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Abstract: The recognition of human activities using vision-based techniques has become a crucial
research field in video analytics. Over the last decade, there have been numerous advancements in
deep learning algorithms aimed at accurately detecting complex human actions in video streams.
While these algorithms have demonstrated impressive performance in activity recognition, they often
exhibit a bias towards either model performance or computational efficiency. This biased trade-off
between robustness and efficiency poses challenges when addressing complex human activity recog-
nition problems. To address this issue, this paper presents a computationally efficient yet robust
approach, exploiting saliency-aware spatial and temporal features for human action recognition in
videos. To achieve effective representation of human actions, we propose an efficient approach called
the dual-attentional Residual 3D Convolutional Neural Network (DA-R3DCNN). Our proposed
method utilizes a unified channel-spatial attention mechanism, allowing it to efficiently extract
significant human-centric features from video frames. By combining dual channel-spatial attention
layers with residual 3D convolution layers, the network becomes more discerning in capturing spatial
receptive fields containing objects within the feature maps. To assess the effectiveness and robust-
ness of our proposed method, we have conducted extensive experiments on four well-established
benchmark datasets for human action recognition. The quantitative results obtained validate the
efficiency of our method, showcasing significant improvements in accuracy of up to 11% as compared
to state-of-the-art human action recognition methods. Additionally, our evaluation of inference time
reveals that the proposed method achieves up to a 74× improvement in frames per second (FPS)
compared to existing approaches, thus showing the suitability and effectiveness of the proposed
DA-R3DCNN for real-time human activity recognition.

Keywords: human activity recognition; 3DCNN; 3D spatial attention; 3D channel attention; residual
convolutional neural network; pattern recognition

1. Introduction

Convolutional neural networks (CNNs) have become one of the most widely used
deep learning architectures in computer vision due to their ability to effectively capture
the spatial features of image and video data. In recent years, CNNs have shown remark-
able success in a variety of applications, including object detection and recognition [1],
image segmentation [2], and scene understanding [3]. The design of deep neural networks
is crucial for their efficiency, including the depth and structure of the network layers,
depending on the task. In some cases, such as object recognition and video analytics,
over-parameterization is necessary to ensure the model captures complex hidden patterns
and generalizes well. However, this comes at the cost of increased computational com-
plexity, making them unsuitable for real-time environments and resource-limited devices,
and requiring high-end GPUs for training [4,5]. The design of network architecture is
task-specific which varies from problem-to-problem. For instance, recognizing objects in
still images demands a plain 2DCNN network composed of convolutional layers for spatial
feature extraction and classification layer for classification task. Recognizing human actions
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in video stream cannot be handled with single 2DCNN networks, in view of the fact that
videos are composed of large sequence of frames presenting the temporal flow of video
across the frames in the temporal dimension (t).

To cope with the challenge of human action recognition task in video streams, re-
searchers have introduced different solutions that include two-stream 2D convolutional
neural network (CNN) architectures [6], 3D CNN (2D + 1D) architectures [7], and CNN
with a recurrent neural network (RNN) [8]. Typically, two-stream 2DCNNs [6] use two
different CNN architectures to extract two different kinds of features from the input video.
The first CNN model extracts the spatial features from the input video frames, whereas
the second network extracts the temporal optical flow features with respect to their cor-
responding spatial features. The extracted features from both the models can then be
combined as a single latent representation vector for the activity recognition task. On
the other hand, 3DCNNs [7] use single CNN architecture having 3D convolution kernels,
where the first two dimensions capture the spatial features and the last dimension of the
3D kernel captures temporal flow of the spatial features across the frames. The CNN with
RNN architecture frameworks include two different type of models (i.e., CNN followed
by RNN). The CNN model in CNN + RNN architectures extracts the spatial features from
the video frames and converts it to a one-dimensional latent representation such as feature
vectors. The extracted latent representation from the CNN models can then be fed to the
RNN model for activity classification task using sequential pattern learning. Typically,
an activity recognition framework with two different network architectures increases the
parameters space (computational complexity) of the entire framework as well as the time
complexity of the model for the task under the consideration. Considering the parameter
space and time complexity of two-stream architectures, 3DCNNs are considered a suitable
candidate for human activity recognition task.

Therefore, in this paper, we propose a computationally efficient residual 3DCNN ar-
chitecture called dual-attentional residual 3D convolutional neural network (DA-R3DCNN)
with channel and spatial attention for human activity recognition task. The proposed
DA-R3DCNN has channel and spatial attention layers after each residual block which
helps our model to propagate salient features from the early layers to later layers. This
propagation of salient information significantly improves the performance of our model
for human activity recognition task. More precisely, the major contributions of this paper
are as follows:

1. To overcome the issue of over-parameterization, we present a computationally effi-
cient yet robust end-to-end residual 3DCNN model coupled with dual 3D attention
and residual 3D convolution mechanism, learning object and motion-centric spatio-
temporal representations of human actions in video sequence;

2. To prevent gradient vanishing, this work proposes a 3D residual convolution mech-
anism that allows the flow of learned representations from the early layers to the
later layers of the network. Moreover, instead of using plain shortcut path, we use
convoluted shortcut path having a 3D convolution layer of kernel size 1× 1× 1;

3. To efficiently extract spatial saliency from video frames, we utilize a dual 3D channel-
spatial attention mechanism along with residual 3D skip connections. Our approach
integrates the dual-attentional module after every two consecutive 3D convolutional
layers within the 3DCNN model. This enables the extraction of discriminative features
that are sensitive to object saliency, allowing for precise localization of action-specific
regions in the video frames.

The remaining sections of this paper are organized as follows. Section 2 presents a con-
cise overview of related works in the field of human activity recognition. Section 3 delves
into a comprehensive discussion of the proposed DA-R3DCNN framework and its key
components. The detailed experimental evaluation of the DA-R3DCNN framework, along
with comparisons to the state-of-the-art human action recognition methods, is presented
in Section 4. Finally, Section 5 concludes this paper, and also highlights potential future
research directions in this domain.
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2. Related Works

Over the past decade, there has been significant research on human activity recognition,
with several advanced methods proposed to effectively tackle the problem of recognizing
human actions. These approaches include two-stream 2DCNNs [9–13], CNN + LSTM [14–18],
and 3DCNN-based methods [7,19–23]. Typically, the two-stream 2DCNN architecture
paradigm uses two different CNN architectures for modeling human actions in video
data. Both CNN architectures operate on the same input data, however, they extract
different representations from the input video. One model extract the discriminative
spatial features (i.e., encoded visual representations), while the other network extract
temporal features (i.e., temporal flow of spatial features) from the input video. For instance,
Wang et al. [11] have proposed a two-stream CNN architecture approach for human
activity recognition. Their approach utilizes two separate CNNs to extract spatial and
temporal features from the input video frames. They have also introduced a video frames
segmentation strategy, which involves segmenting the input video into three segments.
The two-stream CNN architecture is then applied to these extracted segments to perform
segment classification. The segment classification scores are then combined using average
pooling to perform video-level classification. Karpathy et al. [9] have proposed a dual-
stream 2DCNN framework, to model both spatial and temporal features from the given
video frames. To expedite the computation process, they operate their dual-stream CNN
model on two different resolution of video frames. The extracted features from both the
models are then fused together to obtain spatial-temporal representation of human actions
in video. In another work, Zhang et al. [13] have introduced a multi-task learning approach
for human activity recognition in low-resolution videos. To improve the resolution of the
input video, they have proposed two super-resolution techniques that transformed the
low-resolution input video into a high-resolution video. The transformed high-resolution
video frames are then fed to their dual-stream classification network for human activity
recognition task.

