
A Practical Approach to Modeling Uncertainty in Intrusion Analysis

Xinming Ou Raj Rajagopalan Sakthiyuvaraja Sakthivelmurugan
Kansas State University HP Labs Kansas State University

Abstract

Uncertainty is an innate feature of intrusion analysis due to the limited views provided by system
monitoring tools, including intrusion detection systems (IDS) and the numerous types of logs. Attack-
ers are essentially invisible in cyber space and those monitoring tools can only observe the symptoms
produced by malicious activities, mingled with the same effects produced by non-malicious activities.
Thus the conclusions one can draw from these observations inevitably suffer from varying degrees of
uncertainty, which is the major source of false positives/false negatives in intrusion analysis. This paper
presents a practical approach to modeling such uncertaintyso that the various security implications from
those low-level observations are captured in a simple logical language augmented with certainty tags.
We design an automated reasoning process so that the model can combine multiple sources of system
monitoring data and identify highly-confident attack traces from the numerous possible interpretations
of low-level observations. We develop our model formulation through studying a true intrusion that hap-
pened on a campus network, using a Datalog-like language to encode the model and a Prolog system
to carry out the reasoning process. Our model and reasoning system can reach the same conclusions
the human administrator did regarding which machines were certainly compromised. We then apply the
developed model to the Treasure Hunt (TH) data set, which contains large amounts of system monitoring
data collected during a live cyber attack exercise in a graduate course taught at University of California,
Santa Barbara. Our results show that the reasoning model developed from the true intrusion is effective
to the TH data set as well, and our reasoning system can identify high-confidence attack traces auto-
matically. Such a model thus has the potential of codifying the seemingly ad-hoc human reasoning of
uncertain events, and can yield useful tools for automated intrusion analysis.

1 Introduction
Intrusion detection is the last line of defense against cyber attacks. However building strong tools to detect
intrusions in typical environments has been elusive. At thesame time, forensic analysis has become im-
portant in the light of regulatory requirements as well as the appearance of sophisticated targeted attacks on
enterprise networks. Due to the close relationship betweenthe problems of intrusion detection and computer
forensics, we use the term “intrusion analysis” to capture both, namely how to identify attack traces from
large amounts of system monitoring data, either on the fly or off line. This problem in general is an inexact
science that has to admit a range of uncertainty in output. First, quantifying the results of intrusion sensing in
a robust manner has remained a hard problem for a variety of reasons [15]. Human administrators today use
a combination of intuition, experience, and low-level tools to create and support positive or negative judge-
ments on security events. Second, while the goal of intrusion analysis is detection of events at a high-level
of abstraction (e.g., a machine has been compromised and has been used to compromise others), tools today
operate with any reasonable accuracy only at low levels of abstraction (e.g., network packets, server logs,
etc.). Frequently, sophisticated attacks combine multiple vulnerabilities to achieve their goals, as a result of
which we have to combine the outputs of several disparate sensors manually to detect multi-step attacks that
are found today. While the low-level observations all have potential implications for attack possibilities, few,
if any of them can directly provide zero/one judgment at the high-level abstraction. Nevertheless, in many

1

network intrusions a relatively small number of such observationsaltogetherare sufficient to show that an
attack has certainly happened, as well as how it progressed.The difficulty is how to start from uncertain
views of the potential problem (e.g., IDS alerts) and quickly search for a few log entries or events among
millions so that the attacker’s hand is clearly shown. System administrators are highly time-constrained. An
automatic tool that can sift through the ocean of uncertainty to quickly and accurately locate the problem
areas will be highly valuable in practice.

1.1 A true-life incident

Consider the following sequence of events that actually occurred recently at a university campus. The Sys-
tem Administrator (SA) noticed an abnormally large spike incampus-network traffic (Observation 1). SA
took the netflow dump for that time period and ran a packet capture tool on it to search for known malicious
IP addresses and identified that four Trend Micro (anti-malware) servers had initiated IRC connections to
some known BotNet controllers (Observation 2). The SA suspected that the four Trend Micro servers had
been compromised. He sat down at one of the server consoles and dumped the memory, from which he
found what appeared to be malicious code modules (Observation 3). He also looked at the open TCP socket
connections and noticed that the server had been connectingto some other Trend Micro servers on campus
through the IRC channel (Observation 4). He concluded that all those servers were compromised witha
zero-day vulnerability in the Trend Micro server. He did thesame for the other identified servers and found
even more compromised servers. Altogether he identified 12 compromised machines and took them off line.

When the administrator first noticed the spike in network traffic, the questions facing him was: is the
network experiencing an attack and if so, which machines were compromised. However, none of the low-
level observations alone can give a definitive answer to these high-level questions. Observation 1 (traffic
spike) could mean many things, many of which benign1. Observation 2 (connections to BotNet controllers)
has a higher chance of being malicious activity and hence a higher degree of likelihood that the identified
servers are compromised. However, an IRC connection being made to a known BotNet controller does not
necessarily mean that the machine has been compromised. Thelist of “known” BotNet controllers may con-
tain false positives or it could also be that somebody was probing BotNet controllers for research purposes.
(The interviewed SA suggested this false positive as he doesthis himself on a periodic basis.) Observation
3 (suspicious code in memory) is also a strong indication that the machine may have been controlled by an
attacker. But it is not always easy to determine whether a suspicious module found in the memory dump is
indeed malicious, especially with zero-day vulnerabilities. So this alert also contains some amount of false
positive. Observation 4, like observation 2, cannot definitively prove that the machines observed are under
the control of attackers because IRC channels are occasionally (rarely) used as a communication channel
between servers. However, when we put all the four pieces of evidence together, it seems clear that an at-
tack has certainly happened and succeeded and we can tell with almost certainty which machines have been
compromised.

The main question we need to ask is: “are the security tools wehave today good enough to detect
these attacks?” If not, given that the SA spent many man-hours of critical down time trying to analyze the
problem, can our tools at least help reduce the amount of timethat the SA had to spend in the process?
Unfortunately, it is the case that the SA had all the common security tools at his disposal and yet he had
to spend an inordinate amount of time in discovering the compromised machines2. This true-life incident
surfaces several challenges. First and foremost, there is agreat deal of uncertainty surrounding the question
of whether a machine has in fact been attacked, and if so, successfully breached and taken control of. It
would be hard to definitively answer these questions, especially the latter, unless incontrovertible evidence

1To take an example, just some users started downloading movies through BitTorrent.
2The described campus network chose not to have any network IDS deployed, the reason being that there were too many false-

positives and there was no resource for analyzing the generated alerts. In this case even a well maintained IDS probably would not
have helped since the attack exploited a zero-day vulnerability.

