar
arrays, and the existence of eclipses along the satellite’s
path prohibits thrusting during passage through the Earth’s
shadow. Furthermore, solar array degradation during passage
through Van Allen belts means that thrust capability of
the propulsion system diminishes during the transfer, which
in turn increases the time of an already long transfer.
Computation of an optimal orbit-raising trajectory is a
challenging problem because it requires the solution of a
nonlinear, nonconvex, multi-phase optimal control problem.

The trajectory optimization for low-thrust multi-revolution
transfer has been actively explored over the years, with
numerous methods proposed to determine optimal or
sub-optimal solutions to the underlying optimal control
problem [1], [2], [3], [4], [5], [6]. These methods can be
broadly categorized into direct [7], [8] and indirect [9],
[10] optimization techniques. Direct optimization meth-
ods discretize continuous trajectories into short segments,
transforming the original continuous optimization problem
into a discrete nonlinear one [11]. On the other hand,
indirect optimization methods utilize calculus of variations
to determine the necessary conditions of optimality and
formulate a two-point boundary value problem [12]. For
the computation of low-thrust trajectories, two primary
approaches are commonly used: the shooting technique [13]
and direct collocation [14], [15]. However, these traditional
optimization-based approaches heavily rely on high-quality
initial guesses provided by trained mission designers, and
therefore are not suitable for the development of fully
automated trajectory planning solvers. In a recent work by
Sreesawet and Dutta [16], an automated solver has been
developed that eliminates the need for user-provided initial
guess solutions making it suitable for automated computation
of low-thrust orbit-raising trajectories. Nonetheless, this
approach sacrifices optimality in the solutions. To this
end, this paper seeks to investigate an alternate method of
automated orbit-raising trajectory planning by using a deep
reinforcement learning (DRL) framework.

The remarkable success of machine learning (ML) and
deep learning (DL) over the years have gained the attention
of aerospace community for the applications of efficient
autonomous and real-time guidance systems for next gener-
ation spacecrafts. The ML/DL-based autonomous guidance
systems have the potential to replace traditional control
and guidance methods by providing real-time on-board
guidance and control functionalities to spacecraft during
mission. Having these motivations in mind, several ML/DL-
based approaches are proposed for spacecraft trajectory
optimization [17], [18], [19], [20], prediction [21], [22],
and guidance [23], [24]. These ML/DL models are usually

trained offline (i.e., on the ground) to solve complex control
optimal problems on the data, which is either provided by
the aerospace experts or collected by the network itself
through repeated simulations for target mission scenario.
For instance, Zhu and Luo [18] presented a learning-based
method for quick evaluation of low-thrust transfer. First,
they developed an efficient data-generation method to obtain
optimal transfer data and then they trained the multilayer
perceptron classifier and regressor on the obtained data to
estimate the optimal fuel consumption and feasibility of
the transfer. Arora and Dutta [25] developed a deep neural
network (DNN) based optimization framework to solve a
low-level optimization problem, where the DNN framework
was designed to adjust the weights of an objective function
for the low-thrust orbit rising problem. In another study,
Li et al. [20] proposed a neural network-based approach to
estimate the initial costates, optimal time, and the optimal
control law for trajectory optimization in time-optimal
low-thrust orbital transfer.

To model the underlying orbit prediction (OP) errors from
the collected historical observations, Li et al. [22] proposed
an ML-based approach, that first identified the underlaying
OP errors and then applied it to the future physics-based
OP results for correction. Their method consisted of three
steps: construction of historical OP error set, training of ML
algorithm on constructed historical OP error set, and correc-
tion of future physics-based OP results. Peng and Bai [26]
also extensively researched the field using support vector
machines (SVM) to enhance simplified general perturbations
model 4 (SGP4) based prediction by learning historical
errors. Their error-correcting model demonstrated improved
OP for resident space object (RSOs) in simulated catalogs.
They also compared artificial neural networks (ANN), Gaus-
sian processes (GP), and SVM models [21], [26], [27] and
found that ANN achieved the best results, despite overfitting
risks. Furthermore, they evaluated SVM on a real dataset [28]
and proposed a data fusion approach [29] to combine
uncertainty information from the extended Kalman filter
orbit determination process and the Gaussian process model.
Mughal et al. [30] designed and evaluated an ML framework,
focusing on DNNs, to predict the transfer time of spacecraft
instead of solving traditional orbit-raising optimization prob-
lems for each of the mission scenarios. Their experimental
results indicated that their designed DNNs could predict
the transfer time for different scenarios with an accuracy
of over 99.97%. Izzo and Öztürk [24] proposed a DL-
based real-time guidance system called backward generation
of optimal examples for low-thrust transfer. They claimed
that their method generated data which is in the orders of
magnitude and contained optimal trajectories, that helped
the neural network to estimate the optimal thrust. Caldas
and Soare [31] provided a brief overview of the application
of ML in orbit determination, OP, and atmospheric density
modeling to enhance accuracy in tracking and predicting
orbits for RSOs. Although these ML/DL based approaches
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have shown some improvements over traditional trajectory
optimization methods for low-thrust multi-revolution orbit
transfer, there are several limitations of these methods which
make them unsuitable for reliable and robust trajectory
design. For instance, ML/DL methods work well when they
are used for an optimization problem that falls inside the set
of incorporated expert demonstration in training but fail to
perform well when they are used for an optimization problem
that has to perform outside the training realm.

To overcome the limitations of standard ML/DL methods,
several reinforcement learning (RL) based approaches are
presented to solve the spacecraft dynamic problems for low-
thrust multi-revolution trajectory design [32], [33], trajectory
optimization for cislunar environment [34], [35], and devel-
opment of autonomous guidance system for docking and
rendezvous maneuvers [36], [37]. For instance, Miller and
Linares [32] proposed an RL-based optimal control system
for low-thrust orbit transfer. They developed a complex
policy by training a Proximal Policy Optimization (PPO)
to solve an optimal control system. Scorsoglio et al. [34]
presented an RL-based feedback guidance approach to deal
with docking maneuvers in a cislunar environment. They
developed an algorithm in the circular restricted three-body
problem framework for the near-rectilinear halo orbits
(NRHOs) scenario in the earth-moon system. In another
study, Hovell and Ulrich [37] proposed a learning-based
method called Deep Guidance. Their method was based on an
RL framework which iteratively learned guidance strategies
rather than using predefined strategies. They combined
control theory with the deep reinforcement learning (DRL)
to reduce the learning overhead and enable the transfer of
trained RL model from simulation to reality. Continuing
research efforts in this direction, Gaudet etl al. [38] presented
an RL-based integrated navigation, guidance, and control
system for the six degrees of freedom (6)-DOF) planetary
landing. They trained RL algorithm to learn policy mapping
for lander’s estimated state and commanded thrust for each
engine. They claimed that their method obtained accurate
and fuel-efficient trajectories for a realistic deployment
ellipse. Holt et al. [6] proposed an actor-critic RL framework
to make the control parameters of the Lyapunov-based
Q-law state-dependent. Their method enabled the controller
to adapt itself as the dynamics vary during transfer. The
continuous adaptation of the controller thus helped to
provide an improved and acceptable solution for mission
analysis. All these RL-based studies have shown reasonable
improvements over the standard ML/DL approaches for tra-
jectory optimization problem. However, most of the existing
RL-based methods are based on traditional mathematical
models, such as Q-law guidance. The dependency of current
RL-based optimization methods on traditional models make
them unfeasible to exploit the model-free characteristics of
RL. Kwon et al. [39] implemented a single reinforcement
learning (RL) agent to optimize the transfer time of an electric
spacecraft. Despite utilizing the model-free RL approach,
their method did not achieve tolerances that are similar to

those obtained by traditional approaches. This means that the
transfer would end further away from GEO, and will also
underestimate the time required for the transfer. Even then,
their obtained transfer time for GTO-GEO transfer was sub-
optimal compared to the literature.