Unlike the two-stream 2DCNN approaches, the CNN + LSTM paradigm uses two
different types of networks for spatial and temporal features representation learning. The
first part of this paradigm uses 2DCNN architecture to extract discriminative spatial
features and convert it to latent representation, where the later part operates the RNN
model on the extracted latent representation and learns the temporal hidden patterns in the
spatial features. For instance, Srivastava et al. [15] have proposed unsupervised encoder
and decoder long short-term memory (LSTM) networks for learning temporal modeling
of human actions. The authors initially transformed the input video into a fixed-length
representation of temporal features using an encoder LSTM network. Subsequently, they
employed a decoder network to reconstruct the video from the latent representation, which
facilitated human action predictions. Donahue et al. [14] have presented a recurrent
convolution driven approach called long term recurrent convolutional network (LRCN) for
recognizing human actions in videos. They have used a 2DCNN architecture to transform
the input video frames to 1D latent representation of spatial features. The extracted latent
representations are then fed to an LSTM network to capture the temporal changes in the
extracted spatial features across array of frames. In the work presented in [18], Sudhakaran
et al. have utilized a task-specific recurrent unit that incorporates a spatial attention
mechanism. This mechanism enables the capture of salient features across sequences of
video frames. The extracted salient features are then processed by an LSTM network
to learn the temporal relations of the salient information, facilitating video-level activity
recognition. Sharma et al. [16] have proposed the utilization of a deep multi-layer LSTM
for the recursive estimation of visual attention maps. Their approach involves applying the
multi-layer LSTM to RGB video frames, allowing for the computation of weighted attention
maps through recursive operations. They have claimed that their proposed weighted
attention maps mechanism greatly helps the model in enhancing feature representation,
which turns in better performance of the model for the activity recognition task.
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Both the two-stream 2DCNN and CNN + LSTM based methods use two distinct
architectures for capturing spatiotemporal features in video frames. The utilization of two
different networks makes these approaches computationally inefficient, thereby, increasing
the overall computational complexity of the model for the activity recognition task. To
alleviate the computational burden of the model, numerous studies have proposed unified
end-to-end 3DCNN approaches that encapsulate the learning objective of both spatial and
temporal features through a single model. Typically, 3DCNNs utilized the first two channel
of the learnable kernels for capturing spatial features, where the last channel captures
the temporal flow of the spatial features across the sequence of input data samples (i.e.,
video frames in case of human activity recognition). For example, Diba et al. [19] have
introduced a modified version of the DenseNet [24] architecture called DenseNet-3D or
temporal 3DCNN (T3D). They have achieved this by replacing 2D convolution and pooling
kernels with 3D convolution and pooling kernels. Through their experiments, they have
claimed that their T3D model demonstrates the potential to capture both short and long-
term spatiotemporal features within video sequences. In another study, Varol et al. [20]
have presented a specialized variant of CNN known as long-term temporal convolution
(LTC). They have extended the temporal depth of their 3DCNN convolutional layers
and reduced the receptive field of feature maps. These modifications have allowed the
model to effectively learn long-term spatiotemporal patterns in video streams. To capture
temporal-specific features, Hussain et al. [22] have proposed a multi-scale 3DCNN called
Timeception that is designed to handle significant fluctuations in the temporal dimension
by accommodating different temporal extents, which helps to effectively recognize long
and intricate actions. The advent of 3DCNN concept has allowed researchers to solve the
sequential learning task using unified approach instead of using two different architectures.
Although, the reported 3DCNN-based approached have shown noticeable improvement
over two-stream 2DCNN and RNN-based approaches, these models are usually over-
parameterized and can be optimized in terms of task-specific parameters reduction.

To address the limitations of existing 3DCNNs for the human activity recognition
task, this paper proposes a residual 3DCNN architecture with encapsulated 3D channel
and spatial attention mechanisms. The proposed DA-R3DCNN framework uses a residual
3DCNN architecture, where each convolution layers is stacked with a channel and spatial
attention module that helps our backbone model to progressively learn salient features
during training. This way, the 3D channel and spatial attention module encourages the
backbone residual 3DCNN to enhance the representation of salient information across the
multiple 3D convolution layers and eliminates the contribution of sparse parameters in the
learning process. By eliminating the sparsity of parameter space, the proposed framework
learns robust features while having a small parameters space.

3. Proposed DA-R3DCNN Human Activity Recognition Framework

This section presents the detailed overview of the proposed DA-R3DCNN architecture
and its sub-components. The proposed framework incorporates three essential components:
a 3DCNN architecture for learning spatiotemporal representations, a 3D convolution
residual block, and a dual-attention module (comprising channel and spatial attention).
These components work together to enable the residual 3DCNN to effectively capture
salient features within video frames. For better understanding, we divided the discussion
on these components in separate sections. First, we provide insights of the proposed
residual 3DCNN, focusing on architecture details, and then present the technical details
of the 3D convolution residual block. Finally, we present the detailed technical aspects
of channel and spatial attention. The visual overview of our proposed DA-R3DCNN
framework and its workflow is depicted in Figure 1.
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Figure 1. The graphical abstract of our proposed DA-R3DCNN network architecture.

3.1. DA-R3DCNN Architecture

In this work, we propose a residual 3DCNN model coupled with dual-channel spatial
attention mechanism. The proposed DA-R3DCNN network consists of eight 3D convo-
lutional + batch normalization layers, four 3D max pooling layers, three residual blocks,
and four dual-attention modules. The formation of convolution layers in our proposed
DA-R3DCNN model is determined through empirical assessments. It is important to note
that we maintained a consistent number of filters across all standard 3D convolution and
residual 3D convolution layers, with a fixed value of 128 kernels per layer. Furthermore,
all 3D convolution layers, including residual 3D convolution layers, are coupled with
batch normalization layers. The architectural details of the proposed DA-R3DCNN model
are given in Table 1. As given in Table 1, the first 3D convolutional layer operates 128
kernels of size 3× 3× 3 on input frames, which are then down-sampled by the first 3D max
pooling layer having a kernel size of 3× 3× 3. The second 3D convolution layer operates
128 kernels of size 3× 3× 3 on the output feature maps from the first 3D max pooling
layer. The convoluted feature maps are then operated by the first attention module that
computes channel and spatial attention in input feature maps from the second 3D convo-
lution layer, followed by the first residual block enhancing feature representations using
residual convolution connection. The output features maps from the first residual block are
then down-sampled by the second 3D max pooling layer, followed by two consecutive 3D
convolution layers (i.e., third and fourth 3D convolution layers) which operate 128 kernels
of size 3× 3× 3 on the output feature maps from the second 3D max pooling layer. The
convoluted feature maps are then operated by the second attention module, followed by
the second residual block. The output feature maps from the second residual block are then
down-sampled by the third 3D max pooling layer having kernel size of 3× 3× 3.

