A Practical Approach to Modeling Uncertainty in Intrusion Analysis

Xinming Ou Raj Rajagopalan Sakthiyuvaraja Sakthivelmarug
Kansas State University HP Labs Kansas State University
Abstract

Uncertainty is an innate feature of intrusion analysis dughe limited views provided by system
monitoring tools, including intrusion detection systerti3g) and the numerous types of logs. Attack-
ers are essentially invisible in cyber space and those wramif tools can only observe the symptoms
produced by malicious activities, mingled with the same@f produced by non-malicious activities.
Thus the conclusions one can draw from these observatiengably suffer from varying degrees of
uncertainty, which is the major source of false positivas# negatives in intrusion analysis. This paper
presents a practical approach to modeling such uncertsorttyat the various security implications from
those low-level observations are captured in a simple #damguage augmented with certainty tags.
We design an automated reasoning process so that the modebedine multiple sources of system
monitoring data and identify highly-confident attack te@e®m the numerous possible interpretations
of low-level observations. We develop our model formulatiorough studying a true intrusion that hap-
pened on a campus network, using a Datalog-like languagedode the model and a Prolog system
to carry out the reasoning process. Our model and reasopstgms can reach the same conclusions
the human administrator did regarding which machines werginly compromised. We then apply the
developed model to the Treasure Hunt (TH) data set, whictagmlarge amounts of system monitoring
data collected during a live cyber attack exercise in a gasgloourse taught at University of California,
Santa Barbara. Our results show that the reasoning modelap®d from the true intrusion is effective
to the TH data set as well, and our reasoning system can figdmigih-confidence attack traces auto-
matically. Such a model thus has the potential of codifylmg seemingly ad-hoc human reasoning of
uncertain events, and can yield useful tools for automattedsion analysis.

1 Introduction

Intrusion detection is the last line of defense against cgltacks. However building strong tools to detect
intrusions in typical environments has been elusive. Atghme time, forensic analysis has become im-
portant in the light of regulatory requirements as well a&sdppearance of sophisticated targeted attacks on
enterprise networks. Due to the close relationship betwhseproblems of intrusion detection and computer
forensics, we use the term “intrusion analysis” to captwthpnamely how to identify attack traces from
large amounts of system monitoring data, either on the fiyfidine. This problem in general is an inexact
science that has to admit a range of uncertainty in outprst, Ejuantifying the results of intrusion sensing in
a robust manner has remained a hard problem for a varietyaebns[[15]. Human administrators today use
a combination of intuition, experience, and low-level ®td create and support positive or negative judge-
ments on security events. Second, while the goal of intruaialysis is detection of events at a high-level
of abstraction€.g, a machine has been compromised and has been used to coswmih@rs), tools today
operate with any reasonable accuracy only at low levels strattion €.g, network packets, server logs,
etc). Frequently, sophisticated attacks combine multipleetdbilities to achieve their goals, as a result of
which we have to combine the outputs of several disparatssemanually to detect multi-step attacks that
are found today. While the low-level observations all havteptial implications for attack possibilities, few,
if any of them can directly provide zero/one judgment at tightievel abstraction. Nevertheless, in many

network intrusions a relatively small number of such obsgonsaltogetherare sufficient to show that an
attack has certainly happened, as well as how it progresBed.difficulty is how to start from uncertain
views of the potential problene(g., IDS alerts and quickly search for a few log entries or events among
millions so that the attacker’s hand is clearly shown. Systeéministrators are highly time-constrained. An
automatic tool that can sift through the ocean of unceraimtquickly and accurately locate the problem
areas will be highly valuable in practice.