To overcome the limitations of contemporary deep learning
and RL-based approaches for spacecraft trajectory opti-
mization for the orbit-raising problem, we present a novel
approach for improving low-thrust multi-revolution orbit
transfer by proposing a cascaded reinforcement learning
method that employs the state-of-the-art soft actor-critic
(SAC) algorithm, which is a model-free RL method and
learns from experience rather than pre-existing datasets. The
model starts learning from the initial predefined values of the
underlying dynamic model and iteratively adjust these values
during training. Thismodel is publically available at GitHub.1

The key contributions of our work are as follows:
1) We propose a novel cascaded deep reinforcement

learning approach that can cascade multiple DRLs to
help enable a mission designer to achieve a higher
degree of precision in reaching the target position as
compared to the traditional approaches.

2) We have introduced a gradient-aided reward function
for the DRL that utilizes orbital elements to pro-
vide necessary feedback to the DRL agent to attain
minimum-time low-thrust orbit-raising trajectories to
GEO.

3) Results indicate that our proposed cascaded DRL
approach minimizes the transfer time of spacecraft dur-
ing low-thrust electric orbit-raising scenarios, specifi-
cally in the transition from GTO to GEO. The results
show that the approach achieves optimal performance
in GTO to GEO transfer scenario. Furthermore, our
approach yields near-optimal results in the transition
from Super-GTO to GEO.

The subsequent sections of this paper are organized in
the following manner. Section II provides an introduction to
reinforcement learning and explains the proposed cascaded
deep reinforcement learning method. It also discusses the
soft actor-critic algorithm which is utilized in the method.
In Section III, we comprehensively explain the dynamic
model and implementation framework as part of the method-
ology. Section IV presents the experimental results for GTO
to GEO and Super-GTO to GEO transfer scenarios. Section V
provides a discussion on experimental results as well as
comparative analysis of different transfer scenarios. Lastly,
Section VI concludes this paper and also provides directions
for future research.

II. REINFORCEMENT LEARNING
RL is a special type of ML, which learns to make a sequence
of decisions and implement these decisions by taking an
action at each decision epoch to perform a given task. Unlike

1https://github.com/talhazaidi13/Cascaded-Deep-Reinforcement-
Learning-Based-Multi-Revolution-Low-Thrust-Spacecraft-Orbit-
Transfer.git
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FIGURE 1. Soft actor-critic algorithm. Qπ
φ1

and Qπ
φ2

are two Q-networks,
Qπ
ψ1

and Qπ
ψ2

are two target Q-networks, and πθ represents policy
network. The figure represents the workflow of an agent networks’
update and its interaction with the environment and buffer replay.

supervised learning, RL does not have access to the solution
of the problem. Instead, it learns from its own experience
by interacting with the environment, which is defined by a
known or unknown dynamic model. RL can be defined as
a Markov Decision Process (MDP) that consists of a five-
tuple S, A, 0, R,γ [40], [41]. The five-tuple includes a finite
state called state space (S), a finite set called the action space
(A), a transition function (0 : st × at → st+1), which returns
the subsequent state st+1 ∈ S, the numeric reward value
rt+1 ∈ R, and a discount factor (γ ), which is a value between
0 and 1, and determines how much importance is to be given
to immediate reward and future rewards.

The RL agent interacts with the environment by taking
an action a ∈ A at state st ∈ S and obtains an immediate
reward rt ∈ R(s, a) and transitions to a subsequent state
s′ ∼ 0(s, a), at each time step [40]. This results in a sequence
like s0, a0, r1, s1, a1, r2, . . . .. The ultimate goal of the agent
is to maximize the accumulated reward values in minimum
time steps, where one time step refers to one interaction
with the environment. The accumulated reward value is also
known as the return. To achieve this goal of maximizing
reward, the agent learns some strategies to maximize the
reward value by selecting optimal actions. This strategy is
known as the policy of the network and is denoted as π (a|s).
The policy can be deterministic or stochastic, but in RL
problems with continuous state and action space, a stochastic
policy is preferable.

In a stochastic policy, the policy function π(a|s) maps
the state spaces to the probability distribution of the action
spaces. Mathematically, the policy function can be defined as

π (a|s) = P[At = a|St = s] (1)

In deep reinforcement learning, this mapping is cal-
culated through a deep neural network called the actor-
network, which is used to sample actions at each time step.

Mathematically, this can be shown as

at ∼ πθ (.|s) (2)

where θ represents the weights and biases of a neural network
and ∼ indicates the sampling operation.
A value function or critic plays a crucial role in estimating

the value of a given state or state-action pair. The value
function evaluates the expected sum of rewards, which
determines the importance of a state or state-action pair.
Specifically, the action-value function Qπ (s, a), estimates
the expected sum of rewards when taking an action a at
a given state s, while following a stochastic policy π . The
action-value function can be mathematically expressed as
follows in Eq. (3):

Qπφ (s, a) = E

[
T∑
κ=t

γ κ−tRκ+1|St = s,At = a

]
(3)

where T represents the time step at the end of the episode,
and φ denotes the weights and biases of the critic network.

In actor-critic-based RL algorithms, both policy (actor) and
value (critic) networks work collaboratively and are updated
together at each training step. Specifically, the policy network
is updated based on the estimated policy gradient tomaximize
the expected sum of rewards, while the value network is
updated to minimize the mean squared Bellman error. The
standard objective function is defined in eq(4):

J (π ) = Eat ∼ π (.|st )

[∑
t

γ t (r(st , at ))

]
(4)

where J (π ) represents the expected sum of rewards under
policy π , r(st , at ) is the reward function, and γ is the
discount factor that determines howmuch importance is given
to immediate and future rewards. The objective function
is optimized by updating the policy and value networks
iteratively until convergence.