2

is found in the logs in the form of explicit malicious activity emanating from this server, which is rare in
practice. Thus, human analysts make their conclusions typically with shades of uncertainty. The SA in the
case study did not have the right tools to handle the many hypotheses that were made and discarded about
what might have happened in his network before reaching conclusions. While approaches for expressing
the confidence levels have been proposed for IDS based on signal theory [1], we do not yet have a natural
but robust language that human experts can use to codify their knowledge and works well in the IDS context
[16]. Second, sophisticated attacks that succeed may not bedirectly detected using standard sensors and
filters such as Snort but have to be inferred from the available data using models of systems and attacks
and by combining data from a variety of sources. However, such models are never complete or totally
accurate, and the data sources come with a variety of assumptions and caveats, thereby decreasing our
level of confidence in the detection-and-inference processsubstantially. Typically IDS tools today that
can detect sophisticated attacks cannot or do not distinguish between almost certain inferences and remote
possibilities. We need tools that allow us to build these models and indicate the current level of confidence
in them so that we can construct potentially complicated evidential paths along with the corresponding
confidence levels in the conclusions. Finally, it has been difficult if not impossible to assign any probability
structures to computer system events for intrusion analysis purposes. We do not have statistical data either
for occurrence or detection rates for attacks analogous to those found in other areas such as failure rates
in reliability analytics. Even for the sensors for which such characteristics as true/false positives/negative
rates can be measured, the sensor characteristics are far from desirable from a signal theory point of view
[1]. Recent theoretical advances [9] have shown how to combine the outputs of noisy low-level sensors
in a way that optimizes the combined rate of fidelity for low-level conclusions. Yet it is not clear how to
apply these in practice. Thus, while from a theoretical perspective it would be highly desirable to compute a
rigorous quantitative confidence level for our final high-level conclusions, we are far from such a capability
in practice.

1.2 Modeling uncertainty

We believe the key step in tackling the above-mentioned challenges is to develop a model that can link the
low-level observations to the conditions under concern at the high level and at the same time allow us to track
the confidence in the linkage. For example, anabnormal high network traffic (low-level observation)
could mean thatan attacker is performing some network activity (high-level condition). Simi-
larly, thenetflow dump showing a host communicating with known BotNet controllers (low-level
observation) indicates that it is likelyan attacker has compromised the host (high-level condition).
All these assertions are associated with varying degrees ofuncertainty. For example, compared with the
anomalous high network traffic, a netflow filter that shows communication with known BotNet controllers is
a more confident assertion on attacker activity. It is crucial that the model for linking the low-level events and
high-level conditions are capable of expressing such differences, and it is desirable that this be done without
relying on probability parameters which are difficult to obtain. Such a model should also express the logical
relations between the various high-level conditions, so that such knowledge can be mapped to correlate low-
level events. For example, the model should include knowledge like after an attacker compromised

a machine, he may possibly perform some network activity from the machine. This knowledge
can ’potentially reveal hidden correlations between low-level observations, (e.g., high network traffic and
netflow filtering result). Without other context to guide us,a traffic spike could be due to any of a number
of things but in the context of a likely compromise the parameters of the traffic burst become important —
if the traffic emanated from the compromised machine it can beassigned a different meaning than if it did
not.

3

1.3 Our contributions

We present a model for capturing the meanings of low-level system observation data in terms of high-level
conditions of interest to intrusion analysis. We use qualitative, rather than quantitative assessment to capture
the uncertainty inherent in such meanings. The qualitativeassessment makes it easier for our model to be
linked to existing knowledge bases such as the Snort rule repository. Our model is capable of expressing
logical connections among the high-level conditions (alsowith qualitative uncertainty assessment), so that
it can reason about multi-host, multi-stage intrusions with traces spread across various types of system
monitoring data. We present a reasoning process that can utilize such a model and existing IDS tools to
automatically identify highly confident attack traces fromlarge diverse sets of system monitoring data, not
restricted to just IDS alerts. We also present within this model a method forstrengtheningthe confidence
in an assertion by combining different independent pieces of evidence of low or moderate confidence. The
central part of our reasoning process is an “internal model”which represents the various internal conditions
of interest applying to individual hosts or groups of hosts (networks, etc). This internal model contains
generic conditions such as “underattack,” “compromised,” “bot-netted,”etc. that are independent of the
scenario at hand. What can change from one scenario to another are the certainty tags associated with
each condition as the scenario events are processed and the paths that the reasoning process takes through
these conditions. We believe that human administrators similarly have a small set of “target” conditions
in mind when they process intrusion data and there is value incapturing those target conditions directly in
the automated reasoning process. We implemented a prototype of this tool using the true-life case study
as a guide and showed that the tool’s reasoning tracked the SA’s reasoning process and achieved the same
set of high-level conclusions with high confidence. To evaluate our tool, we applied it to the “Treasure
Hunt” dataset [27] that contains traces of multi-stage attacks on operating systems services, web servers,
and database servers, within about a hundred megabytes of diverse data sources including IDS sources such
as TCP dump and Snare alerts but also general logs such as syslog and apache logs. To test the efficacy of
our concepts, we kept our internal model unchanged and simply applied the tool to the modified data sources
in the dataset. We found remarkably that our tool discoveredmost of the high-level attacks in the data (that
we know of) and also discovered some subtle but minor gaps in our model in the process.

2 Informal description of the model and reasoning process
Before describing our model and reasoning process in formaldetails, we motivate our design using the
examples in the case study to represent the analytic states the SA went through in the course of the investi-
gation. Using the example of the case study, we identify the rationale behind the decisions at various points,
and design a logic that captures this reasoning process.

2.1 Case study revisited

The scenario described in Section 1.1 is illustrated in Figure 1(1). Figure 1(2) presents our vision of au-
tomating reasoning about uncertainty in intrusion analysis. The reasoning framework consists of two lay-
ers: observations and an internal reasoning model. The observations are from system monitoring data
such as IDS alerts, netflow dumps, syslog,etc. and are mapped into the internal reasoning model as con-
ditions representing unobservable security status under interest. For example,abnormal high traffic

is an observation, andan attacker is performing some network activity is an internal condition.
Logical relations exist between observations and internalconditions with varying degrees of certainty.
For example, we can sayabnormal high traffic indicates the possibility that an attacker is

performing some network activity. Another example:netflow dump showing a host communicating

with known BotNet controllers indicates that an attacker likely has compromised the host.

Likewise, there are logical relations among the various internal conditions and these relations contain vary-
ing degrees of certainty as well. For example, one can sayafter an attacker compromised a machine,

4

Answer: 12 machines have
been “certainly” compromised

system
administrator

IDS alerts netflow dump memory dump

1. Abnormally
high traffic

Search for
blacklisted IP

2. Four
TrendMicro

servers
communicating

with known
BotNet

controllers Examine the
machines’
memory

3. Found
seemingly

malicious code
modules

4. Found open
IRC sockets
with other

TrendMicro
servers

Query:
Is my machine
compromised?

IDS alerts, netflow dump, syslog,
server log …

High-confidence Conclusions with Evidence

Internal model
with

uncertainty

1. Mapping
observations to

internal
conditions

2. Targeting
subsequent

observations

Observations

3. Mapping
results of

targeted search

Reasoning Engine

(1) Case scenario (2) Vision of applying a logic with uncertainty
for intrusion analysis

Figure 1: Case study and vision for automated intrusion analysis

he may possibly perform some network activity from the machine, andafter an attacker sends

an exploit to a machine, he will likely compromise the machine. These statements capture the
rationale behind human reasoning when manually detecting intrusions from the logs. The internal model is
analogous to human thinking — observations are reflected as beliefs with varying strengths, and the beliefs
are related to one another with varying strengths as well. Wedesign logical rules to capture both aspects and
a formalized reasoning process to simulate human thinking such that an automated inference process can
allow us to construct sophisticated attack conclusions along with a semi-quantitative measure of our confi-
dence. This inference process is capable of deriving, from alarge number of possibilities, high-confidence
beliefs corroborated by a number of complementary evidences logically linked together. For example, even
though the SA was not sure whether the abnormal high traffic really indicated an attack, he knew that this
observation is logically linked to network activity, whichcan also be observed by netflow dump. When
from the netflow dump the Trend Micro servers were shown to communicate with malicious IP addresses,
and from the memory dump a potentially malicious code modulewas found, the two pieces of evidence
both indicated that the server was likely compromised, thusstrengthening the belief’s confidence to almost
certain.