1.1 A truelifeincident

Consider the following sequence of events that actuallypwed recently at a university campus. The Sys-
tem Administrator (SA) noticed an abnormally large spikeampus-network trafficqbservation L. SA
took the netflow dump for that time period and ran a packeturegbol on it to search for known malicious
IP addresses and identified that four Trend Micro (anti-raah) servers had initiated IRC connections to
some known BotNet controller©fpservation 2 The SA suspected that the four Trend Micro servers had
been compromised. He sat down at one of the server consaledusnped the memory, from which he
found what appeared to be malicious code modulissérvation 3 He also looked at the open TCP socket
connections and noticed that the server had been conndotsane other Trend Micro servers on campus
through the IRC channelObservation 4 He concluded that all those servers were compromised avith
zero-day vulnerability in the Trend Micro server. He did #ane for the other identified servers and found
even more compromised servers. Altogether he identifiedtrfhcomised machines and took them off line.

When the administrator first noticed the spike in networkfizathe questions facing him was: is the
network experiencing an attack and if so, which machinegwempromised. However, none of the low-
level observations alone can give a definitive answer toetlmggh-level questions. Observation 1 (traffic
spike) could mean many things, many of which beﬂigﬁbservation 2 (connections to BotNet controllers)
has a higher chance of being malicious activity and hencglzehidegree of likelihood that the identified
servers are compromised. However, an IRC connection beadgrio a known BotNet controller does not
necessarily mean that the machine has been compromisedisfidfe¢ known” BotNet controllers may con-
tain false positives or it could also be that somebody wakipgoBotNet controllers for research purposes.
(The interviewed SA suggested this false positive as he thigfimself on a periodic basis.) Observation
3 (suspicious code in memory) is also a strong indicatiohtttemachine may have been controlled by an
attacker. But it is not always easy to determine whether piciosis module found in the memory dump is
indeed malicious, especially with zero-day vulneralgitti So this alert also contains some amount of false
positive. Observation 4, like observation 2, cannot defielly prove that the machines observed are under
the control of attackers because IRC channels are occélgidraaely) used as a communication channel
between servers. However, when we put all the four piecesidérce together, it seems clear that an at-
tack has certainly happened and succeeded and we can tedlwibst certainty which machines have been
compromised.

The main question we need to ask is: “are the security toolhawe today good enough to detect
these attacks?” If not, given that the SA spent many manshoicritical down time trying to analyze the
problem, can our tools at least help reduce the amount of tivaethe SA had to spend in the process?
Unfortunately, it is the case that the SA had all the commausiy tools at his disposal and yet he had
to spend an inordinate amount of time in discovering the comjsed machinBs This true-life incident
surfaces several challenges. First and foremost, thergrisad deal of uncertainty surrounding the question
of whether a machine has in fact been attacked, and if soessitdly breached and taken control of. It
would be hard to definitively answer these questions, ealhgthe latter, unless incontrovertible evidence

1To take an example, just some users started downloadingemtiviough BitTorrent.

2The described campus network chose not to have any netw&kiéployed, the reason being that there were too many false-
positives and there was no resource for analyzing the gekaderts. In this case even a well maintained IDS probalblylgvnot
have helped since the attack exploited a zero-day vulréyabi

is found in the logs in the form of explicit malicious actiwiemanating from this server, which is rare in
practice. Thus, human analysts make their conclusionsdifpiwith shades of uncertainty. The SA in the
case study did not have the right tools to handle the manythgges that were made and discarded about
what might have happened in his network before reachinglgsionis. While approaches for expressing
the confidence levels have been proposed for IDS based oal $igrory [1], we do not yet have a natural
but robust language that human experts can use to codifykineiviedge and works well in the IDS context
[16]. Second, sophisticated attacks that succeed may ndiréetly detected using standard sensors and
filters such as Snort but have to be inferred from the avalaalta using models of systems and attacks
and by combining data from a variety of sources. Howeverhsuodels are never complete or totally
accurate, and the data sources come with a variety of aseuns@nd caveats, thereby decreasing our
level of confidence in the detection-and-inference procedsstantially. Typically IDS tools today that
can detect sophisticated attacks cannot or do not disshchgtween almost certain inferences and remote
possibilities. We need tools that allow us to build these et®dnd indicate the current level of confidence
in them so that we can construct potentially complicatedieviial paths along with the corresponding
confidence levels in the conclusions. Finally, it has beé#icdit if not impossible to assign any probability
structures to computer system events for intrusion argjysiposes. We do not have statistical data either
for occurrence or detection rates for attacks analogouldsetfound in other areas such as failure rates
in reliability analytics. Even for the sensors for which Butharacteristics as true/false positives/negative
rates can be measured, the sensor characteristics arerfadésirable from a signal theory point of view
[1]. Recent theoretical advances [9] have shown how to coenbie outputs of noisy low-level sensors
in a way that optimizes the combined rate of fidelity for laswel conclusions. Yet it is not clear how to
apply these in practice. Thus, while from a theoretical pective it would be highly desirable to compute a
rigorous quantitative confidence level for our final higladleconclusions, we are far from such a capability
in practice.