A. SOFT ACTOR-CRITIC (SAC) ALGORITHM
SAC is a cutting-edge off-policy algorithm which is widely
recognized as one of the most effective RL algorithms for
real-world applications. It is off-policy as it learns the target
policy using a replay buffer containing trajectories from a
different behavioral policy, unlike on-policy algorithms that
use the same policy. The key innovation of SAC lies in pro-
viding a novel solution to the critical exploration-exploitation
dilemma that has long plagued DRL algorithms. Specifically,
SAC addresses this issue by introducing an entropy regular-
ization term (H) into the objective function. In this way, the
agent is not only driven to maximize lifetime rewards- but
also to maximize the entropy of the policy. By increasing the
entropy of the policy, SAC encourages the agent to assign
equal probabilities to actions that have similar or identical Q
values. Consequently, the agent explores promising regions
more thoroughly while avoiding overfitting to any quirks in
the Q value. The modified objective function for SAC is
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FIGURE 2. Actor-critic network parameters, where HL-1 and HL-2
represent hidden layers one and hidden layer two respectively.

defined in Eq. (5).

J (π ) = Eat∼π (.|st )

[∑
t

γ t (r(st , at )+ αH(π(.|st ))

]
(5)

The variable α is a control coefficient that ranges from 0 to 1,
and it is used to set the level of entropy in the policy. The
entropy, denoted by H, can be calculated using the following
formula:

H(x) = −E [log2P(x)] = −
∑
i

P(xi)log2P(xi) (6)

To achieve optimal performance of the objective function,
the SAC algorithm leverages three distinct networks: a policy
(actor) network that is parameterized by θ , two Q-functions
(critic) that are parameterized by φ1 and φ2, and two target
Q-functions that are parameterized by ψ1 and ψ2. The
use of two Q-functions addresses the well-known issue of
overestimation of Q-values, by utilizing the minimum of
these two for policy function updates. This approach ensures
a reliable estimation of Q-values and reduces the risk of
overestimation.

The loss function for the Q-networks is defined in Eq. (7)

Lφi =
1
|B|

∑
(s,a,r,s′,d)∈B

(
Qφi (s, a)− y(r, s

′, d)
)2 (7)

where B is the batch of dataset stored in the experience replay
and y(r, s′, d) is calculated through the target Q networksQψ
in eq (8)

y(r, s′, d) =r+γ (1−d)
(
min
i=1,2

Qψi (s
′, a′θ )−α logπ (a

′
θ |s)

)
,

a′θ ∼ πθ (·|s
′) (8)

The parameter d in the equation denotes a done parameter,
that takes a value of one when the episode has reached
the terminal state and zero otherwise. Action a′θ is sampled
from the policy πθ having next state s′ as input. During
the sampling process, independent Gaussian noise and tanh
functions are employed to approximate the gradient of Eq. (5)
with respect to the policy parameter θ . The policy loss

function can be described in Eq. (9).

Lθ =
1
|B|

∑
s∈B

(
min
j=1,2

Qφj (s, aθ (s))− αlogπθ (aθ (s)|s)
)

(9)

where aθ (s) ∼ πθ (·|s) i.e. sampled from the policy πθ having
current state s as input. Target Q-networks (ψk ) are utilized to
improve training stability and are updated at a slower rate as
compared to the Q-functions (φk ), as given in the following
equation.

ψk ← pψk + (1− p)φk for k = 1, 2 (10)

where p is a real number that can take values between 0 and 1,
that is, p ∈ [0, 1], and it controls the rate of change of the
weights of target Q-networks (ψk ). This whole algorithm is
represented in Fig. 1.

B. CASCADED REINFORCEMENT LEARNING
In the domain of reinforcement learning, solving complex
problems can be accomplished through different approaches.
We propose a novel approach for solving complex problems
that utilizes multiple independent reinforcement learning
agents sequentially to achieve the final solution, where each
DRL agent solves a sub-problem that is a step towards the
solution of the complex problem. We refer to this approach
as cascaded deep reinforcement learning. The objective of
this approach is to break down a complex task into simpler
subtasks or intermediate goals that can be achieved more
efficiently.

In this study, we develop a cascaded reinforcement learning
approach using two SAC networks to achieve a target position
with higher accuracy and resolution as compared to the
single-agent approach, which is the simplest version. The first
SAC network generates actions that allow the agent to achieve
an intermediate goal, defined in such a way that it reaches the
vicinity of the target position. This approach is particularly
useful when the final target position is difficult to achieve
directly, or when the state space is large and the agent needs
to break down the task into simpler subtasks. The second
SAC network takes the output of the first network as input
and learns to execute this subtask to achieve the final target
position with higher accuracy and resolution. The proposed
approach can be extended to multiple SAC networks, but in
this work we demonstrate it for two SACs, and compare it to
a single-agent approach, which is the simplest version of RL.

One of the advantages of the proposed cascaded DRL
approach is that it allows an agent to learn an efficient
and robust policy by breaking down complex tasks into
simpler subtasks. By focusing on achieving intermediate
goals, the agent is able to explore the state space more
efficiently and learn a better policy. Furthermore, the use of
two SAC networks enables the agent to learn an accurate
and fine-grained policy for achieving the final target position,
as the second network can focus on achieving high-resolution
goals. The use of multiple SAC networks in our cascaded
reinforcement learning approach enables us to achieve a high
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FIGURE 3. Semi-major axis ‘asm’ and eccentricity ‘e’ of an orbit.

resolution/precise solution that could not be achieved using a
single SAC network.

However, there are also potential drawbacks to this
approach. One challenge is designing a suitable decomposi-
tion of the task into subtasks or intermediate goals, whichmay
not always be straightforward or intuitive. Additionally, the
training of multiple DRL networks may increase the training
time of the system. Finally, the effectiveness of this approach
may depend on the specific task and the complexity of the
state space. Despite these potential drawbacks, the cascaded
DRL approach shows promise in tackling complex tasks in
the domain of DRL.

III. METHODOLOGY
To define the dynamics of the spacecraft and its orbital
raising, our approach aligns with that of Sreesawet and
Dutta. Reference [16]. Specifically, we adopt their technique
of transforming the Earth-centred inertial (ECI) reference
frame, denoted as I(I,J,K), through a 2-1-3 Euler rotational
sequence. In this sequence, the initial rotation is about the
J-axis by an angle of ζ , yielding the new reference frame
denoted as I ′(I′, J′, K′). The subsequent rotation by an angle
of η about the first axis (I′) leads to the next reference frame,
that is, O(i′,j′,k′). Finally, the third rotation is about the
third axis (k′) by an angle of φ to obtain the final frame of
reference, R, with a set of unit vectors R(r′,n′,h′). In this
frame, the first axis (r′) points towards the spacecraft while
the third axis (h′) is aligned with the angular momentum
vector h, which is perpendicular to the orbital plane. Figure 4
summarizes this rotation sequence. The directional cosine
matrices for this rotational sequence are available in [16].
We use these matrices to convert the orbital elements or
spacecraft kinematic description in Cartesian coordinates to
the state description used in this paper.