The intermediate pooled feature maps from the third 3D max pooling layer are then
operated by two consecutive 3D convolution layers (i.e., fifth and sixth 3D convolution
layers) using 128 kernels of size 3× 3× 3. The convoluted feature maps from the fifth
and sixth 3D convolution layers are then operated by the third attention module, followed
by the third residual block. The resultant feature maps from the third residual block are
further down-sampled by the fourth 3D max pooling layer having kernel size of 3× 3× 3.
The down-sampled feature maps form fourth 3D max pooling layer are further convoluted
by the seventh and eighth 3D convolution layers, having 128 kernels of size 3× 3× 3. The
output convoluted feature maps from the seventh and eighth 3D convolution layers are
then operated by the fourth attention module. The feature maps generated by the fourth
attention module are further improved by passing them through the fourth residual block.
Subsequently, these feature maps are down-sampled using the fifth 3D max pooling layer.
The pooled feature maps are then converted to 1D (i.e., 1× n size, where n represents the
number of feature values) latent representation by 3D global average pooling layer. The
resultant 1D feature values are then operated by 2 consecutive fully connected layers (i.e.,
FC1 and FC2 layers) having dimensions of 1× 512. Finally, the output (i.e., logits having
negative and positive values) of FC1 and FC2 layers are passed to softmax layer which
converts it to final probabilities (values between 0 and 1).
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Table 1. Architectural overview of our proposed DA-R3DCNN Framework.

Layer Input Channels Number of Kernels Kernel Size Activation Padding Output Channels

Conv 1 + BN 3 128 3× 3× 3 ReLU 1 128

3D Max pooling Layer 1

Conv 2 + BN 128 128 3× 3× 3 ReLU 1 128

Channel + Spatial Attention Module 1

3D Residual Block 1

3D Max pooling Layer 2

Conv 3 + BN 128 128 3× 3× 3 ReLU 1 128
Conv 4 + BN 128 128 3× 3× 3 ReLU 1 128

Channel + Spatial Attention Module 2

3D Residual Block 2

3D Max pooling Layer 3

Conv 5 + BN 128 128 3× 3× 3 ReLU 1 128
Conv 6 + BN 128 128 3× 3× 3 ReLU 1 128

Channel + Spatial Attention Module 3

3D Residual Block 3

3D Max pooling Layer 4

Conv 7 + BN 128 128 3× 3× 3 ReLU 1 128
Conv 8 + BN 128 128 3× 3× 3 ReLU 1 128

Channel + Spatial Attention Module 4

3D Residual Block 4

3D Max pooling Layer 5

3D Average Pooling Layer

FC1-(512)

FC2-(512)

Softmax (Number of classes)

3.2. 3D Residual Convolution Block

To limit the propagation of vanishing gradients across the network layers, we used a
3D residual convolution mechanism inspired by the 2D residual convolution in [25], with
convoluted shortcut path. As shown in Figure 2, the utilized 3D residual convolution block
consists of three convolution layers, with one additional convolution layer over the shortcut
path, where each convolution layer is binned with a batch normalization layer. The second
convolution layer in the residual block operates a 3× 3 size kernel, where the first, third,
and the shortcut path convolution layers operate 1× 1 size kernels. Unlike, the original
residual block presented in [25], in this paper, we used 3D convolution block containing
3D convolution layers instead of 2D convolution layers. Further, instead of using a plain
shortcut path as used in [25], in this paper, we used a 3D convoluted shortcut path to
ensure the compatibility of input and output dimensions. The 3D residual convolution
block used in this paper consists of two key components, the residual mapping and the
shortcut path (skip connection). Mathematically, the utilized 3D residual convolution block
can be expressed as follows:

y = g(x, w) + x′, (1)

where x is the input of the residual block and g represents the mapping function (con-
volution layers of the residual block), which learns the mapping (transforming input to
output) between input and output using a set of weights represented by w. The variable x′

represents the convoluted shortcut path having 1× 1× 1 convolution, which enables the
gradients to flow more easily through the network layers resulting in better performance.
Finally, variable y denotes the weighted mapping of input to output of the residual block.
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Figure 2. The visual overview of the utilized 3D residual convolutional block used in this study, with
convoluted shortcut path.

3.3. Dual Channel-Spatial Attention Module

Our proposed framework utilizes an attention-driven CNN architecture to selectively
concentrate on the most significant regions within video frames. This method enables
efficient and accurate localization of the salient regions while also enhancing the quality
of the feature representation. The proposed attention mechanism is the modification of
the convolutional block attention module (CBAM) [26]. To achieve this modification, the
7× 7 convolution layer in CBAM is replaced with a 3D convolution layer having a kernel
size of 3× 3× 3. Additionally, the spatial attention module is fused with the intermediate
output of the channel attention module using an element-wise product operation. The
resulting dual-attention block is visually represented in Figure 3. Our proposed approach
employs a fusion of channel and spatial attentions to efficiently extract important features
from video frames while minimizing the number of parameters required. This design not
only improves the representation of features but also reduces overhead. To implement this
approach, we incorporated a stacked dual-attention module after every two consecutive
convolutional layers in our network. This construction strategy optimizes the extraction of
salient features, resulting in a highly efficient and accurate model. The channel attention
module in our proposed architecture calculates the weighted contribution of RGB channels
by applying intermediate channel attention AC to the output feature maps FM from the
previous convolutional layer. This process results in the channel attention AttC, which is
used to enhance the overall feature representation. Once the channel attention module
computes the channel attention feature maps AttC, they are then passed into the spatial
attention module for further processing. The spatial attention module uses the channel
attention maps to identify relevant object-specific regions within the video frames. To
generate the refined feature maps FM′ , we fused the spatial attention feature maps AttS
with the input feature maps FM using a residual skip connection by employing an element-
wise addition operation. This approach significantly enhances the quality of the feature
representation, enabling more precise localization of salient regions. Mathematically,
channel attention, spatial attention, and refined attention feature maps can be expressed
as follows:

AttH×W×C
C = AC(FH×W×C

M )⊗ FH×W×C
M , (2)

AttH×W×C
S = AS(AttH×W×C

C )⊗ AttH×W×C
C , (3)
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FH×W×C
M′ = AttH×W×C

S ⊕ FH×W×C
M (4)

In the above equations, H, W, and C represent the height, width, and the number
of channels of the feature maps, respectively, and AC and AS represent the intermediate
channel and spatial attentions. The refined feature maps, denoted as FM′ , are obtained
by fusing the spatial attention feature maps AS with the input feature maps FM. This
process allowed us to enhance the representation of features and improve the quality of the
final output.