A side product of this reasoning process is the downward arrow shown in Figure 1(2), which represents
the “top-down” targeted search guided by the result of the current reasoning process. The volumes of data
collection in enterprise networks have reached staggeringproportions. A single site can collect Gigabytes
of log information per day and searching there for a single attack event that may be poorly described in such
enormous collections has been likened to “searching for a needle in a haystack of needles”[22]. A simple
approach of scanning all the data first to build attack hypotheses at a low level is unlikely to scale — we
need analytic methods that find all the attacks hidden in the data with reasonable confidence without having
to trawl the entire data.

Reasoning framework Figure 2 presents the architecture of our reasoning system.The reasoning model
consists of two modules — observation correspondence (described in Section 3.2) and internal model (de-
scribed in Section 3.3). Roughly speaking, observation correspondence maps low-level observations into
predicates in the internal model (the up arrows in Figure 1(2)), and the internal model encodes the logical
connections among internal conditions. Both modules in thereasoning model are specified in Datalog [3],
a simple logic-programming language that has efficient polynomial-time execution. The raw observations
are pre-processed and the distilled results are converted to Datalog tuples as input to the reasoning system.

5

Reasoning
Engine

Snort netflow filter log analyzer … …

(convert to Datalog tuples)

…

Observation
Correspondence

User query, e.g.
which machines
are “certainly”
compromised?

Answers with
evidence

pre-processing

Internal Model

Figure 2: System architecture

The reasoning engine is implemented in Prolog and the reasoning rules are specified in Section 3.4. We use
the XSB [23] Prolog system to run our reasoning engine. An important feature of our design is that every
component of the system is specified declaratively, which has the useful property that once all specifications
are loaded into the Prolog system, a simple Prolog query willautomatically, and efficiently, search for true
answers based on the logic specification. For example, a usercan ask a question “which machines are cer-
tainly compromised?” in the form of a simple Prolog query. Our reasoning engine will then give the answer
along with the evidence in the form of logical proofs.

Section 3 contains a formal description of our logic and reasoning framework. In Section 4 we describe
our experience with applying our tool to the Treasure Hunt dataset.

3 Formal description of the logic
In this section, we formally describe our “logic with uncertainty” which is the core of our approach. As
outlined in the previous section, we use the logic to convertsensed events into internal conditions which
capture the semantics of the observations imbued with some certainty tags. A proof strengthening technique
is introduced to derive high-confidence conclusions from such imperfect input, using an internal model that
captures the logical relations (also with uncertainty) among the various internal conditions.

3.1 Notations
We use three modesp, l, c, standing for “possible, likely, certain” to express low, moderate, and high con-
fidence levels. Even though one could think of certainty level as lying in a continuous spectrum between
completely unknown to completely certain, we found that human SA’s only deal with a few confidence lev-
els in practice that roughly correspond to the ones defined here. It would become disproportionately harder
to mentally keep track of a large number of certainty levels and these three levels seem to be adequate for
most scenarios. We emphasize that these uncertainty levelsare done by hand and apart from the obvious
ordering we are not ascribing a probability range to each level.

We identify two types of logical assertions:observation correspondenceto map external observations
to internal conditions, andinternal modelto capture relationships between internal conditions. Correspond-
ingly, we useobs(O) to denote a fact about observationO, andint(F) to denote an internal conditionF . For
example,obs(netflowBlackListFilter(172.16.9.20, 129.7.10.5)) is an observation from the netflow blacklist
filter thatmachine 172.16.9.20 is communicating with a known malicious IP 129.7.10.5, whereas
int(compromised(172.16.9.20)) is an internal condition that172.16.9.20 has been compromised. See

6

A1 : obs(anomalyHighTraffic)
p

7−→ int(attackerNetActivity)

A2 : obs(netflowBlackListFilter(H, BlackListedIP))
l

7−→ int(attackerNetActivity)

A3 : obs(netflowBlackListFilter(H, BlackListedIP))
l

7−→ int(compromised(H))

A4 : obs(memoryDumpMaliciousCode(H))
l

7−→ int(compromised(H))

A5 : obs(memoryDumpIRCSocket(H1,H2))
l

7−→ int(exchangeCtlMessage(H1,H2))

Figure 3: Observation correspondence

I1 : int(compromised(H1))
pc
−→ int(probeOtherMachine(H1,H2))

I2 : int(compromised(H1))
pc
−→ int(sendExploit(H1,H2))

I3 : int(sendExploit(H1,H2))
lp
−→ int(compromised(H2))

I4 : int(compromised(H1)), int(compromised(H2))
pc
−→ int(exchangeCtlMessage(H1,H2))

Figure 4: Internal model

Figures 3 and 4 for examples of these two types of predicates from the case study.

3.2 Observation correspondence

Observation correspondence gives a “meaning” to an observation, in the form of internal conditions. InA1

an abnormal high network trafficobs(anomalyHighTraffic) is mapped toint(attackerNetActivity), meaning
an attacker is performing some network activity. This is a low-confidence judgment thus the mode isp.
Intuitively the p mode means there is other equally possible interpretationsfor the same observation.A2

andA3 give the meaning to an alert identified in a netflow analysis. There are a number of filtering tools
available that can search for potential malicious patternsin a netflow dump, such as “capture daemon”
and “flow-nfilter”. This rule deals with one filter that identifies communication with known malicious IP
addresses. Since any such activity is a strong indication ofattacker activity and the fact that the machine
involved has been compromised, the modality of the two rulesis l. There are still other possibilities, e.g. the
communication could be issued by a legitimate user who wantsto find out something about the malicious
IP address. But the likelihood of that is significantly lowerthan what is represented by the right-hand side
of the two rules.A4 says if memory dump on machineH identifies malicious code, thenH is likely to be
compromised.A5 says if the memory dump identifies open IRC sockets between machineH1 andH2, then
it is likely that the IRC channel is used to exchange control messages between BotNet members.

We recognize that these observation correspondence assertions are not objective. A common problem
in intrusion detection is the lack of ground truth which makes it very hard to have objective classification
of all events. Our goal is to create a flexible and lightweightframework wherein an SA can feed in these
beliefs of certainty and see what consequences arise. For example, an SA may think the mode ofA4 ought
to be c, which would be acceptable. One advantage of such a logic is that it facilitates discussion and
sharing of security knowledge. Empirical experiences froma large community can help tune the modes in
those assertions. We envision a rule repository model like that for Snort, where a community of participants
contribute and agree upon a set of rules in an open language. Currently there are only coarse-grained
classification and some natural-language explanations forthe meanings behind each Snort alert. In Section 4,
we show how a small number of internal-model predicates can give a meaning to the vast majority of Snort
alerts. The Snort rule writers can use the observation correspondence assertions to encode the possible
implications of Snort alerts with levels of certainty, which can then be reasoned about automatically in our
logic.