A. DYNAMIC MODEL
We model the spacecraft dynamics using the same state
elements as defined by Sawet and Dutta. [16]. These state
elements are presented in Eq. (11).

s =
[
h hx hy ex ey φ

]
(11)

here, h denotes the magnitude of the specific angular
momentum of the spacecraft, while hx and hy denote the x and
y components of specific angular momentum along the I and
J directions, respectively, in the Inertial frame of reference
(I,J,K). On the other hand, ex and ey denote the components

Algorithm 1 SAC Algorithm
1: Initialize networks parameters: φ1,φ2, θ , ψ1, ψ2
2: Initialize experience replay: B
3: Training:
4: for each iteration do
5: at ∼ πθ (at |st )
6: seg ∼ Segment_Size_Select(e,i,asm)
7: st+1, rt+1, d∼ Env(st , rt , seg)
8: B←− BU (st , at , rt+1, st+1, d)
9: for 0,1,2,3,. . . .,N training updates do

10: Sample batch from experience Replay (b ∼ B)
11: Compute target values using Eq. (8)
12: Update Q-functions by gradient ascent, using

Eq. (7)
13: Update policy function by gradient ascent, using

Eq. (9)
14: Update target networks by using Eq. (10)
15: end for
16: end for

Algorithm 2 Segment Size Select Algorithm
1: Input: e, i, asm
2: if e ≤ 0.01 & i ≤ 0.1 & asm ∈ {atarsm ± 200 km} then
3: seg = 0.1
4: else if e ≤ 0.01& i ≤ 0.1 & asm ∈ {atarsm ± 2100 km}

then
5: seg = 1
6: else
7: seg = 10
8: end if
9: Output: Segment size (seg)

of eccentricity along the i′ and j′ directions in the second
rotated frame of reference O(i′,j′,k′). The angle φ represents
the true anomaly-like angle, which determines the position of
the spacecraft.

The forcemodel for the solar-electric propulsion spacecraft
is provided in Eq. (12).

F =
2λP
g0Isp

(12)

where P is the power available from the solar arrays to operate
the electric thrusters, λ is the efficiency of the propulsion
system, g0 is the acceleration due to gravity at the surface
of the Earth and Isp is the specific impulse of the propulsion
system. For the current dynamic model, the spacecraft keeps
the constant thrust value throughout the transfer, except
for the eclipse portion of the orbit. During the eclipse,
solar-electric propulsion systems cannot generate power,
unless there is some onboard energy storage mechanism
available [42]. In the context of this paper, we consider zero
thrusts during the eclipse. The direction of the thrust vector
due to the onboard propulsion system is denoted as angles
α and β, which are bounded in the ranges of [−π ,π ] and
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FIGURE 4. 2-1-3 Euler orbital rotation. (I′ ,J′ ,K′), (i′ ,j′ ,k′) and (r′ ,n′ ,h′) are x-axis, y-axis and z-axis representations after the first, second, and
third orbital rotations, along y-axis, x-axis and z-axis, respectively.

Algorithm 3 Next State and Reward Calculation (Env)
1: Input: st , at , seg
2: Steps:
3: Compute st+1 ∼ P(st+1|st , at , r) using Eq. (13 - 15)
4: Compute reward (rt+1) using Eq. (23 - 24)
5: Compute d using Eq. (20 - 22)
6: Output: st+1, rt+1, d

[−π2 , π2 ], respectively. Using these angles, the thrust com-
ponents along the orbital plane are defined in the following
equation (13):

u =
[
Fr Fn Fh

]
= F

− sinα cosβ
cosα cosβ

cosβ

 (13)

The transition function, which can provide the spacecraft
transnational dynamics can be represented in the form of
first-order differential equations as follow [16]:

ḣ
ḣx
ḣy
ėx
ėy
φ

 =
[
0 0 0 0 0 µ2B2

h3

]

h
hx
hy
ex
ey
φ

+G

FrFn
Fh

 (14)

The matrix G serves as a mathematical transformation
that maps non-Keplerian acceleration terms to the rate of
change of state variables. The matrix G is defined in Eq. (15),
as shown at the bottom of the next page, with A and B
representing mathematical expressions (A = ex sinφ −
ey cosφ, B = 1 + ex cosφ + ey sinφ) derived from the
eccentricity vector components, ex and ey, and the true
anomaly angle, φ. Additionally, the earth’s gravitational
parameter, µ, is used in the definition of G. By leveraging the
state parameters specified in Eq. (11) and the thrust values
outlined in Eq. (13), the change in state parameters can be
calculated using equations (14) and (15).

1) DYNAMIC MODEL ASSUMPTIONS
As already mentioned, we consider the spacecraft thrust to
be constant, unless the spacecraft is passing through the

shadow of the Earth. In addition, we undertake the following
modeling assumptions related to the dynamic model of
the spacecraft: (1) The effect of orbital perturbations are
neglected in this paper. While the force terms in Eq. (14)
can represent the sum of any number of forces acting on the
spacecraft (such as thrust, J2 perturbation, and solar radiation
pressure), we consider that the force is only due the onboard
thrust. (2) The effect of radiation damage is neglected in
this paper. In reality, the spacecraft solar arrays experience
degradation during the transit through the Van Allen belts.
Due to this degradation, the available thrust for the transfer
deteriorates as well, as per Eq. (12). We ignore the radiation
damage and assume that the thrust available during the Sun-lit
part of the trajectory is constant. These assumptions allow
us make a fair comparison with the sequential approach [16]
and the previously studied DRL approach [39] in the
literature. If one wishes to incorporate orbital perturbations
in the problem, additive terms in Eq. (14) representing
those perturbations need to be inserted. Similarly, if one
wishes to incorporate the effect of radiation damage, one can
incorporate artificial neural network based radiation damage
prediction [42] within the framework.

2) ECLIPSE MODEL ASSUMPTIONS
As the spacecraft makes multi revolutions around the Earth to
reach the final orbit using all-electric propulsion, it is highly
probable that it passes through the Earth’s shadow. When
the spacecraft passes through the earth’s shadow, it can use
its onboard batteries to power the thrusters or turn them off
and coast. This work assumes that the spacecraft coasts when
it passes through the Earth’s shadow. We need to have a
shadow model to identify the regions where the spacecraft
passes through the Earth’s shadow. In this work, we adopt the
cylindrical eclipse model to determine when the spacecraft
is in Earth’s shadow. In the cylindrical Earth shadow model,
we assume that the shadow of Earth is cylindrical in shape,
and we further assume that it is fixed in space and not moving.
The conditions to check whether the spacecraft is in eclipse
are given below:

XI < 0, (16)√
Y 2
I + Z

2
I < RE (17)
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where XI , YI , and ZI are the components of the Cartesian
position vector of the spacecraft in the Inertial frame, and
RE is the radius of the Earth. The equations to convert the
state vector of the spacecraft used in this work to Cartesian
coordinates are discussed in [16].