Figure 3. The visual overview of the dual channel-spatial attention module.

3.3.1. Channel Attention

In the context of image/object recognition problems, the contribution of each color
channel is crucial in achieving accurate pattern recognition. CNN models leverage this
information by constructing feature maps from the input image data and extracting deep
discriminative features over multiple convolutional layers. However, certain color chan-
nels may be more important than others in the recognition process, and often the object
recognition model takes this into account during training. This approach allows an object
recognition model to capture the most important visual features of the input images and
improve recognition accuracy. Prior attention-based approaches in video analysis utilized
either global max pooling or global average pooling layers. However, the proposed DA-
R3DCNN model surpasses this limitation and combines both pooling methods to extract
more effective features. The global max pooling layer selects the maximum value from the
receptive field, emphasizing highly activated values, while the global average pooling layer
estimates equally weighted feature maps for each channel. By leveraging the strengths
of both pooling techniques, the model can capture and highlight the most important and
discriminative features in videos. This results in an improved performance in various video
analysis tasks, including action recognition and spatio-temporal localization.

Once the feature maps have been computed, they are fed into a shared multilayer
perceptron (MLP), which comprises two fully connected layers, each with 512 nodes. The
MLP leverages a rectified linear unit (ReLU) activation function to learn the non-linearity
between the two fully connected layers. The MLP then produces two distinct feature
vectors—V1×1×C

C−max and V1×1×C
C−avg —through global max pooling and global average pooling,

respectively. These feature vectors play a critical role in capturing the most salient and
essential information present in the feature maps. This approach can significantly enhance
the performance of the model across various video analysis tasks. After computing fea-
ture vectors from global max pooling and global average pooling, they are fused through
elementwise addition and passed through a sigmoid activation function σ to obtain inter-
mediate channel attention features A1×1×C

C . These features are then fused with the input
feature maps FH×W×C

M through a residual skip connection using element-wise multiplica-
tion operation, resulting in the final channel attention feature maps AttH×W×C

C . Figure 4
provides a visual representation of this process. Mathematically, the channel attention and
its key components can be formulated as follows:

V1×1×C
C−max = f c2(ReLU( f c1(maxpool(FH×W×C

M )))), (5)
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V1×1×C
C−avg = f c2(ReLU( f c1(avgpool(FH×W×C

M )))), (6)

A1×1×C
C = σ(V1×1×C

C−max ⊕V1×1×C
C−avg ), (7)

AttH×W×C
C = A1×1×C

C ⊗ FH×W×C
M , (8)

where f c1 and f c2 denote the first and the second fully connected layer, respectively.

Figure 4. Architecture of the dual channel-spatial attention module.

3.3.2. Spatial Attention

The spatial attention mechanism involves learning a weighting mechanism that as-
signs importance scores to different spatial locations within an image. These importance
scores indicate the relevance or saliency of each location in relation to the task at hand. The
mechanism typically consists of trainable parameters that are optimized during the training
process. To highlight the salient object-specific regions in the feature maps, DA-R3DCNN
takes advantage of inter-spatial features and their relationship between channels. This
allows for more accurate tracing of the target object in the feature maps. DA-R3DCNN
achieves this by computing the relation of inter-spatial features between channels through
max pooling and average pooling applied to the input channel attention feature maps,
resulting in max-pooled channel attention AttH×W×1

C−max and average-pooled channel attention
AttH×W×1

C−avg , respectively. The concatenated max-pooled channel attention AttH×W×1
C−max and

average-pooled channel attention AttH×W×1
C−avg are passed through a 3× 3 convolutional

layer Conv3×3 to form single-channel convoluted feature maps. The resulting maps are
then normalized by a sigmoid activation function to produce intermediate spatial attention
features AH×W×1

S . These intermediate features are fused with the input channel attention
feature maps AttH×W×C

C using a residual skip connection through element-wise multiplica-
tion operations to obtain the final spatial attention feature maps AttH×W×C

S as illustrated
in Figure 4. Mathematically, spatial attention and its key components can be expressed
as follows:

AttH×W×1
C−max = maxpool(AttH×W×C

C ), (9)
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AttH×W×1
C−avg = avgpool(AttH×W×C

C ), (10)

AH×W×1
S = σ(Conv3×3(AttH×W×1

C−max

⊎
AttH×W×1

C−avg )), (11)

AttH×W×C
S = AH×W×1

S ⊗ AttH×W×C
C , (12)

In the above equations,
⊎

denotes the concatenation operation, fusing AttH×W×C
C and

AttH×W×C
S .

4. Results and Discussion

In this section, we provide a comprehensive experimental evaluation of our proposed
framework on various human activity recognition datasets. This section begins by pro-
viding a brief overview of the datasets used, and the implementation details and tools
utilized in this study. Afterwards, we present a detailed analysis of the experimental results
obtained from the proposed framework, including a comparative analysis with the state-of-
the-art human action recognition methods. Additionally, an ablation study is presented,
where the proposed method was analyzed with different modifications to the network
architecture. Lastly, we assess the runtime performance of our proposed framework using
metrics such as seconds per frame (SPF) and frames per second (FPS). We compare the
obtained runtime results with the runtime results of state-of-the-art methods.

4.1. Datasets and Implementation Details

In this paper, we evaluate the perofmance of our DA-R3DCNN method on four
publicly available benchmark datasets for human activity recognition tasks: UCF11 [27],
HMDB51 [28], UCF50 [29], and UCF101 [30]. These datasets are exclusively created for
human activity recognition task, and contain videos collected from different sources and
have different lengths, resolutions, and viewpoints of humans actions in the videos. The
UCF11 [27] dataset comprises 1640 videos collected from YouTube which are then cat-
egorized into 11 distinct action classes of human actions. All videos in the dataset are
annotated by action appearance, where each video has a spatial resolution of 320× 240.
The HMDB51 [28] dataset is a relatively large dataset, containing 6849 videos, categorized
into 51 categories. This dataset has a wide range of variation in camera motion, object scale,
view point, and background clutter, which makes it challenging for human action recog-
nition tasks. Videos in this dataset are collected from different sources, including movies,
YouTube, Prelinger archive, and Google videos. The UCF50 [29] dataset consists of 6676
realistic videos collected from YouTube, containing human actions performed by different
subjects in different environments with varying viewpoints. Videos in this dataset are
divided into 50 distinct actions by action appearance in the video. Finally, the UCF101 [30]
is the largest dataset amongst the above mentioned datasets, containing 13,320 videos of
different human actions. This dataset is the extended version of the UCF50 [29], having
comparatively more videos and large variation in actions, categorized into 101 action
classes. The number of videos per class in each dataset is approximately 100 to 200, and the
duration of video clips is in between 2 and 3 s, with a frame rate of 25 FPS.