7

3.3 Internal model
Once the observation correspondence has mapped external observations to internal conditions, we are now
ready to relate these internal conditions to other internalconditions while also keeping track of the degree
of certainty associated with them. To represent the logicalrelationship between internal conditions in our
model, we use the

m1m2−→ operator, which represents the “leads to” relationship between internal conditions.
The condition on the right-hand side of the operator is caused by the left-hand side and as a result the
arrow must be aligned with time,i.e. it must happen no earlier than the left-hand side. However, the
reasoningcan go along both directions, and hence two modes (m1,m2) are associated with each rule. For
example,I1 says “if an attacker has compromised machineH1, he can perform a malicious probe fromH1

to another machineH2.” The forward reasoning has a low certainty: the attacker may or may not choose
to probe another machine after compromising one. Thus the forward reasoning is qualified by thep mode.
Reasoning on the reverse direction however has thec mode: if an attacker performs a malicious probe from
one machine to another, he must have already compromised thefirst machine.3 Likewise, I2 says “if an
attacker has compromised machineH1, he can send an exploit fromH1 to another machineH2.” For the
same reason, the forward reasoning has thep mode and the backward reasoning has thec mode. InI3, the
fact that an attacker sends an exploit to a machine leads to the compromise of the machine. The forward
reasoning is also not certain, since the exploit may fail to execute on the target host. We have used the
confidence levell – attackers typically make sure their exploit will likely work before using it in an attack.
In the other direction, sending in a remote exploit is just one of many possible ways to compromise a host.
Thus the reverse reasoning forI3 has thep mode. I4 is the only assertion in this model that has two facts
on the left-hand side. Like in typical logic-programming languages, the comma represents the AND logical
relation. The forward direction has thep mode: if an attacker compromised two machinesH1,H2, the two
machines can possibly exchange BotNet control messages between them to coordinate further attacks. The
backward direction has thec mode: if two machines are exchanging BotNet control messages, both of them
must have been compromised.

3.4 Simple reasoning rules
As a result of combining the observation correspondence with the internal model we can derive many useful
assertions with different levels of certainty. To describethis reasoning process we useint(F,m) ⇐ Pf to
represent that “the internal factF is true with modalitym”, andPf is the proof which shows the derivation
steps in the logic arriving at the conclusion. We have designed declarative rules that simulate human rea-
soning with uncertainty. Many but not all of the rules are simple and straightforward. This section explains
the simple rules and the next section explains the proof-strengthening rule which is the core of handling
uncertainty.

From an observation one can derive an internal belief with some degree of certainty, based on the obser-
vation correspondence assertion. This is captured in the following rule called “obsMap”.

obs(O) obs(O)
m
7−→ int(F)

int(F,m) ⇐ obsMap(obs(O))
obsMap

As an example of an application of this rule, the open IRCSocket identified through memory dump in the
case study will be an input to our system:obs(memoryDumpIRCSocket(172.16.9.20,172.16.9.1)). Together
with observation correspondenceA5, the above reasoning rule will derive:

int(exchangeCtlMessage(’172.16.9.20’,’172.16.9.1’), l) ⇐
obsMap(obs(memoryDumpIRCSocket(’172.16.9.20’,’172.16.9.1’)))

3The predicateprobeOtherMachinespecifically means the malicious probing performed by an attacker and does not include
benign probing from non-malicious parties.

8

The following two derivation rules capture the reasoning induced by each internal-model predicate.

int(F,m) ⇐ Pf int(F)
m1m2−→ int(F ′) m′ = m ∪ m1

int(F ′,m′) ⇐ intL(int(F,m) ⇐ Pf)
intL

int(F,m) ⇐ Pf int(F ′)
m1m2−→ int(F) m′ = m ∪ m2

int(F ′,m′) ⇐ intR(int(F,m) ⇐ Pf)
intR

We usem1 ∪m2 to denote the “join” relation between modes, which takes thelesser degree of certainty
from the two. For example,l∪p = p; l∪ c = l; and so on. The intuition is that the confidence level of a fact
arising from a chain of reasoning is the confidence level of the weakest link in the chain. As an example, the
internal factint(exchangeCtlMessage(172.16.9.20,172.16.9.1), l) derived above, together with the internal
model predicateI3, would yield the following derivation trace.

int(compromised(172.16.9.20), l) ⇐
int(exchangeCtlMessage(172.16.9.20,172.16.9.1), l) ⇐

obsMap(obs(memoryDumpIRCSocket(172.16.9.20, 172.16.9.1)))

Since the backward reasoning mode forI3 is c, joined with thel mode inint(exchangeCtlMessage(172.16.9.20,
172.16.9.1), l), we getc ∪ l = l as the mode for the resulting factint(compromised(172.16.9.20), l).

3.5 Proof strengthening
As can be easily seen, the simple reasoning rules above can only decrease the confidence level of a fact.
The key purpose of reasoning about uncertainty is to derive high-confidence fact from low-confidence ones.
In the case study, the system administrator strengthened his belief that the Trend Micro server was compro-
mised by combining three pieces of evidence: netflow filter result showing communication with a blacklisted
IP address, memory dump result showing likely malicious code modules, and memory dump result showing
open IRC sockets with other Trend Micro servers. These threepieces of evidence areindependent— they
are rooted on observations at different aspects of the system, and yet they arelogically connected— all of
them indicate that the Trend Micro server is likely compromised. Thus they altogether can strengthen our
belief in the fact that the server is compromised. We generalize this reasoning process in the following proof
strengthening rule.

int(F,m1) ⇐ Pf1 int(F,m2) ⇐ Pf2 Pf1 ‖ Pf2
int(F, strengthen(m1,m2)) ⇐ strengthenedPf(Pf1, Pf2)

strengthenedPf

The‖ relation indicates that two proofs are independent — based on disjoint sets of observations and internal
conditions. This deduction rule states that if we have two reasoning paths to a fact with some confidence
levels, and if the two paths are based on independent observations and deductions, then the confidence level
of the fact will be strengthened. Thestrengthenfunction is defined below.

strengthen(l, l) = c strengthen(l, p) = c strengthen(p, l) = c

Simply put, two independent proofs can strengthen to “certain” if at least one of them can yield a “likely”
mode. There is no definition forstrengthenwhen both parameters arep or at least one of them isc. Since
thep mode represents very low confidence we do not allow strengthening from just possible facts. There is
no need to strengthen a fact if it is already proved to be certain.