B. DRL MODELING AND IMPLEMENTATION DETAILS
The implementation framework for optimizing the space
trajectory for the orbit-raising problem involves dividing
the problem into two subtasks. The first subtask aims to
carry the spacecraft in the vicinity of the target position,
while the second subtask focuses on achieving the final
target position with high precision. To accomplish this,
two sequentially connected SAC reinforcement learning
algorithms are implemented. The actor and critic networks
follow standard architectural parameters, which are illus-
trated in Figure 2. The SAC algorithm is chosen due to
its effectiveness in maximizing entropy, encouraging the
agent to explore thoroughly during training and avoid early
termination. Compared to other off-policy algorithms such
as deep deterministic policy gradient (DDPG) and advantage
actor-critic (A2C), SAC is less sensitive to hyperparameter
tuning [43]. In addition, research has shown that SAC does
not produce significant differences in output with different
hyperparameters, making it a suitable choice for training
agents in a dynamic model-free environment.

To implement this algorithm, we have modeled the
MDP parameters, which include state, reward, action,
next state, and training episode termination status (M =

{st , at , rt+1, st+1, d}). The same elements are used to define
the state, which is shown in Eq. (11), and Eq. (18).

s =
[
h hx hy ex ey φ

]T (18)

The action is defined as the two thrust angles, α and
β, which were described in Section III-A and are used to
calculate the thrust components in Eq. (13), as shown below:

a =
[
α β

]T (19)

Three terminal conditions are checked at every time step to
determine if the spacecraft has reached the desired position.
These conditions include the magnitudes of the semi-
major axis(asm), eccentricity(e), and inclination(i). These

parameters are calculated using the state parameters defined
in Eq. (18).

The first condition checks the eccentricity of the space-
craft’s orbit, as shown in Eq. (20). The magnitude of
eccentricity is calculated from the ex and ey parameters,
which are part of the state vector. Here etol denotes the
tolerance value for eccentricity.

0 ≤
[
e =

√
e2x + e2y

]
≤ etol (20)

The second condition checks the semi-major axis of the
spacecraft’s orbit, as shown in Eq. (21). The semi-major axis
is calculated using the h, ex , and ey parameters from the state
vector, as well as the gravitational parameter µ. The value of
atarsm is the desired target value for the semi-major axis, and
atolsm is the tolerance value for the semi-major axis.

atarsm − atolsm ≤

[
asm =

h2

µ(1− e2x − e2y)

]
≤ atarsm + atolsm (21)

The third condition checks the inclination angle of the
spacecraft’s orbit, as shown in Eq. (22).

0 ≤

i =
√
h2x + h2y

h

 ≤ itol (22)

In the above equation, the inclination angle i is calculated
using the hx and hy parameters from the state vector, as well
as the magnitude of the specific angular momentum h. Here,
itol denotes the tolerance value for the inclination angle.
By checking these three conditions at every time step, the

algorithm can determine if the spacecraft has reached the
desired target position or not.

A potential-based (φ(s′) − φ(s)) shaping reward function
is applied to train the DRL agents. This reward function
includes a distance-based heuristic and a shaping function
that contains the gradient information [39] of the parameter’s
error values. The shaping function is a negative-powered
exponential factor that becomes active when the difference
between the current and target parameters is sufficiently
small. The reward function is defined in Eq. (23) and Eq. (24)

G =



0 h2
µmB

µ2B2

h3

0 hhx
µmB

h2
√
h2−h2x−h2yB

2

µmB
√
h2−h2y

sinφ + hhxhy

µmB
√
h2−h2y

cosφ

0 hhy
µmB −

h
√
h2−h2y
µmB cosφ

h sinφ
µm

2h cosφ
µm +

hA sinφ
µmB

heyhy

µmB
√
h2−h2y

sinφ

−
h cosφ
µm

2h sinφ
µm +

hA cosφ
µmB −

hexhy

µmB
√
h2−h2y

sinφ

0 0 −
hhy

µmB
√
h2−h2y

sinφ


(15)
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TABLE 1. State parameters defined for the GEO-orbit raising problem.

below:

φ(st ) = −w1(|st − star |)+
∑

w2e−(w3|st−star |) (23)

r ′ = φ(s′)− φ(s)− τ − 5(ξ )+ 100(d) (24)

here, w1, w2, and w3 are the weights, and τ is a constant value
that accounts for time penalty, which punishes the agent as the
episode duration becomes longer. Its value is set to 0.005 in
this study. ξ is the boundary flag, and it indicates if the
agent crosses the boundary conditions, which are defined in
terms of the orbital elements (asm,e,i) and restrict their values
within a defined range to encourage the agent to explore
in the right direction. The ξ is set to one when the agent
crosses these boundary conditions, indicating an unsuccessful
episode. The done flag d is set to zero and it becomes
one only when the agent reaches the target destination, and
zero otherwise. The negative reward function in Eq. (23)
reinforces the desired behavior of the agent. The parameters
chosen for calculating the reward values in Eq. (23), play
a crucial role in the early convergence of the algorithm.
Previous studies [39], [44] utilized state parameters, as in
Eq. (18), in their reward functions. In this study, the orbital
elements, defined in equations (20-22), are used as the reward
parameters. Eq. (24) finds the gradient of state parameters by
essentially calculating the difference of state functions, which
guides the agent towards the desired destination.

The transition function P(s′|s,a), uses the same dynamic
model described in section(III-A). With the current state and
action parameters in equations (18-19), transition function
P(s′|s,a) uses the equations (13-19) to calculate the next
state s′.
The SAC algorithm’s time steps are determined based on

the spacecraft’s true anomaly-like angle, φ, which ranges
from 0 to 2π and starts at an integral multiple of 2π
at each revolution. The agent takes an action at every n
degrees of revolution, with n being the segment size. One
time step is equivalent to 360/n degrees. By reducing the
segment size, the agent takes more frequent actions during
each revolution, potentially leading to more optimal results
but a higher number of timesteps and longer episodes.
To balance optimality with episode length, we use a variable

TABLE 2. Convergence of DRL networks for GTO-GEO transfer.

segment-size strategy that decreases the segment size as
the agent advances. Initially, the segment size is set to
10 degrees, and as the agent approaches the target position,
we increase the level of optimality by reducing the segment
size to 1 degree. Finally, when the agent is very close to the
target position, we set the segment size to its final value of
0.1 degrees, providing the agent with a higher resolution of
action selection as it approaches the final state.

To provide a comprehensive view of our methodology and
its implementation, we have detailed our approach in three
different algorithms. Algorithm 1 outlines the actor-critic
networks and training process used in the SAC algorithm.
To enhance the optimization process, Algorithm 2 describes
the variable segment size strategy we utilized. Finally,
Algorithm 3, explains the steps taken in the environment to
calculate the next state and reward. Together, these algorithms
provide a detailed description of our methodology and its
implementation.