For implementation, we used Python version 3 utilizing Keras with a TensorFlow 2.0
backend. We performed the experiments on a computer system equipped with an Intel(R)
Xeon(R) CPU E5-2640, operating at a frequency of 2.50 GHz, and 32 GB of dedicated main
memory (RAM). Additionally, we employed two dedicated Tesla GPUs with compute
capabilities of 7.5 as hardware resources along with the Nvidia CUDA 11.0 library. To train
the proposed DA-R3DCNN model, we used 70% of data for training, 20% for validation,
and 10% for testing the model performance after training. The same data splitting ratio
was considered for each dataset used in the experiments of this paper. It is worth men-
tioning here that each set of data (including training, validation, and test sets) contained
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all classes, where each class consisted of videos as per their corresponding split ratios
(training 70%, validation 20%, and test 10%). Further, for model’s weights adjustment and
convergence, we employed the Adam optimizer with a fixed learning rate of 0.0001 and
utilized categorical cross-entropy loss to adjust the network weights. We set the input
sequence length to 16 frames, allowing the DA-R3DCNN model to extract spatiotemporal
information by sliding multiple 3D kernels over the sequence of frames. To obtain and
compare the performance of our DA-R3DCNN method with the state-of-the-art methods,
we used two different evaluation metrics: model accuracy performance evaluation and
runtime performance evaluation. For accuracy comparison, we compared the average
accuracy of our model for each dataset with the state-of-the-art methods, whereas, for
runtime performance comparison, we used two metrics: FPS and SPF.

4.2. Quantitative Evaluation

In this section, we present the performance evaluation of the proposed DA-R3DCNN
framework. To evaluate the performance of our proposed framework, we conducted
quantitative performance evaluation experiments on the four benchmark datasets: UCF11,
UCF50, HMDB51, and UCF101. To better analyze the model performance for a specific
class in each dataset, we computed the confusion matrix (reflecting true positive, false
positive, true negative, and false negative predictions) based on the model predictions for
each dataset. The obtained confusion matrices for UCF11, UCF50, HMDB51, and UCF101
datasets are depicted in Figure 5. Further, the obtained quantitative results for both with
and without the dual-attention mechanism are listed in Table 2. Based on the listed values
in Table 2, it is evident that the proposed method demonstrates strong performance when
combined with the dual-attention module. For instance, when applied to the UCF11 dataset,
the proposed method achieved an accuracy of 98.6% with the dual-attention module, while
achieving an accuracy of 93.1% without the dual-attention module. When applied to the
HMDB51 dataset, the proposed method achieved an accuracy of 82.5% when coupled
with the dual-attention module and attained an accuracy of 77.2% without the module.
Similarly, on the UCF101 dataset, the proposed method obtained an accuracy of 97.8% with
the dual-attention module and had an accuracy of 93.6% without the module. The listed
accuracy values demonstrate that the proposed method with the dual-attention module
achieved improvements of 5.5%, 5.6%, 5.3%, and 4.2% for the UCF11, UCF50, HMDB51, and
UCF101 datasets, respectively. Thus, the obtained noticeable improvements in accuracies
for each dataset validate the effectiveness of the dual-attention module for the activity
recognition task.

4.3. Comparison with the State-of-the-Art Methods

This section presents a comprehensive quantitative comparison between our proposed
DA-R3DCNN model and state-of-the-art methods for human action recognition. The
comparisons were based on average accuracy and were conducted on the UCF11, UCF50,
HMDB51, and UCF101 datasets, as shown in Tables 3, 4, 5, and 6, respectively. Table 3
showcases the results that indicate that our proposed DA-R3DCNN achieved the highest
accuracy of 98.6%, surpassing all other methods. The Fusion-based discriminative features
method [31]came in second place, with an accuracy of 97.8%. Among the comparative
methods, the lowest accuracy on the UCF11 dataset was obtained by the Local-global
features + QSVM method [32], which achieved an accuracy of 82.6%. The rest of the
comparative methods included Multi-task hierarchical clustering [33], BT-LSTM [34], Deep
autoencoder [35], Two-stream attention LSTM [36], Weighted entropy-variances-based
feature selection [37], Dilated CNN + BiLSTM + RB [38], DS-GRU [39], Squeezed CNN [40],
BS-2SCN [41], and 3DCNN [42]. These methods achieved accuracies of 89.7%, 85.3%, 96.2%,
96.9%, 94.5%, 89.0%, 97.1%, 87.4%, 90.1%, and 85.1%, respectively. Based on the comparative
assessment, the proposed DA-R3DCNN achieved an average accuracy improvement of
8.47% as compared to the average results of state-of-the-art methods on the UCF11 dataset.

For the UCF50 dataset, the results presented in Table 4 validate that the proposed
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DA-R3DCNN framework achieved the best results by attaining an accuracy of 97.4%,
followed by the Deep autoencoder [35] method, which obtained a runner-up accuracy of
96.4%. Among all the comparative methods on the UCF50 dataset, the Local-global features
+ QSVM method [32] achieved the lowest accuracy of 69.4%. The other methods in the
comparison included Multi-task hierarchical clustering [33], Ensemble model with swarm-
based optimization [43], DS-GRU [39], Hybrid Deep Evolving Neural Networks [44], ViT
+ Multi Layer LSTM [45], and 3DCNN [42], which achieved accuracies of 93.2%, 92.2%,
95.2%, 77.3%, 96.1%, and 82.6%, respectively. Upon analyzing the comparative results
presented in Table 4, it is evident that the proposed DA-R3DCNN exhibited an average
accuracy improvement of 10.93% over the average results of the state-of-the-art methods
on the UCF50 dataset.

(a) (b)

(c) (d)

Figure 5. Confusion matrices computed for the proposed DA-R3DCNN framework for the test sets
of four experimented datasets: (a) UCF11 dataset, (b) UCF50 dataset, (c) HMDB51 dataset, and
(d) UCF101 dataset.

Table 2. The average accuracies obtained by our proposed framework with and without the dual-
attention module on UCF11, UCF50, HMDB51, and UCF101 datasets.

Dataset
Accuracy (%)

Without Dual Attention With Dual Attention

UCF11 93.1 98.6
UCF50 91.8 97.4

HMDB51 77.2 82.5
UCF101 93.6 97.8
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Table 3. Comparative analysis of the proposed DA-R3DCNN with the state-of-the-art methods on
the UCF11 dataset.