1.2 Modeling uncertainty

We believe the key step in tackling the above-mentionedemgés is to develop a model that can link the
low-level observations to the conditions under concerhahigh level and at the same time allow us to track
the confidence in the linkage. For example,aanor mal hi gh network traffic (low-level observation)
could mean thatin attacker is perforning some network activity (high-level condition). Simi-
larly, thenet f| ow dunp showi ng a host comunicating with known BotNet controllers (low-level
observation) indicates that it is likelnh attacker has conpronised the host (high-level condition).

All these assertions are associated with varying degreesmadrtainty. For example, compared with the
anomalous high network traffic, a netflow filter that shows mamication with known BotNet controllers is

a more confident assertion on attacker activity. Itis ciubit the model for linking the low-level events and
high-level conditions are capable of expressing suchreiffees, and it is desirable that this be done without
relying on probability parameters which are difficult toaibt Such a model should also express the logical
relations between the various high-level conditions, sb$lich knowledge can be mapped to correlate low-
level events. For example, the model should include knogddike after an attacker conpronised

a machi ne, he may possibly performsome network activity fromthe machi ne. This knowledge
can 'potentially reveal hidden correlations between lewel observations,e(g, high network traffic and
netflow filtering result). Without other context to guide adyaffic spike could be due to any of a number
of things but in the context of a likely compromise the partereeof the traffic burst become important —
if the traffic emanated from the compromised machine it candsggned a different meaning than if it did
not.

1.3 Our contributions

We present a model for capturing the meanings of low-levslesy observation data in terms of high-level
conditions of interest to intrusion analysis. We use gatilig, rather than quantitative assessment to capture
the uncertainty inherent in such meanings. The qualitatssessment makes it easier for our model to be
linked to existing knowledge bases such as the Snort rulesitegpy. Our model is capable of expressing
logical connections among the high-level conditions (alsh qualitative uncertainty assessment), so that
it can reason about multi-host, multi-stage intrusionshviiices spread across various types of system
monitoring data. We present a reasoning process that dareguch a model and existing IDS tools to
automatically identify highly confident attack traces frtarge diverse sets of system monitoring data, not
restricted to just IDS alerts. We also present within thislei@ method fostrengtheninghe confidence

in an assertion by combining different independent pie¢evidence of low or moderate confidence. The
central part of our reasoning process is an “internal moa®ith represents the various internal conditions
of interest applying to individual hosts or groups of hostet¢orks, etc). This internal model contains
generic conditions such as “undattack,” “compromised,” “bot-netted gtc. that are independent of the
scenario at hand. What can change from one scenario to ararthéhe certainty tags associated with
each condition as the scenario events are processed andttisetipat the reasoning process takes through
these conditions. We believe that human administratordaignhave a small set of “target” conditions

in mind when they process intrusion data and there is valwajuring those target conditions directly in
the automated reasoning process. We implemented a pretofythis tool using the true-life case study
as a guide and showed that the tool's reasoning tracked tlser&¥soning process and achieved the same
set of high-level conclusions with high confidence. To eatduour tool, we applied it to the “Treasure
Hunt” dataset[[2]7] that contains traces of multi-stagec&tiaon operating systems services, web servers,
and database servers, within about a hundred megabyteseo$alidata sources including IDS sources such
as TCP dump and Snare alerts but also general logs such ag sy&l apache logs. To test the efficacy of
our concepts, we kept our internal model unchanged and giampllied the tool to the modified data sources
in the dataset. We found remarkably that our tool discoveresdt of the high-level attacks in the data (that
we know of) and also discovered some subtle but minor gapsrimadel in the process.