IV. EXPERIMENTS
Our proposed cascaded DRL methodology addresses two
different orbit-raising problems: the transfer from GTO to
GEO and the transfer from a Super-GTO to GEO. For the
GTO-GEO transfer, we have compared our results using
different spacecraft parameters, which are detailed in Table 1
along with the initial and target state and orbital parameters.
To train the RL agent for transfers, we employ a reward
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function (Eq. 24) and define the corresponding weights for
the first DRL networks in Table 4. The weights are denoted
by W= [w1;w2;w3], where W[:,1] pertains to the weightage
of asm, W[:,2] corresponds to the weightage of e, and W[:,3]
corresponds to the weightage of i in Eq. 24. This is reflected
in the first, second, and third columns of Table 4, respectively.
For the second DRL networks, we increased the weights for
asm (W[:,1]) and e (W[:,2]) by a factor of three to achieve a
more precise target position.

We have conducted experiments on an Intel(R) Xeon(R)
CPU E5-1620 v4 operating at a frequency of 3.5GHz with
8 cores, along with the NVIDIAGeForce GTX 1080 graphics
processing unit (GPU), and 32GB of random access memory
(RAM) to meet the computational requirements. We have
implemented our DRL algorithms in Python 3.7 using
the PyTorch framework, which is based on the OpenAI
stable baselines. Our hardware/software combination has
facilitated efficient and effective model development and
training.

We have performed the training of DRL algorithms
in multiple iterations/episodes to optimize the algorithms’
performance and ensure reliable results. We have conducted
our DRL training with the objective to achieve stable reward
values for successful episodes in orbit-raising scenarios.
In our experiments, training has been conducted until
stability is attained, which typically required a maximum
of 900 episodes. To identify the optimal model weights,
we have employed a selection criterion based on the
minimum episodic convergence time, which ensures superior
performance. Subsequently, these carefully chosen weights
are utilized during the inference phase to generate optimized
transfer time trajectories.

To guarantee the consistency and reproducibility of our
findings, we have conducted multiple trials throughout the
training phase. We have verified that the reported results
remain consistent across all episodes during the inference
stage. This rigorous approach strengthens the validity of our
research outcomes.

A. RESULTS
In this section, we present the main findings of our study,
which we have categorized into two subcategories based on
the type of transfer: from GTO to GEO transfer and from
Super-GTO to GEO transfer. The corresponding findings for
the two types of transfer scenarios are detailed below.

1) TRANSFER TYPE 1 (GTO TO GEO)
To investigate the effect of spacecraft parameters and initial
orbit parameters on the resulting transfer, we consider a GTO
to GEO transfer and analyze three different cases of initial
GTO. Each scenario is designed to test different spacecraft
parameters, while we have used constant thrust values for
the spacecraft with the aim of ensuring rigorous comparison
with other research in the field. During the orbit transfer,
the constant thrust is used for all scenarios, but we have
implemented Earth eclipses for the first two cases (GTO-1

and GTO-2), which reduce thrust to zero when the spacecraft
passes through the eclipse. In contrast, the third scenario
(GTO-3) utilizes constant thrust values throughout, consistent
with the prior work by Kwon et al. [39]. The resulting
performance of each scenario is presented in Table 3, which
shows the orbit-raising transfer times and compares them to
reference times. The proposed method involves the training
of two cascaded DRL agents to achieve maximum episodic
return (score) and minimum transfer time during complete
transfer training. The total time in the table reflects the
accumulated time obtained from both the first and the second
DRL networks, and Table 2 provides convergence tolerance
values for the DRL networks in each of the three cases.
The primary objective in determining these convergence
values for the two DRL networks is to ensure that the
first network enables the spacecraft to reach the vicinity of
the target position, while the second network achieves the
target value with a higher resolution and precision. This
approach resulted in substantially narrower tolerance ranges,
allowing the spacecraft to reach the target position with
greater accuracy. Specifically, the tolerances were improved
by at least an order of magnitude, two orders of magnitude,
and three orders of magnitude for inclination, semi-major
axis, and eccentricity, respectively, thus, better equipping the
spacecraft to accomplish the mission objectives. However,
for the GTO-3 transfer case, the final tolerances (listed
in Table 2) were deliberately kept higher to maintain
consistency with [39] and ensure a fair comparison between
the results.

The results of the GTO-2 training are presented in Figure 5,
demonstrating a decrease in training score variation as both
the cascaded DRL networks converge to a stable score value.
The transfer time for the converged episodes is also shown
to decrease, with both training networks converging in under
800 episodes. Similar trends for score and time convergence
are observed for other scenarios and are omitted here for
brevity.

Figure 6 provides valuable insights into the behavior of the
DRL agents, showcasing the variations in predicted action
values (thrust angles α and β) throughout one complete
transfer episode. The initial stages of the first DRL network
exhibit high variation in thrust angle values due to the large
segment size ‘n’, which causes the spacecraft to take fewer
actions per revolution. As the spacecraft approaches the
target, the segment size decreases, leading tomore actions per
revolution and thus reducing the variation in action values.
In contrast, the segment size remains consistent in the second
DRL network, as the spacecraft is already closer to the target
orbit. The constant thrust values for both the DRL agents
are also depicted in Figure 6, with the first agent’s thrust
value varying between a constant thrust and zero due to
the earth eclipse model, while the second agent maintains a
constant thrust value as it does not pass through the eclipse.
These results underscore the importance of accounting for the
dynamics and constraints of the system in training optimal
policies for efficient spacecraft control.
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TABLE 3. Comparison of results for GTO-GEO transfer cases. Isp denotes the specific impulse, and λ and P represent the efficiency and power of the
propulsion system, respectively.

FIGURE 5. Episodic return and convergence times over training steps. DRL-1 and DRL-2 represent the two cascaded DRL agents.
Episodic return is for all training episodes, whereas the flight time is for converged episodes during the training.

TABLE 4. Weights (W= [w1; w2; w3]) used in calculating the reward
function for the first DRL Network.

The graphical representation of the spacecraft’s trajectory
in three-dimensional space from the initial elliptical GTO to
the final circular GEO is presented in Figure 7. The figure
also shows the earth’s shadow, enabling a detailed depiction
of the transfer’s dynamics. The transfer begins with high

inclination and eccentricity values, gradually reducing to zero
inclination and eccentricity values as the spacecraft reaches
the target orbit. The above figures (Figure 5-7) illustrate
the orbital transfer for the GTO-3 to GEO transfer (please
refer to Table 1). The other two GTO transfers exhibit
similar trajectory profiles and are thus not shown here for
conciseness.

Convergence Parameters Evaluation: In this study,
we examine the evolution of various orbital elements during a
complete transfer from the first and second geosynchronous
transfer orbits (GTO-1 and GTO-2 in Table 1) to the GEO,
and from the third geosynchronous transfer orbit (GTO-3
in Table 1) to the GEO. The parameters of interest include
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FIGURE 6. Predicted actions (thrust angles (rad)) and thrust variations
due to earth eclipses for both deep reinforcement learning agents (DRL-1
and DRL-2).