Method Year Accuracy (%)

Multi-task hierarchical clustering [33] 2017 89.7
BT-LSTM [34] 2018 85.3

Deep autoencoder [35] 2019 96.2
Two-stream attention LSTM [36] 2020 96.9

Weighted entropy-variances based feature selection [37] 2021 94.5
Dilated CNN+BiLSTM+RB [38] 2021 89.0

DS-GRU [39] 2021 97.1
Local-global features + QSVM [32] 2021 82.6

Squeezed CNN [40] 2022 87.4
Fusion-based discriminative features [31] 2022 97.8

BS-2SCN [41] 2022 90.1
3DCNN [42] 2022 85.1

DA-R3DCNN (Proposed) 2023 98.6
Bold value represents the best accuracy, where the italic value indicates the runner up accuracy.

Table 4. Comparative analysis of the proposed DA-R3DCNN with the state-of-the-art methods on
the UCF50 dataset.

Method Year Accuracy (%)

Multi-task hierarchical clustering [33] 2017 93.2
Deep autoencoder [35] 2019 96.4

Ensemble model with swarm-based optimization [43] 2021 92.2
DS-GRU [39] 2021 95.2

Local-global features + QSVM [32] 2021 69.4
Hybrid Deep Evolving Neural Networks [44] 2022 77.3

ViT + Multi Layer LSTM [45] 2022 96.1
3DCNN [42] 2022 82.6

DA-R3DCNN (Proposed) 2023 97.4
Bold value represents the best accuracy, where the italic value indicates the runner-up accuracy.

Table 5. Comparative analysis of the proposed DA-R3DCNN with the state-of-the-art methods on
the HMDB51 dataset.

Method Year Accuracy (%)

Multi-task hierarchical clustering [33] 2017 51.4
STPP+LSTM [46] 2017 70.5

Optical flow + multi-layer LSTM [47] 2018 72.2
TSN [48] 2018 70.7

IP-LSTM [49] 2019 58.6
Deep autoencoder [35] 2019 70.3

TS-LSTM + temporal-inception [50] 2019 69.0
HATNet [51] 2019 74.8

Correlational CNN + LSTM [52] 2020 66.2
STDAN [53] 2020 56.5

DB-LSTM+SSPF [54] 2021 75.1
DS-GRU [39] 2021 72.3

TCLC [55] 2021 71.5
Evidential deep learning [56] 2021 77.0

Semi-supervised temporal gradient
learning [57] 2022 75.9
BS-2SCN [41] 2022 71.3

ViT + Multi Layer LSTM [45] 2022 73.7
MAT-EffNet [58] 2023 70.9

DA-R3DCNN (Proposed) 2023 82.5
Bold value represents the best accuracy, where the italic value indicates the runner up accuracy.
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In the case of the challenging HMDB51 dataset, the proposed DA-R3DCNN achieved
the highest accuracy of 82.5%, surpassing all other comparative methods considered in
our assessments. The Evidential deep learning method [56] emerged as the runner-up
with an accuracy of 77.0%. Among the comparative methods, Multi-task hierarchical
clustering [33] achieved the lowest accuracy of 51.4% on the HMDB51 dataset. Other com-
parative methods included STPP + LSTM [46], TSN [48], Deep autoencoder [35], TS-LSTM
+ temporal-inception [50], HATNet [51], Correlational CNN + LSTM [52], STDAN [53],
DB-LSTM + SSPF [54], DS-GRU [39], TCLC [55], Semi-supervised temporal gradient learn-
ing [57], BS-2SCN [41], ViT + Multi Layer LSTM [45], and MAT-EffNet [58]. These methods
achieved accuracies of 70.5%, 72.2%, 70.7%, 58.6%, 70.3%, 69.0%, 74.8%, 66.2%, 56.5%, 75.1%,
72.3%, 71.5%, 75.9%, 71.3%, 73.7%, and 70.9%, respectively. From the list of comparative
assessments in Table 5, the proposed DA-R3DCNN achieved an average improvement of
19.01%, in terms of accuracy over the average results of the state-of-the-art methods on the
HMDB51 dataset.

Table 6. Comparative analysis of the proposed DA-R3DCNN with state-of-the-art methods on the
UCF101 dataset.

Method Year Accuracy (%)

Multi-task hierarchical clustering [33] 2016 76.3
Saliency-aware 3DCNN with LSTM [59] 2016 84.0

Spatio-temporal multilayer networks [60] 2017 87.0
Long-term temporal convolutions [20] 2017 82.4

CNN + Bi-LSTM [8] 2017 92.8
OFF [61] 2018 96.0

TVNet [62] 2018 95.4
Attention cluster [63] 2018 94.6

Videolstm [17] 2018 89.2
Two stream convnets [64] 2018 84.9

Mixed 3D-2D convolutional tube [65] 2018 88.9
TS-LSTM + Temporal-inception [50] 2019 91.1

TSN + TSM [66] 2019 94.3
STM [67] 2019 96.2

Correlational CNN + LSTM [52] 2020 92.8
ResCNN-DBLSTM [68] 2020 94.7

SC-BDLSTM [69] 2021 94.2
Ensemble model with swarm-based optimization [43] 2021 96.3

BS-2SCN [41] 2022 90.1
TDS-BiLSTM [70] 2022 94.7

META-RGB+Flow [71] 2022 96.0
Spurious-3D Residual Network [72] 2023 95.6

DA-R3DCNN (Proposed) 2023 97.8
Bold value represents the best accuracy, where the italic value indicates the runner up accuracy.

Finally, for the UCF101 dataset, the results listed in Table 6 demonstrate that the
proposed DA-R3DCNN surpassed all other comparative methods by achieving the highest
accuracy of 97.8%. The Ensemble model with swarm-based optimization method [43]
secured the runner-up position with an accuracy of 96.3%. On the UCF101 dataset, the
Multi-task hierarchical clustering [33] obtained the lowest accuracy of 76.3% among all
the comparative methods. Additional comparative methods included Saliency-aware
3DCNN with LSTM [59], Spatio-temporal multilayer networks [60], Long-term tempo-
ral convolutions [20], CNN + Bi-LSTM [8], OFF [61], TVNet [62], Attention cluster [63],
Videolstm [17], Two stream convnets [64], Mixed 3D-2D convolutional tube [65], TS-LSTM
+ Temporal-inception [50], TSN + TSM [66], STM [67], Correlational CNN + LSTM [52],
ResCNN-DBLSTM [68], SC-BDLSTM [69], BS-2SCN [41], TDS-BiLSTM [70], META-RGB +
Flow [71], and Spurious-3D Residual Network [72]. These methods achieved accuracies of
84.0%, 87.0%, 82.4%, 92.8%, 96.0%, 95.4%, 94.6%, 89.2%, 84.9%, 88.9%, 91.1%, 94.3%, 96.2%,
92.8%, 94.7%, 94.2%, 90.1%, 94.7%, 96.0%, and 95.6%, respectively. Furthermore, it is evident
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from the results listed in Table 6 that the proposed DA-R3DCNN exhibited an average accu-
racy improvement of 7.17% as compared to the average results of state-of-the-art methods
on the UCF101 dataset. Additionally, for clear understanding of comparative assessment,
we also present the visual overview of comparative analysis of our proposed DA-R3DCNN
with the state-of-the-art human action recognition methods on UCF11, UCF50, HMDB51,
and UCF101 datasets in Figure 6. The quantitative comparisons depicted in Figure 6
illustrate the performance of comparative methods published up to 2023.