3.6 Implementation
All the above reasoning rules can be straightforwardly specified in Prolog. We also implemented a simple
proof-generator so that when a fact is derived, the proof trace can also be displayed. We applied the reasoning
system and the model described in 3.2 and 3.3 on the input for our case study. The result is shown in

9

| ?- show_trace(int(compromised(H),c)).
int(compromised(’172.16.9.20’),c) strengthenedPf

int(compromised(’172.16.9.20’),l) intRule_4
int(exchangeCtlMessage(’172.16.9.20’,’172.16.9.1’),l) obsRule_5

obs(memoryDumpIRCSocket(’172.16.9.20’,’172.16.9.1’))
int(compromised(’172.16.9.20’),l) obsRule_4

obs(memoryDumpMaliciousCode(’172.16.9.20’))
int(compromised(’172.16.9.20’),l) obsRule_3

obs(netflowBlackListFilter(’172.16.9.20’,’129.7.10.5’))

int(compromised(’172.16.9.1’),c) strengthenedPf
(1) int(compromised(’172.16.9.1’),l) intRule_4

int(exchangeCtlMessage(’172.16.9.20’,’172.16.9.1’),l) obsRule_5
obs(memoryDumpIRCSocket(’172.16.9.20’,’172.16.9.1’))

(2) int(compromised(’172.16.9.1’),p) intRule_2
int(sendExploit(’172.16.9.1’,’172.16.9.20’),p) intRule_3

int(compromised(’172.16.9.20’),l) obsRule_4
obs(memoryDumpMaliciousCode(’172.16.9.20’))

(3) int(compromised(’172.16.9.1’),p) intRule_2
int(sendExploit(’172.16.9.1’,’172.16.9.20’),p) intRule_3

int(compromised(’172.16.9.20’),l) obsRule_3
obs(netflowBlackListFilter(’172.16.9.20’,’129.7.10.5’))

(4) int(compromised(’172.16.9.1’),p) intRule_3
int(sendExploit(’172.16.9.20’,’172.16.9.1’),p) intRule_2

int(compromised(’172.16.9.20’),l) obsRule_4
obs(memoryDumpMaliciousCode(’172.16.9.20’))

(5) int(compromised(’172.16.9.1’),p) intRule_3
int(sendExploit(’172.16.9.20’,’172.16.9.1’),p) intRule_2

int(compromised(’172.16.9.20’),l) obsRule_3
obs(netflowBlackListFilter(’172.16.9.20’,’129.7.10.5’))

Figure 5: Result of applying the reasoning system on the casestudy

Figure 5 (we annotated the second derivation trace with somenumbers for presentation purposes). The user
enters the queryshow trace(int(compromised(H),c)), to find out all the provable facts in the form of
compromised(H)with “certain” mode. This is essentially asking the question “which machines are certainly
compromised”. The reasoning engine prints out two derivation traces. The first one is for172.16.9.20,
the IP address (fake) for the compromised Trend Micro serverfirst identified by the SA. The second one
is for 172.16.9.1, another Trend Micro server with which the first one maintains an open IRC socket. It
is clear that the first derivation trace exactly matches the reasoning process the human SA did to identify
the compromised server — the confidence level is strengthened from concordant evidence emanated from
netflow dump and memory dump. The second derivation trace is more interesting. The fact’s “certain”
mode is also strengthened from a number of evidence traces. The trace marked by (1) is based on the fact
that the machine maintains an IRC connection with another machine. This by itself does not provide high-
certainty evidence that the host has been compromised. But the other machine (172.16.9.20) is also likely
compromised (third line on each of (2) – (5)) from other independent observations. (2) and (4) are based
on the memory dump result; whereas (3) and (5) are based on thenetflow dump. (2) and (3) reflects the
possibility that172.16.9.1 is used as a stepping stone to compromise172.16.9.20; whereas (4) and (5)
reflects the possibility that172.16.9.20 is a stepping stone to compromise172.16.9.1. Each can only
derive a “possible” mode for the fact that172.16.9.1 is compromised (first line on each of (2) – (5)).
However, combined with the evidence in (1) the fact’s mode isstrengthened to “certain”. This exactly
matches the rationale behind the human reasoning.

This case study also demonstrates that our internal model iscompact yet powerful enough to handle
complicated reasoning in intrusion analysis. We also observe that all the simple reasoning rules in our logic

10

can be encoded as Datalog programs, and the proof-strengthening rule can be easily implemented with a
Datalog proof generator. Datalog has polynomial time complexity and can be efficiently executed in the
XSB Prolog system. Indeed, it has been shown that an attack-graph generator based on Datalog evaluation
can scale to enterprise networks with thousands of machines[20, 21].

4 Experiments and Results
Evaluation of intrusion detection systems has always been difficult due to the lack of data from a large
variety of scenarios and settings. Performance result on a single data set in the form of false positive/negative
numbers can hardly be persuasive, since one can always “fit” atool to work well for a particular data set.
Indeed, it has been pointed out that by just looking at the TTLfield of the packets in the MIT Lincoln Lab
data set [11] one can distinguish between malicious packetsand non-malicious packets, due to the way the
data was generated [2, 14]. In this section we describe our effort of experimenting our reasoning model from
a different perspective. Instead of trying to obtain the false positive and false negative numbers as is typical
of IDS research, we would like to discover whether our reasoning model developed from studying the true-
life incident can be applied to a completely different data set and find interesting attack traces. We use the
Treasure Hunt (TH) data set [27] (http://www.cs.ucsb.edu/∼vigna/treasurehunt/), which was
created as a part of the competition organized in a graduate security course at University of California, Santa
Barbara. Our motivation to use this particular data set was the large amounts of diverse system monitoring
data in the forms of TCPdump, Syslogs, Snare logs, Apache server logs, kernel audit logs,etc. Moreover,
the data set provides the valuable “meta data” such as the back story (competition task details) and network
topology which can help us understand the result (The network topology and task details are provided for
reference in Appendix 7). We would like to see how easy it is toapply our unmodified reasoning system to
this data set.

4.1 Data pre-processing

We applied Snort to the TCPdump to generate IDS alerts, whichwere sent to thePrelude Manager(a
program for collecting, managing and storing alerts from IDS sensors). By usingPrelude-Correlatorthe
alerts were clustered based on Snort rule ID’s as well as source and destination IP addresses. We then hand-
coded the clustered alerts into Datalog format understood by our reasoning system, some samples shown
below. (The Time field is not used since our logic currently does not handle time stamps)

/* obs(snort(ID, FromHost, ToHost, Time)). */
/* Web-Misc guesbook.pl access from external IP to WWW server */

obs(snort(’1:1140’, ’128.111.49.46’, ’192.168.10.90’, _)).
obs(snort(’1:1140’, ’128.111.49.137’, ’192.168.10.90’, _)).

/* WEB-MISC /etc/passwd access from external IP to WWW server */
obs(snort(’1:1122’, ’128.111.49.47’, ’192.168.10.90’, _)).

Observation correspondence We already have the internal model and reasoning engine developed from
the case study, but we do not yet have the observation correspondence assertions for the Snort alerts gener-
ated from the TH data set. As a rationale for writing the assertions, we made use of the Snort rule and the
natural-language description available at the Snort rule repository as well information that can be found at
Bugtraq,etc.For example, the Snort rule for “WEB-MISC guestbook.pl access” alert is

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC guestbook.pl access"; flow:to_server,established;
uricontent:"/guestbook.pl"; nocase; metadata:service http;
classtype:attempted-recon; sid:1140; rev:12;)

This rule alerts for all the web request containing “/guestbook.pl” in the URI. The observation correspon-
dence for the alert is

11

http://www.cs.ucsb.edu/~vigna/treasurehunt/

/* Web-misc guestbook.pl access */
obsMap(obsRule_th1, obs(snort(’1:1140’, FromHost, ToHost, _Time)),

int(sendExploit(FromHost, ToHost)), p).

The assertion is mapped tosendExploit(FromHost, ToHost) because the vulnerable “guestbook.pl” script
can be used forremote code executionand has apossiblemode because the rule alerts for legitimate access
also. Similarly, for the Snort alert “WEB-MISC Apache Chunked-Encoding transfer attempt”
(http://www.snort.org/pub-bin/sigs.cgi?sid=1:1807) the description and observation corre-
spondence are given as

This event is generated when an attempt is made to exploit a known vulnerability on a web server or a
web application resident on a web server.