FIGURE 7. Three dimensional orbit transfer trajectory for GTO-GEO, where
one distance unit (DU) is equivalent to the radius of GEO.

the semi-major axis (asm), eccentricity (e), and inclination
(i). To ensure successful completion of the transfer, all three
of these parameters must converge to their target values
with respective tolerance values simultaneously (please refer
to Table 1 for target values of state parameters and their
tolerance values).

Our study found that both GTO-1 and GTO-2 transfers
successfully reached their tolerance values. However, GTO-1
required 178.07 revolutions to complete the transfer, whereas
GTO-2 required only 103.81 revolutions. This difference in
revolution count can be attributed to GTO-1’s higher initial
mass-to-thrust ratio of 3870, which is 1.726 times greater
than GTO-2’s value of 2242. Consequently, GTO-1 took
longer to complete the transfer and requiredmore revolutions.
Additionally, the spacecraft used in GTO-1 experienced a
greater mass loss of 173.84 kg as compared to 36.29 kg in
GTO-2.

Results further show that in contrast to the first two cases,
the transfer from GTO-3 to GEO did not result in coherent
changes in eccentricity, inclination, and semi-major axis.

TABLE 5. Convergence of DRL networks for Super-GTO to GEO transfer.

Specifically, the inclination decreased abruptly at the start
and then tried to maintain its value around the target position.
Furthermore, the transfer from GTO-3 to GEO took a total of
223.16 revolutions to complete, which is considerably longer
than the previous two transfers. This extended duration could
be attributed to GTO-3’s higher initial mass-to-thrust ratio
of 5714, which is 1.47 times greater than GTO-1’s ratio and
2.54 times greater than GTO-2’s. This observation suggests
that the higher mass-to-thrust ratio in GTO-3 could be a
contributing factor to the increased number of revolutions
required for the transfer. The spacecraft used in GTO-3 also
lost a total of 150.47 kg during the transfer with 149.2 kg
and 1.27 kg lost traversing the trajectories determined by
the first and the second DRL networks, respectively. Overall,
the results demonstrate the effects of various parameters
and initial conditions on geosynchronous orbit transfers as
depicted in Figure 8 and Figure 9.

2) TRANSFER TYPE 2 (SUPER-GTO TO GEO)
In this particular transfer scenario, we consider the initial
orbit to be a Super-GTO, which is characterized by a higher
perigee altitude and greater eccentricity than the GTO orbit.
To accomplish this transfer in the shortest possible time,
we utilize two cascaded DRL networks using the same tech-
nique we employed in the GTO transfer cases. We employ
the same spacecraft parameters and simulation conditions
as those reported in literature to facilitate comparison with
previous results. The convergence conditions for both DRL
networks are presented in Table 5 ensuring that the spacecraft
arrives in the vicinity of the target position during the first
DRL network and achieves the target location precisely in
the second DRL network as in the GTO transfer cases.
We have endeavored to attain the same final convergence
values reported in literature. The cumulative time taken by
both DRL networks represents the total time required for the
transfer, as shown in Table 6.

The training outcomes for both DRL agents are presented
in Figure 10, which indicate that the training score increased
over time and stabilized at its highest value. Furthermore,
as the training progressed, the flight time of each converged
episode decreased to its minimum value.

The action values predicted by the DRL agents for the
Super-GTO to GEO transfer are depicted in Figure 12. The
plot displays the thrust anglesα and β alongwith the variation
of the thrust value that occurs due to the Earth’s eclipse. At the
start of the transfer for the first DRL agent, we observe high
variations of the thrust angles due to greater maneuverability
around the apoapsis in the relatively weaker gravitational

VOLUME 11, 2023 82905



S. M. T. Zaidi et al.: Cascaded DRL-Based Multi-Revolution Low-Thrust Spacecraft Orbit-Transfer

FIGURE 8. Orbital elements variation in one complete episode for GTO-1 and GTO-2 to GEO transfer scenario.

FIGURE 9. Orbital elements variation in one complete episode for GTO-3 to GEO transfer scenario.

field, resulting in fewer actions taken per revolution by the
spacecraft. As with the GTO transfer case, we employed

a fixed segment size of 0.1 degrees for the second DRL
network. Furthermore, for the secondDRL agent, thrust value
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FIGURE 10. Episodic return and convergence times over training steps. DRL-1 and DRL-2 represent the two deep reinforcement
learning agents. Episodic return is for all episodes, whereas flight time is for converged episodes during the training.

TABLE 6. Comparison of results for super-GTO to GEO transfer case. Isp denotes the specific impulse, and λ and P represent the efficiency and power of
the propulsion system, respectively.

remained constant as the spacecraft did not pass through the
eclipse during this phase of the transfer.

The three-dimensional trajectory for the Super-GTO to
GEO transfer is presented in Figure 13, where the axis values
are normalized to one distance unit (DU) which corresponds
to the radius of GEO. The plot illustrates the trajectory from
the Super-GTO orbit to the final GEO orbit. The shadow
of the earth is visible where the spacecraft used zero thrust
value. In addition, the figure shows an abrupt decrease in the
inclination angle at the start of the transfer, which is more
pronounced than in the GTO-3 transfer case and contrasts
with GTO-1 and GTO-2 transfers. This result is also evident
from Figure 11.

In order to demonstrate the convergence of our algorithm to
the target values, we present the history of osculating orbital
elements for a single episode with the desired convergence
tolerances, as shown in Figure 11. It is noteworthy that
all of the orbital elements, including the semi-major axis,
eccentricity, and inclination, reach the target values simul-
taneously at the end of the transfer. The spacecraft requires
a total of 74.51 revolutions to reach the target location, with
73.63 revolutions for DRL-1 and 0.88 revolutions for DRL-2,
while converging at the episodic steps of 3421 and 999 for
DRL-1 and DRL-2, respectively.

Although the initial mass is similar to that of the GTO-1
transfer scenario, the spacecraft takes significantly fewer
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FIGURE 11. Orbital elements variation in one complete episode for Super-GTO to GEO transfer scenario.