Furthermore, to assess the performance generalization of our method, we conducted an
analysis of confidence intervals, following the methodology outlined in [73]. This analysis
was performed on each dataset used in this study, and a comparison was made between the
confidence intervals of our proposed method and those of the state-of-the-art approaches. It
is worth noting that a confidence level of 95% was employed for estimating the confidence
intervals of both our method and the state-of-the-art methods. The resulting confidence
interval values for our proposed method and the state-of-the-art methods are given in
Table 7. Upon examining these values, we observe that our proposed method exhibited
higher confidence levels with narrower intervals on all the dataset when compared to
the state-of-the-art methods. For instance, for the UCF11 dataset, the confidence interval
of our proposed method spanned from 97.31 to 99.10, with a range of only 1.79. In
contrast, the average confidence interval of the state-of-the-art methods ranged from 87.74
to 94.20, showing a comparatively larger range of 6.46. Similarly, for the UCF50 dataset,
our proposed method achieved a confidence interval between 96.78 and 98.42, with a small
range of 1.64, while the state-of-the-art methods had an average confidence interval ranging
from 79.86 to 95.74, indicating a larger range of 15.88. Analyzing the HMDB51 dataset, we
observe that our proposed method had a confidence interval of 92.21 to 94.16, with a narrow
range of 1.95. In contrast, the state-of-the-art methods exhibited an average confidence
interval ranging from 65.97 to 72.67, demonstrating a comparatively larger range of 6.70.
Lastly, for the UCF101 dataset, our proposed method demonstrated a confidence interval
between 96.89 and 98.46, with a small range of 1.57, whereas the state-of-the-art methods
have an average confidence interval ranging from 88.93 to 93.57, indicating a larger range
of 4.64. It is worth mentioning here that our proposed method consistently achieved higher
confidence levels across all datasets, with narrower intervals, in comparison to the state-
of-the-art methods. This observation serves to verify the effectiveness of our proposed
method in surpassing existing approaches in terms of performance generalization.

The conducted comparative assessments validate the effectiveness of the proposed
DA-R3DCNN based on the obtained improvement in the results, across each dataset used
in this work. These results verify the robustness of our proposed DA-R3DCNN framework
over the state-of-the-art methods for human action recognition task.

Table 7. The obtained confidence interval values (with 95% confidence) for our proposed method
and state-of-the-art mainstream methods.

Dataset State-of-the-Art Methods Ours

UCF11 [87.74–94.20] [97.31–99.10]
UCF50 [79.86–95.74] [96.78–98.42]

HMDB51 [65.97–72.67] [92.21–94.16]
UCF101 [88.93–93.57] [96.89–98.46]

First value in the square brackets represents the lower bound and the second value represents the upper bound.
Together, the lower and upper bounds represent the confidence interval.
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Figure 6. The graphical overview of the conducted comparative analysis of our proposed DA-
R3DCNN with the state-of-the-art methods on (a) UCF11 dataset, (b) UCF50 dataset, (c) HMDB51
dataset, and (d) UCF101 dataset.

4.4. Run Time Analysis

In this section, we examine the inference time of our proposed DA-R3DCNN frame-
work and assess its suitability for real-time human activity recognition tasks, considering
metrics such as SPF and FPS. To evaluate the overall run time performance, we conducted
inference time measurements of the proposed DA-R3DCNN model on both GPU and CPU
computing platforms. These measurements were then compared with the runtime results
of the state-of-the-art human activity recognition methods, and the findings are presented
in Table 8. This analysis provides a comprehensive perspective on the run time efficiency of
our proposed DA-R3DCNN model across different computing platforms. The results pre-
sented in Table 8 highlight the superior inference efficiency of the proposed DA-R3DCNN
model as compared to state-of-the-art methods, as demonstrated by SPF and FPS metrics
on both GPU and CPU computing platforms. The findings indicate that, when utilizing
GPU resources, our proposed DA-R3DCNN achieved the best SPF of 0.0045 and an FPS
of 240. The runner-up method, OFF [61], achieved an SPF of 0.0048 and an FPS of 215.
Conversely, the Videolstm [17] method exhibited the highest SPF of 0.0940 and the lowest
FPS of 10.6, indicating the least favorable run time performance among all the comparative
methods. These results underscore the exceptional inference efficiency of our proposed
DA-R3DCNN model when compared to existing approaches. On the CPU computing
platform, the proposed DA-R3DCNN framework demonstrated significant superiority
over existing methods, achieving an SPF of 0.0058 and an FPS of 187. In comparison, the
second-best performing method, Optical-flow + Multi-layer LSTM [47], achieved an SPF
of 0.18 and an FPS of 3.5. Conversely, the Deep autoencoder [35] method exhibited the
poorest runtime performance with an SPF of 0.43 and an FPS of 1.5. These results further
validate the exceptional run time efficiency of our proposed DA-R3DCNN framework
when compared to alternative approaches on the CPU computing platform.

Further, to ensure a fair comparison of the run time results obtained for both GPU
and CPU platforms, we scaled the run time results (as in [74]) of the state-of-the-art
methods to match the hardware resources utilized in our study (i.e., a 2.5 GHz CPU and a
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585 MHz GPU). The scaled run time results are provided in the second section of Table 8,
enabling an equitable assessment and comparison of the performance of the proposed
DA-R3DCNN framework against existing methods. Analyzing the scaled results presented
in Table 8, it becomes evident that scaling amplifies the advantages of the proposed DA-
R3DCNN model in terms of SPF and FPS metrics for both GPU and CPU computing
platforms. When utilizing GPU resources, the proposed DA-R3DCNN outperformed other
methods with the best SPF of 0.0045 and an FPS of 240. The STPP + LSTM [46] method
secured the second-best position, with SPF and FPS values of 0.0063 and 154.6, respectively.
These findings highlight the enhanced performance of the proposed DA-R3DCNN model
when considering the scaled runtime results, solidifying its superiority over alternative
approaches. The Videolstm [17] method had the highest SPF of 0.1606 and lowest FPS of 6.2,
indicating the worst run time results amongst all the comparative methods. When running
on CPU computing platform, the proposed DA-R3DCNN framework had the lowest SPF
of 0.0058 and highest FPS of 187, indicating the best results obtained on CPU resources
as compared to other comparative methods. Among the scaled results in Table 8, the
Optical-flow + Multi-layer LSTM [47] emerged as the runner-up with an SPF of 0.23 and an
FPS of 2.6 on the CPU computing platform. On the other hand, the Deep autoencoder [35]
method exhibited the least favorable performance on CPU resources, achieving an SPF of
0.56 and an FPS of 1.1. These findings further solidify the superior run time performance
of the proposed DA-R3DCNN model when compared to alternative methods on the CPU
computing platform.