/* Apache chunked encoding transfer attempt */
obsMap(obsRule_th5, obs(snort(’1:1807’, FromHost, ToHost, _Time)),

int(sendExploit(FromHost, ToHost)), c).

The observation correspondence has a “certain” mode because as an exploit rather than a feature it is used
only by an attacker.

4.2 Applying the reasoning engine

It is important to note that we use the same internal model andreasoning system developed from the case
study. As in the case study, the main goal of the analysis is achieved by issuing a Prolog query to find out the
hosts that arecertainly compromised. Figure 6 shows the partial results of running this query on the (pre-
pared) TH data. The numbers in parentheses have been added byhand to aid in discussion of the output. (1)
shows that host192.168.10.90 (WWW server) wascertainlycompromised. The output also lists the facts
that were used by the reasoning process to strengthen this top-level goal to certain mode. (2) is the “TCP
portscan” alert for probing activity from WWW server to the file server, which happened after WWW server
was attacked. (3) is the “Apache Chunked-Encoding transferattempt” exploit sent to the WWW server. The
guestbook.placcess which can give the attacker unauthorized access and possibly escalated privileges by
remote code execution on the WWW server is shown in (4) taggedaspossibleattack. This set of proofs is
sufficient for the reasoning system to strengthen the internal modelcompromised(192.168.10.90)
(WWW server) tocertainas indicated by the strengthening rule in section 3.5.

The reasoning system also used heuristic functions to aid insearching for evidences of attack. One of
the heuristic function used is given in Figure 7(a). This heuristic was used to search forguestbook.plpattern

| ?- show_trace(int(compromised(H), c)).

(1) int(compromised(’192.168.10.90’),c) strengthenedPf
(2) int(compromised(’192.168.10.90’),l) intRule_1

int(probeOtherMachine(’192.168.10.90’,’192.168.70.49’),l) obsRule_th6
obs(snort(’122:1’,’192.168.10.90’,’192.168.70.49’,_h272))

...
(3) int(compromised(’192.168.10.90’),l) intRule_3

int(sendExploit(’128.111.49.46’,’192.168.10.90’),c) obsRule_th5
obs(snort(’1:1807’,’128.111.49.46’,’192.168.10.90’,_h336))

...
(4) int(compromised(’192.168.10.90’),p) intRule_3

int(sendExploit(’128.111.49.137’,’192.168.10.90’),p) obsRule_th1
obs(snort(’1:1140’,’128.111.49.137’,’192.168.10.90’,_h588))

...

Figure 6: Partial output trace from the reasoning system

12

http://www.snort.org/pub-bin/sigs.cgi?sid=1:1807

/* heuristic function for searching guestbook.pl pattern*/
heuristics(heuristics_th1,

obs(snort(’1:1140’, _FromHost, ToHost, Time)),
target(ToHost, log_pattern(’apache_access’, Time, ’guestbook.pl’))).

(a): An example heuristic function

128.111.49.47 - - [06/Dec/2002:12:31:47 -0800] "GET
/cgi-bin/guestbook.pl?/etc/passwd HTTP/1.1" 200 1924 "-" "Mozilla/5.0
(X11; U; Linux i686; en-US; rv:1.0.1) Gecko/20021003"

128.111.49.47 - - [06/Dec/2002:12:43:12 -0800] "GET
/cgi-bin/guestbook.pl?guestbook.txt;useradd%20-G%20root%20-p%20foobar%20-r%20bill
HTTP/1.1"
200 632 "-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.1)
Gecko/20021003"

(b): Partial Output from the targeted search

Figure 7: Targeted search using heuristic function

in the Apache logs on the target host. With information provided by the heuristic, we narrowed down our
search in the Apache logs. Partial output of manual log search is shown in Figure 7(b). The log indicates
a useradd command was injected via web request to gain access to the host. Such concrete evidence
accompanying the output of the reasoning engine helped us confirm how the attacker compromised the
system.

4.3 Result validation and analysis

An attack targeted on a host followed by a probing activity from that host allows us to conclude that the host
was compromised. Referring back to Figure 6, our reasoning system made use of the two stages of attack:
attempts to compromise the WWW server ((3), (4)) and attacker activity like probing on the file server (2)
to strengthen the proof associated withcompromised(WWW) to certain.

The published TH data set did not include a truth file (a file containing information on how the actual at-
tacks were carried out and to what extent they were successful) to verify the correctness of our experimental
results. We performed manual analysis of the logs and compared it with the output. In the process, we made
a couple of observations that are interesting not just to ourstudy but intrusion analysis in general. First, we
found that the reasoning engine had used the alert “Apache Chunk Encoding transfer attempt” to strengthen
the confidence of a proof. But from our manual analysis, the success of this alert was inconclusive because
the Apache access log had a “Bad Request” (Apache response code: 400) as response to all such requests
made to the Apache server. While it is possible that all the attempts failed, the absence of evidence is not
a conclusive proof that none of the attempts succeeded. Thisis because the behavior of a program (in this
case, Apache) after a successful exploit is not fully predictable. An alert verification process like that in [26]
would have removed the alert from entering the reasoning engine by using probing techniques to find if the
service is running (The data set had no such details to aid in removing the alert).

Our reasoning system was able to identify the second stage ofattacks on the File Server. However,
there is yet another stage of attack. The third stage of attack on the SQL server was not captured. Here,
the attacker gained access to the SQL server by creating a newfraudulent account on the file server which
provides authentication information to the SQL Server. Such scenarios are not currently handled in the
internal model because the nature of logged information about the attack makes it far from conclusive. This
aspect needs further research.

13

5 Related Work
Uncertainty in data, specifically in the context of securityanalysis, has been handled in previous works
using various statistical tools, especially the Bayesian Networks (BN) [8, 13, 28]. Zhai et al [28] use BN
to correlate complementary intrusion evidence from both IDS alerts and system monitoring logs so that
high-confidence traces can be distinguished from ones that are less certain. While statistical tools like BN
is theoretically rigorous and elegant, having been proved effective in other areas of research, they have an
unaddressed gap, namely, how to set statistical parametersin terms of hard probability distributions: in the
specific case of BN, the conditional probability table (CPT)for each node in a BN. In practice, it has proven
very hard not only to estimate the probabilities necessary but also hard to learn them from large real-life data
because of overwhelming volume of background data that has to be eliminated from the “signal” of intrusion
data. [1] and [6] converge on this difficulty from two different viewpoints, estimation theory and learning
theory, respectively. For security analysis, it is nearly impossible to obtain the ground truth in real traces
and it is hard if not impossible to simulate attacks. On the other hand, in practice SAs have been managing
to detect attacks in logs and real-time alerts without the benefit of such theoretical models. This inspired
us to formulate a logic that approximates human reasoning that works with a qualitative assessment on a
few confidence levels that are relatively easy to understand. We acknowledge that this formulation not only
hides the lack of knowledge of base probabilities but also reflects the great deal of ambiguity that genuinely
exists in intrusion analysis of real data. We hope that by creating an option to specify the confidence level
explicitly and by providing practical tools to manipulate these uncertain pieces of knowledge, we can bypass
some of these fundamental problems and gain experience thatmay make some statistical approaches viable
in the future.