2 Informal description of the model and reasoning process

Before describing our model and reasoning process in fodatdils, we motivate our design using the
examples in the case study to represent the analytic stete4 went through in the course of the investi-
gation. Using the example of the case study, we identify dtiemale behind the decisions at various points,
and design a logic that captures this reasoning process.

2.1 Casestudy revisited

The scenario described in Sectionl1.1 is illustrated in i€ifl(1). Figurd1l(2) presents our vision of au-
tomating reasoning about uncertainty in intrusion analy3ihe reasoning framework consists of two lay-
ers: observations and an internal reasoning model. ThenatiEms are from system monitoring data
such as IDS alerts, netflow dumps, syslets;. and are mapped into the internal reasoning model as con-
ditions representing unobservable security status undereist. For examplegbnor mal high traffic

is an observation, anain attacker is performing sone network activity is an internal condition.
Logical relations exist between observations and intecoalditions with varying degrees of certainty.
Forexample, we can saynormal high traffic indicates the possibility that an attacker is
performng some network activity. Anotherexamplenet fl ow dunp showi ng a host communi cati ng
with known BotNet controllers indicates that an attacker |ikely has conprom sed the host.
Likewise, there are logical relations among the variousrimdl conditions and these relations contain vary-
ing degrees of certainty as well. For example, one camafegr an attacker conpronised a machi ne,

Answer: 12 machines have
been “certainly” compromised

Query:
Is my machine
compromised?

4. Found open
IRC sockets
with other
‘. TrendMicro
. servers

/ \

J 2.Four \‘

/ TrendMicro,
servers .

communicating \

i1 with known | \

BotNet [\ 3. Found

controllers | 1 Examine the, seemingly

! i machines’ imalicious code

!

}

i
1 memory ‘.‘ modules

1. Abnormally
high traffic,”

K;
h
i+ Search for
blacklisted IP:

[PESRS —

'
1
|
]
.
b

IDé alens‘ ’ netflowdump:‘ ’m'emorydumé‘

High-confidence Conclusions with Evidence

: / Reasoning Engin

1. Mapping
observations to|
internal

conditions "

2. Targeting
subsequent
\ observations

3. Mapping
results of

H targeted search
\

h
i
13

Observations

IDS alerts, netflow dump, syslog,
serverlog ...

(1) Case scenario (2) Vision of applying a logic with uncietia

for intrusion analysis
Figure 1: Case study and vision for automated intrusionyaigl

he may possibly perform sonme network activity fromthe machine,andafter an attacker sends
an exploit to a machine, he will likely compronise the machi ne. These statements capture the
rationale behind human reasoning when manually deteatingsions from the logs. The internal model is
analogous to human thinking — observations are reflecte@lafdwith varying strengths, and the beliefs
are related to one another with varying strengths as welld&¢ggn logical rules to capture both aspects and
a formalized reasoning process to simulate human thinkirefp shat an automated inference process can
allow us to construct sophisticated attack conclusionsgaigith a semi-quantitative measure of our confi-
dence. This inference process is capable of deriving, fréangee number of possibilities, high-confidence
beliefs corroborated by a number of complementary evidetoggcally linked together. For example, even
though the SA was not sure whether the abnormal high traffityrendicated an attack, he knew that this
observation is logically linked to network activity, whictan also be observed by netflow dump. When
from the netflow dump the Trend Micro servers were shown tornamicate with malicious IP addresses,
and from the memory dump a potentially malicious code mogkds found, the two pieces of evidence
both indicated that the server was likely compromised, gttengthening the belief’'s confidence to almost
certain.