FIGURE 12. Predicted actions (thrust angles (rad)) and thrust variations
due to earth eclipses for both deep reinforcement learning agents (DRL-1,
and DRL-2).

revolutions to reach the target position than in the GTO-1
transfer case. This could be attributed to the fact that the thrust
value is slightly higher in this case, and the initial orbital
parameters are distinct from those of the GTO, being more
eccentric and having a higher semi-major axis value. As a
result, this problem is more challenging to solve but takes

FIGURE 13. Three dimensional orbit- transfer trajectory for Super-GTO to
GEO (1 DU = radius of GEO).

fewer revolutions to achieve the target position. Furthermore,
due to the fewer number of revolutions required to reach the
target, the decrease in the spacecraft mass is also less than that
of the GTO-1 transfer, totaling 84.56 kg loss (84.28 during
DRL-1 and 0.28 during DRL-2).
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V. DISCUSSION AND COMPARATIVE ANALYSIS
To validate the effectiveness of our proposed method,
we have conducted a comparison with other established
orbit-raising techniques. We have compared the performance
of our proposed method with both traditional optimization
solvers [1], [2], [3], [4], [5], [6], which rely on initial guesses
frommission designers for optimization, as well as automated
solvers [16], [39] that operate independently of user-provided
initial guess solutions, in the context of the GTO to GEO
transfer case. Results indicate that our approach achieves
optimal or near-optimal results in terms of transfer time for
GTO to GEO and Super-GTO to GEO orbit-raising scenarios.
It is important to note that the results obtained from some
of the traditional optimization solvers (e.g., [2], [6]) are
presented in a range due to differences in the underlying
modeling for dynamic model, shadow geometry, shadow
rotation, and/or perturbations. Additionally, [1] and [39]
employ different parameters for the same transfer, as defined
in GTO-1 and GTO-2 scenarios (please refer to Table 1
for the initial and target state parameters). The comparative
assessment reveals that the proposed method outperforms the
automated approaches, in terms of transfer time, in all of
the three cases. Regarding the comparison with traditional
numerical approaches, the proposed method delivers superior
results in the GTO-1 case, where the obtained outcomes
exceed the upper range value of the best-case scenario of
traditional approaches [2]. For the GTO-2 scenario, our
proposed method achieves comparable results to traditional
approaches.

The transfer from Super-GTO to GEO proved to be a
particularly arduous undertaking. Achieving convergence
within the given tolerance on the terminal position of
the spacecraft presented a grueling obstacle. One possible
explanation is that the Super-GTO is more eccentric than
the GTO. We endeavored to overcome this hurdle by
doubling the eccentricity weights (W [:, 2]) (Table 4) of
the reward function from the GTO transfer weights. This
strategic adaptation enabled us to attain convergence at the
target location at the end of each episode. This outcome
is visually apparent in Figure 11. Our proposed approach
achieves faster transfer times over automated optimization
solver [16], while being sub-optimal when compared to
traditional numerical solvers [1]. Note here that the modeling
assumptions for the transfer are the same as in [16] to
allow a direct and fair comparison; however, there are some
modeling differences with [1] leading to some numerical
differences in the solution. We further note that the advantage
over the sequential approach [16] comes at the expense
of additional training procedure, albeit offline, which the
DRL based methodologies have to incorporate. We further
compare our GTO results with those of [39], where they
used a single reinforcement learning agent to solve the
same problem but with different parameters. We match
their spacecraft parameters and compare our results for the
GTO-3 transfer case. From the comparative assessment,
we observe that the convergence tolerance values achieved

by our method are tighter meaning that the terminal
state achieved is numerically closer to GEO in our case.
Results show that our cascaded deep reinforcement learn-
ing networks leveraging orbital elements in gradient-aided
reward function significantly surpass the approach in [39]
by 2.64%.

Our experimental results demonstrate that our proposed
approach achieves significantly better transfer times as
compared to automated optimization solvers in all scenarios.
Furthermore, our proposed approach surpasses traditional
numerical optimizers in some transfer scenarios while being
comparable in others. It is worth mentioning that the
proposed approach offers several advantages over traditional
numerical methods. First, our cascaded DRL technique is
lightweight and requires minimal computational resources as
compared to traditional methods. Secondly, unlike traditional
approaches, our method does not require initial guess inputs
from trained mission designers, making it a suitable choice
for automated optimization solvers. Third, the cascaded DRL
technique enables efficient exploration and exploitation of the
state-action space, resulting in better convergence tolerances
while achieving the target location. Moreover, our approach
provides a stable and efficient learning process by utilizing
orbital elements in a gradient-aided reward function that
guides the reinforcement learning process towards optimal
solutions. This feedback mechanism effectively leverages the
strengths of DRL, which can handle complex and nonlinear
dynamics more effectively than traditional numerical and
machine learning techniques.

During our investigation of spacecraft orbit-raising prob-
lems, we encountered specific challenges that required
careful attention. The most notable challenge was achieving
convergence due to the highly nonlinear nature of the
problem. Simultaneously achieving precise tolerance values
for eccentricity, semi-major axis, and inclination posed
a significant difficulty. To tackle this, dedicated efforts
were invested in devising an effective reward function that
leveraged gradient information derived from orbital state
parameters. The aim was to guide the reinforcement learning
agent towards achieving convergence. The previously refer-
enced reward function, as outlined in [39], employed state
parameters (h, hx, hy, ex, ey, φ). However, these parameters
did not provide sufficient orbital information to facilitate
convergence. Consequently, we enhanced the reward function
(Eq. (24)) by incorporating orbital parameters (asm, e,
i), which proved instrumental in assisting the reinforce-
ment learning agent to converge successfully. Furthermore,
attaining narrower tolerance values comparable to those
obtained by sequential and traditional trajectory optimiza-
tion approaches proved to be challenging, particularly for
eccentricity, which demanded precision down to five decimal
points. To address this, we proposed a cascaded design for
the reinforcement learning approach. This innovative design
enabled us to achieve comparable tolerance values to those of
sequential and traditional trajectory optimization approaches,
and significantly improved convergence performance of our
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proposed approach while attaining optimal or near-optimal
time-efficient spacecraft orbit-raising.

VI. CONCLUSION
In this paper, we have proposed cascaded deep reinforcement
learning (DRL)—a novel technique to solve complex opti-
mization problems. We have utilized our proposed cascaded
DRL to solve the orbit-raising problem from GTO to GEO
and from Super-GTO to GEO. Our approach utilizes a
gradient-aided reward function, developed by using orbital
elements, to optimize the spacecraft’s trajectory during
orbit-raising. The results show that our proposed approach
outperforms automated optimization solvers in achieving
optimal transfer time in all transfer scenarios from GTO to
GEO and super-GTO to GEO. Furthermore, our proposed
approach surpasses traditional numerical optimizers in some
scenarios while being comparable in others.

Our study highlights the potential for DRL to optimize
trajectories in complex and nonlinear dynamical systems such
as an all-electric spacecraft. The demonstrated success makes
DRL a promising tool for space exploration applications.
Furthermore, DRL is lightweight requiring minimal com-
putational resources, thus making our approach particularly
suitable for onboard trajectory optimization and navigation
for spacecraft.

To further improve the effectiveness and versatility of
DRL in space exploration, continued research in this area is
necessary. While the proposed approach has demonstrated its
efficacy in GTO to GEO and super-GTO to GEO transfer
scenarios, the next step will be to expand this approach to
other orbit-raising scenarios, which may require additional
training and fine-tuning of the DRL networks. Future
studies could also explore the use of more sophisticated
reward functions, different optimization techniques, and
different spacecraft design parameters. These approaches
could potentially help to overcome the challenges posed
by the highly nonlinear nature of the orbit-raising problem
and improve the overall performance of DRL in space
exploration.
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