BotHunter [10] is an application for identifying Bot machines through correlating Snort alerts with a
number of other system-monitoring events. The notion of “confidence score” and “evidence threshold” are
introduced to capture the uncertainty in the correlation process, and specific processes are designed for the
purpose of Bot detection. The goal of our work is to provide a simple model for the general problem of
intrusion analysis, not specifically targeted at a special type of attack such as Bot infection.

There is more literature on intrusion alert correlation [4,5, 18, 19, 25, 26] than can be done justice
to in a short section. These vital works have provided important insights into logical causality relations
in IDS alerts that have informed this work. Most of these works model around IDS alerts with pre- and
postconditions, which drives an internal reasoning based on graphs. However, we have found that sometimes
it is difficult to come up with a compact pre- and post-condition model for ubiquitous observations that can
be symptomatic of a wide variety of seen and unseen conditions. For example, in our study there were too
many possibilities for the abnormally high network traffic event. Our observation correspondence model
assigns adirect meaning to an observation and our internal model allows suchmeanings to be flexibly
linked together based on their inherent semantics. We believe that such flexibility is important in intrusion
analysis, especially in cases where the evidence is tenuous. Another general model for incorporating all
possible types of data in security analysis is M2D2 [17]. Apart from the fact that M2D2 does not deal with
uncertainty in modeling, our model is much easier to understand for a non-expert – rather than classifying
the incoming information into various categories with mathematical notations, we represent knowledge in
our model as simple “statements”that can be easily translated into natural language.

One step in our reasoning process is data pre-processing which involves data reduction based on clus-
tering and simple correlation of local observations. Much previous work in IDS has addressed this prob-
lem [18, 26] and we intend to use applicable tools and approaches from the prior work to reduce the number
of observations that need to be entered into our reasoning system. Recent work by Martignoniet al.[12] pro-
posed a “layered approach” for detecting malicious behaviors, which could be combined with the approach
presented in this paper to link low-level monitoring tracessuch as system calls to high-level meanings with
uncertainty for intrusion analysis.

14

There is a strong literature on creating logics for dealing with uncertainty. While many of them may
prove to be useful theoretical underpinnings for our system, we have not investigated this direction. In
particular Friedman and Halpern introduced a new approach to modeling uncertainty based on “plausibility
measures” [7]. Our notion of the uncertain modes is motivated by similar considerations but we do not
require this precise definition because the meaning of negation is not always clear in our context. We note
that our logic withmode operatorsis inspired by modal logic. A formal description of our logicas a
modal logic is the subject of future research. Recent years even see revolutionary works that integrate logic
programming and statistical modeling, most notably the PRISM system [24]. Whether our logic can be
expressed in a formal language like PRISM will be our future research.

6 Conclusions and Future Work
We presented a practical approach to modeling uncertainty in intrusion analysis. Our goal is to help the
system administrator in reaching conclusions quickly about possible intrusions, when multiple pieces of
uncertain data have to be integrated. The model language we designed has two components: observation
correspondence and internal model. The observation correspondence gives a direct meaning to low-level
system monitoring data with explicit uncertainty tags, andcan be derived from natural-language description
that already exists in some IDS knowledge bases,e.g.the Snort rule repository. The internal model is concise
and captures general multi-stage attack conditions in an enterprise network. We developed a reasoning
system that is easy to understand, handles the uncertainty existent in both observation correspondence and
the internal model, and finds high-confidence attack traces from many possible interpretations of the low-
level monitoring data. Our prototype and experiments show that the model developed from studying one
set of data is effective for analyzing a completely different data set with very little effort. This is a strong
indication that the modeling approach can codify the seemingly ad-hoc reasoning process found in intrusion
analysis and yield practical tools for enterprise-networkenvironments.

As this is the first time that uncertainty has been dealt with in this explicit but qualitative manner, much
work remains to be done, some of which we have already alludedto earlier. Specifically, our modality is
a very crude operator – we do not distinguish the various forms of uncertainty, such as lack of accuracy vs
lack of precision. On a practical level adding too much complexity to the modality itself may be counter-
productive. But with some maturity of modeling and experience, we hope to be separate in our model these
two sources of uncertainty as well. As in any modeling tool, there is a natural question of how granular our
models have to be to achieve best results. Because the uncertainty of knowledge increases after a certain
granularity, we expect that there is an optimal point that can only be discovered with experience. Our
modeling and reasoning are monotonic and we do not deal with negation in our models. Although we did
not need it in the two datasets that we analyzed, it is plausible that a new observation canreducethe modality
of an internal condition, e.g. from likely to possible. Thisis a subject for future research.

References

[1] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection.ACM Trans. Inf. Syst.
Secur., 3(3):186–205, 2000.

[2] S.T. Brugger and J. Chow. An assessment of the DARPA IDS evaluation dataset using snort. Technical
Report CSE-2007-1, University of California, Davis, Department of Computer Science, 2007.

[3] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What youalways wanted to know about Datalog (and
never dared to ask).IEEE Transactions Knowledge and Data Engineering, 1(1):146–166, 1989.

15

[4] Steven Cheung, Ulf Lindqvist, and Martin W Fong. Modeling multistep cyber attacks for scenario
recognition. InDARPA Information Survivability Conference and Exposition (DISCEX III), pages
284–292, Washington, D.C., 2003.

[5] Frédéric Cuppens and Alexandre Miège. Alert correlation in a cooperative intrusion detection frame-
work. In IEEE Symposium on Security and Privacy, 2002.

[6] C. Drummond and R.C. Holte. Severe class imbalance: Why better algorithms aren’t the answer. In
Machine Learning: ECML 2005, volume 3720 ofLecture Notes in Computer Science, pages 539 –
546. Springer US, 2005.

[7] N. Friedman and J.Y. Halpern. Plausibility measures anddefault reasoning.J. ACM, 48(4):648–685,
2001.

[8] Saurabh Bagchi Gaspar Modelo-Howard and Guy Lebanon. Determining placement of intrusion detec-
tors for a distributed application through bayesian network modeling. In11th International Symposium
on Recent Advances in Intrusion Detection (RAID 2008). RAID, September 2008.

[9] G. Gu, A.A. Cárdenas, and W. Lee. Principled reasoning and practical applications of alert fusion in in-
trusion detection systems. InASIACCS ’08: Proceedings of the 2008 ACM symposium on Information,
computer and communications security, pages 136–147, 2008.

[10] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting malware infection
through ids-driven dialog correlation. InProceedings of the 16th USENIX Security Symposium (Secu-
rity’07), August 2007.

[11] Joshua W Haines, Richard P Lippmann, David J Fried, Eushiuan Tran, Steve Boswell, and Marc A
Zissman. 1999 DARPA intrusion detection system evaluation: Design and procedures. Technical
Report TR-1062, MIT Lincoln Laboratory, 2001.

[12] Matt Fredrikson Lorenzo Martignoni, Elizabeth Stinson and Somesh Jha John Mitchell. A layered
architecture for detecting malicious behaviors. In11th International Symposium on Recent Advances
in Intrusion Detection (RAID 2008). RAID, September 2008.

[13] Ulf Lindqvist Magnus Almgren and Erland Jonsson. A multi-sensor model to improve automated
attack detection. In11th International Symposium on Recent Advances in Intrusion Detection (RAID
2008). RAID, September 2008.