Table 8. Comparison of the run time performance between our proposed DA-R3DCNN framework
and state-of-the-art human action recognition methods, considering both scaled and unscaled results.

Method
Seconds per Frame (SPF)

Year
Frames per Second (FPS)

GPU CPU GPU CPU

Without Scaling

STPP + LSTM [46] 0.0053 - 2017 186.6 -
CNN + Bi-LSTM [8] 0.0570 - 2017 20 -

OFF [61] 0.0048 - 2018 215 -
Videolstm [17] 0.0940 - 2018 10.6 -

Optical-flow + Multi-layer LSTM [47] 0.0356 0.18 2018 30 3.5
Deep autoencoder [35] 0.0430 0.43 2019 24 1.5

TSN + TSM [66] 0.0167 - 2019 60 -
IP-LSTM [49] 0.0431 - 2019 23.2 -
STDAN [53] 0.0075 - 2020 132 -
DS-GRU [39] 0.0400 - 2021 25 -

DA-R3DCNN (Proposed) 0.0045 0.0058 2023 240 187

With Scaling

STPP + LSTM [46] 0.0063 - 2017 154.6 -
CNN + Bi-LSTM [8] 0.0974 - 2017 11.7 -

OFF [61] 0.0082 - 2018 125 -
Videolstm [17] 0.1606 - 2018 6.2 -

Optical-flow + Multi-layer LSTM [47] 0.0608 0.23 2018 17.5 2.6
Deep autoencoder [35] 0.0735 0.56 2019 14 1.1

TSN + TSM [66] 0.0458 - 2019 21.8 -
IP-LSTM [49] 0.0736 - 2019 13.57 -
STDAN [53] 0.0128 - 2020 77.2 -
DS-GRU [39] 0.0683 - 2021 14.6 -

DA-R3DCNN (Proposed) 0.0045 0.0058 2023 240 187

The best and runner-up SPF and FPS scores for GPU and CPU are highlighted in bold and italic text, respectively.

It is evident from the listed scaled and non-scaled results in Table 8 that the proposed
DA-R3DCNN provides significant improvement for both GPU and CPU computing plat-
forms. For instance, for non-scaled run time results, the proposed DA-R3DCNN provided
an improvement of up to 7× for SPF and 3× for FPS metric when running on GPU resources.
When running on CPU resources, the proposed DA-R3DCNN achieved an improvment of
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up to 52× for SPF and 74× for FPS for the non-scaled run time results. Similarly, for the
scaled run time results, the proposed DA-R3DCNN provided an improvement of 13× for
SPF and 5× for FPS when running on GPU resources. When running on CPU resources, the
proposed DA-R3DCNN framework achieved an improvement of 68× for SPF and 100×
for FPS. These results show the efficiency and applicability of the proposed DA-R3DCNN
method for real-time human activity recognition in resource constraint environments.

5. Conclusions and Future Research Directions

In this work, we have proposed an attention-driven 3DCNN with residual skip con-
nections for recognizing human activities in videos. The proposed method combines the
powerful characteristics of dual channel-spatial attention and residual 3D convolutional
neural network (3DCNN) into a unified framework for efficient modeling of human actions
and single instance training. The utilized dual channel-spatial attention mechanism incor-
porates both channel and spatial attentions, enabling the extraction of highly discriminative
features from regions of interest related to the objects involved in the activities. This results
in the generation of high-quality feature maps containing object saliency-aware features
boosting the overall learning process of the proposed residual 3DCNN network. By employ-
ing residual 3DCNN coupled with dual attention, our method, known as DA-R3DCNN,
effectively captures the temporal dynamics of human actions through the use of multiple
3D kernels. By leveraging the knowledge acquired from the immediately preceding frames
within the input sequence, the model becomes capable of learning the spatial and temporal
relationships within unseen frames. This enables the model to grasp the connections and
patterns existing between different frames. The incorporation of attention-guided learning
further enhances our method’s capability to acquire spatial and temporal understanding of
human actions, leading to improved learning performance during training and enhanced
prediction accuracy during inference.

We have extensively evaluated the performance of our proposed DA-R3DCNN method
on four widely recognized benchmark datasets for human action recognition: UCF11,
UCF50, HMDB51, and UCF101. These datasets are well-established in the research commu-
nity and serve as reliable benchmarks for comparison. Through rigorous experimentation
and comparison with the state-of-the-art approaches, we have demonstrated the superiority
of our method in terms of model robustness and computational efficiency. The obtained
results validate the efficacy of our approach in tackling the challenges of human action
recognition across diverse datasets. Further, we have assessed the run time performance
of our proposed framework in terms of seconds per frame (SPF) and frames per second
(FPS) on both CPU and GPU execution environments. This analysis has allowed us to
measure the computational efficiency of our method, and to provide valuable insights into
the speed of frame processing and overall video processing capabilities across different
hardware configurations. The run time assessment results clearly indicate that the proposed
DA-R3DCNN method exhibits remarkable improvements when leveraging GPU resources.
It demonstrates a significant enhancement of up to 13× in SPF and 5× in FPS metrics
as compared to the state-of-the-art methods. Additionally, even when limited to CPU
resources, our approach achieves substantial advancements, with SPF improving by 68×
and FPS by 100× as compared to existing approaches. These findings establish that the
proposed DA-R3DCNN method is exceptionally well-suited for real-time human activity
recognition on resource-constrained devices.

While our current implementation of the DA-R3DCNN method leverages the spa-
tial attention mechanism (channel and spatial attention), which has proven to be highly
effective, in our future work, we plan to incorporate a temporal attention mechanism for
precise temporal localization of human activities within video scenes. Additionally, we are
actively exploring the integration of multi-modal data, which holds significant potential for
recognizing complex human activities in uncertain environments. These future advance-
ments aim to further enhance the capabilities of our method in capturing both spatial and
temporal dynamics for improved activity recognition performance.
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DNNs Deep neural networks
CNN Convolutional neural network
3DCNN 3D Convolutional neural network
CBAM convolutional block attention module
DA-R3DCNN dual-attention residual 3D convolutional neural network
RNN Recurrent neural networl
LSTM Long short-term memory
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