A side product of this reasoning process is the downwardwestiwn in Figur€lIl(2), which represents
the “top-down” targeted search guided by the result of theeci reasoning process. The volumes of data
collection in enterprise networks have reached staggemiogortions. A single site can collect Gigabytes
of log information per day and searching there for a singlectevent that may be poorly described in such
enormous collections has been likened to “searching foredlean a haystack of needles™[22]. A simple
approach of scanning all the data first to build attack hyestk at a low level is unlikely to scale — we
need analytic methods that find all the attacks hidden in #te with reasonable confidence without having
to trawl the entire data.

Reasoning framework Figurel2 presents the architecture of our reasoning systéreasoning model
consists of two modules — observation correspondence ridedcin Sectiori-312) and internal model (de-
scribed in Sectiof—313). Roughly speaking, observatiomespondence maps low-level observations into
predicates in the internal model (the up arrows in Fiduirg)1é&hd the internal model encodes the logical
connections among internal conditions. Both modules irédlasoning model are specified in Dataldy [3],
a simple logic-programming language that has efficient paryial-time execution. The raw observations
are pre-processed and the distilled results are convertBatalog tuples as input to the reasoning system.

Observation
Correspondence

\ /
User query, e.g.

Answers with Reasoning which machines
evidence Engine are “certainly”

compromised?

(convert to Datalog tuples)

Internal Model

pre-processing |

R

Snort netflow filter log analyzer |

Figure 2: System architecture

The reasoning engine is implemented in Prolog and the reagoules are specified in Sectibnl3.4. We use
the XSB [23] Prolog system to run our reasoning engine. Anoirigmt feature of our design is that every
component of the system is specified declaratively, whichtha useful property that once all specifications
are loaded into the Prolog system, a simple Prolog queryautibmatically, and efficiently, search for true
answers based on the logic specification. For example, ecagsesisk a question “which machines are cer-
tainly compromised?” in the form of a simple Prolog queryr@asoning engine will then give the answer
along with the evidence in the form of logical proofs.

Sectior B contains a formal description of our logic and seasy framework. In Sectiol 4 we describe
our experience with applying our tool to the Treasure Huthskst.

3 Formal description of thelogic

In this section, we formally describe our “logic with un@@nty” which is the core of our approach. As
outlined in the previous section, we use the logic to consertsed events into internal conditions which
capture the semantics of the observations imbued with sem&ty tags. A proof strengthening technique
is introduced to derive high-confidence conclusions froohdmperfect input, using an internal model that
captures the logical relations (also with uncertainty) agithe various internal conditions.

3.1 Notations

We use three modes [, ¢, standing for “possible, likely, certain” to express lowpderate, and high con-
fidence levels. Even though one could think of certainty ll@gelying in a continuous spectrum between
completely unknown to completely certain, we found that har8A's only deal with a few confidence lev-
els in practice that roughly correspond to the ones definesl iewould become disproportionately harder
to mentally keep track of a large number of certainty leveld these three levels seem to be adequate for
most scenarios. We emphasize that these uncertainty lareldone by hand and apart from the obvious
ordering we are not ascribing a probability range to eacéllev

We identify two types of logical assertionsbservation correspondende map external observations
to internal conditions, animhternal modeko capture relationships between internal conditions résmond-
ingly, we useobg O) to denote a fact about observation andint(£’) to denote an internal conditiafi. For
example obgnetflowBlackListFiltef172.16.9.20, 129.7.10.5)) is an observation from the netflow blacklist
filter thatmachi ne 172.16.9.20 is comunicating with a known nmalicious |P 129.7.10. 5, whereas
int(compromise(l72.16.9.20)) is an internal condition that72. 16. 9. 20 has been conproni sed. See

A; : obganomalyHighTraffig —- int(attackerNetActivity

As : obgnetflowBlackListFilte(H, BlackListedIP) LN int(attackerNetActivity
As : obgnetflowBlackListFilte(, BlackListedIP) LN int(compromise@H))