[14] M.V. Mahoney and P.K. Chan. An analysis of the 1999 DARPA/Lincoln Laboratory evaluation data for
network anomaly detection. InProceedings of the Sixth International Symposium on RecentAdvances
in Intrusion Detection, 2003.

[15] J. McHugh. Intrusion and intrusion detection.International Journal of Information Security, 1:14 –
35, 2001.

[16] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intru-
sion detection system evaluations as performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur.
(TISSEC), 3(4):262–294, 2000.

[17] Benjamin Morin, Hervé, and Mireille Ducassé. M2D2: Aformal data model for IDS alert correlation.
In 5th International Symposium on Recent Advances in Intrusion Detection (RAID 2002), pages 115–
137, 2002.

16

[18] Peng Ning, Yun Cui, Douglas Reeves, and Dingbang Xu. Tools and techniques for analyzing intrusion
alerts.ACM Transactions on Information and System Security, 7(2):273–318, May 2004.

[19] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating Intrusion Events and Building Attack
Scenarios Through Attack Graph Distances. In20th Annual Computer Security Applications Confer-
ence (ACSAC 2004), pages 350– 359, 2004.

[20] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to attack graph generation.
In 13th ACM Conference on Computer and Communications Security (CCS), pages 336–345, 2006.

[21] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A logic-based network
security analyzer. In14th USENIX Security Symposium, 2005.

[22] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Analysis of computer intrusions using sequences of
function calls. InIEEE Transactions on Dependable and Secure Computing (TDSC, pages 137 – 150,
2006.

[23] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S. Warren, and Juliana Freire. XSB: A
system for efficiently computing well-founded semantics. In Proceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), pages 2–17, Dagstuhl,
Germany, July 1997. Springer Verlag.

[24] Taisuke Sato and Yoshitaka Kameya. Parameter learningof logic programs for symbolic-statistical
modeling.Journal of Artificial Intelligence Research, 15:391–454, 2001.

[25] F. Valeur.Real-Time Intrusion Detection Alert Correlation. PhD thesis, University of California, Santa
Barbara, May 2006.

[26] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel,and Richard A. Kemmerer. A Comprehensive
Approach to Intrusion Detection Alert Correlation.IEEE Transactions on Dependable and Secure
Computing, 1(3):146–169, 2004.

[27] G. Vigna. Teaching Network Security Through Live Exercises. In C. Irvine and H. Armstrong, editors,
Proceedings of the Third Annual World Conference on Information Security Education (WISE 3), pages
3–18, Monterey, CA, June 2003. Kluwer Academic Publishers.

[28] Yan Zhai, Peng Ning, Purush Iyer, and Douglas S. Reeves.Reasoning about complementary intrusion
evidence. InProceedings of 20th Annual Computer Security ApplicationsConference (ACSAC), pages
39–48, December 2004.

17

7 Appendix

7.1 Network Topology used for TreasureHunt experiment

Note: The figure is taken from the TH websitehttp://www.cs.ucsb.edu/∼vigna/treasurehunt/

7.2 List of tasks used during the treasure hunt exercise

Task Description Max Duration
1 Determine the active hosts in subnet X.Y.Z. Also determineeach host’s OS and

the services/applications that are remotely accessible. Scanning techniques
that will evade detection by the Snort system will receive additional bonus
points.

20 minutes

2 Get interactive access to the web server host by exploitinga web-based vul-
nerability. You must be able to login into the host as a user account other than
root.

30 minutes

3 Get root privileges on the web server host. 30 minutes
4 Determine the hosts that are located in the specified internal subnet. Also

determine their OSs and the services/applications that areremotely accessible.
Scanning techniques that will evade detection by the Snort system will receive
additional bonus points.

20 minutes

5 Access the MySQL database on host SQL and obtain the contentof the table
Employees.

20 minutes

6 Get interactive access to the MySQL server host. You have tobe able to login
with an account that is not root

20 minutes

7 Get root access to the MySQL server host. 20 minutes
8 Modify the database table Employees, setting the account number of each em-

ployee to an account number of your choice.
10 minutes

9 Obtain access to the transaction service on host TRN. Schedule a paycheck
payment that will transfer the employee paychecks to your account.

30 minutes

7.3 Observation correspondence and internal model used in the experiment

/* model_th.P - predicates that describes the models Observation

18

http://www.cs.ucsb.edu/~vigna/treasurehunt/

Correspondence and Internal Conditions */

/*
-- obs: Observations like Snort alerts, syslog etc
-- int: Internal condition
-- target: hint on how to target the search

*/

/***** Explanation of observation predicates used in the model *****
obs(snort(ID, FromHost, ToHost, Time)):

Snort alert generated at time Time by Snort rule id ID;

**/

/******* Explanation of internal predicates used in the model ********
int(compromised(H)): Host H is compromised.
int(sendExploit(FromHost, ToHost)): FromHost sent an exploit to ToHost
int(port_open(H,P)): Port P is open on host H.

**/

/******* Explanation of targeting predicates used in the model ********
target(H, log_pattern(Log, Time, Pattern)): target the Log on host H

around time Time and look for Pattern.
target(H, open_port(P)): check whether port P is open on host H

***/

/******** Observation correspondence *************/

/* attempt to exploit the guestbook.pl vulnerability */
obsMap(obsRule_th1,
obs(snort(’1:1140’, FromHost, ToHost, _Time)),
int(sendExploit(FromHost, ToHost)), p).

/* oversize chunk encoding */
obsMap(obsRule_th3,
obs(snort(’119:16’, FromHost, ToHost, _Time)),
int(sendExploit(FromHost, ToHost)), p).

/* Apache chunked encodin transfer attempt */
obsMap(obsRule_th4,
obs(snort(’1:1807’, FromHost, ToHost, _Time)),
int(sendExploit(FromHost, ToHost)), c).

/* Apache chunked encoding worm attack */
obsMap(obsRule_th5,
obs(snort(’1:1809’, FromHost, ToHost, _Time)),
int(sendExploit(FromHost, ToHost)), c).

/* ICMP PING NMAP */
obsMap(obsRule_th6,
obs(snort(’1:469’, FromHost, ToHost, _Time)),
int(probeOtherMachine(FromHost, ToHost)), l).

/* TCP Portscan */
obsMap(obsRule_th6,
obs(snort(’122:1’, FromHost, ToHost, _Time)),
int(probeOtherMachine(FromHost, ToHost)), l).

19

/****** Internal model *********/
intRule(intRule_1,

int(compromised(FromHost)),
int(probeOtherMachine(FromHost, _ToHost)),

p, c).

intRule(intRule_2,
int(compromised(H1)),
int(sendExploit(H1, _H2)),
p, c).

intRule(intRule_3,
int(sendExploit(_H1, H2)),
int(compromised(H2)),
l, p).

intRule(intRule_4,
int(compromised(H1)), int(compromised(H2)),
int(exchangeCtlMessage(H1, H2)),
p, c).

/******* Heuristics on targeting information *******/
heuristics(heuristics_th1,
obs(snort(’1:1140’, _FromHost, ToHost, Time)),
target(ToHost, log_pattern(’apache_access’, Time, ’guestbook.pl’))).

heuristics(heuristics_th2,
int(port_open(H, P)),
target(H, open_port(P))).

20