Ay obs(memoryDumpMaIiciousCode(l)-Ibl—> int(compromise(H))

As : obgmemoryDumplRCSocKéf,, H,)) LN int(exchangeCtiIMessag@#, H,))

Figure 3: Observation correspondence

I, : int(compromise@H;)) 2% int(probeOtherMaching;, Hs))

I, : int(compromise@H)) 2% int(sendExploitH, Hs))

I5 : int(sendExploitH, Hs)) 2, int(compromisetiH,))

I, : int(compromise@H,)), int(compromise@H,)) == int(exchangeCtIMessag#, H>))

Figure 4: Internal model

FiguredB anfll4 for examples of these two types of predicates the case study.

3.2 Observation correspondence

Observation correspondence gives a “meaning” to an olamyan the form of internal conditions. 14,

an abnormal high network trafficbganomalyHighTraffiy is mapped tant(attackerNetActivity, meaning
an attacker is performing some network activity. This iswa-tmnfidence judgment thus the modepis
Intuitively the p mode means there is other equally possible interpretafmmthe same observationd,
and A3 give the meaning to an alert identified in a netflow analysiser€ are a number of filtering tools
available that can search for potential malicious pattémna netflow dump, such as “capture daemon”
and “flow-nfilter”. This rule deals with one filter that ideiidis communication with known malicious IP
addresses. Since any such activity is a strong indicaticattatker activity and the fact that the machine
involved has been compromised, the modality of the two nglésThere are still other possibilities, e.g. the
communication could be issued by a legitimate user who wanfisd out something about the malicious
IP address. But the likelihood of that is significantly lovilean what is represented by the right-hand side
of the two rules.A, says if memory dump on machirfé identifies malicious code, theH is likely to be
compromisedAs says if the memory dump identifies open IRC sockets betweehimaiH, and H,, then
itis likely that the IRC channel is used to exchange contressages between BotNet members.

We recognize that these observation correspondenceianseste not objective. A common problem
in intrusion detection is the lack of ground truth which maltevery hard to have objective classification
of all events. Our goal is to create a flexible and lightweigamework wherein an SA can feed in these
beliefs of certainty and see what consequences arise. borgg, an SA may think the mode df, ought
to be ¢, which would be acceptable. One advantage of such a logigaisit facilitates discussion and
sharing of security knowledge. Empirical experiences feolarge community can help tune the modes in
those assertions. We envision a rule repository modelti&efor Snort, where a community of participants
contribute and agree upon a set of rules in an open languagerer@y there are only coarse-grained
classification and some natural-language explanatiorthéaneanings behind each Snort alert. In Seélion 4,
we show how a small number of internal-model predicates sanameaning to the vast majority of Snort
alerts. The Snort rule writers can use the observation gporedence assertions to encode the possible
implications of Snort alerts with levels of certainty, whican then be reasoned about automatically in our
logic.

3.3 Internal model

Once the observation correspondence has mapped extesga/ations to internal conditions, we are now
ready to relate these internal conditions to other intecoalditions while also keeping track of the degree
of certainty associated with them. To represent the logelaltionship between internal conditions in our
model, we use thé™™%* operator, which represents the “leads to” relationshipvbeh internal conditions.
The condition on the right-hand side of the operator is cdusethe left-hand side and as a result the
arrow must be aligned with timé,e. it must happen no earlier than the left-hand side. HoweVer, t
reasoningcan go along both directions, and hence two modes {n-) are associated with each rule. For
example,l; says “if an attacker has compromised machihe he can perform a malicious probe frath

to another machinéf,.” The forward reasoning has a low certainty: the attackey oramay not choose
to probe another machine after compromising one. Thus tlveafd reasoning is qualified by themode.
Reasoning on the reverse direction however hag thede: if an attacker performs a malicious probe from
one machine to another, he must have already compromisefdsthmachin@ Likewise, I» says “if an
attacker has compromised machiHg, he can send an exploit frofd; to another machinéi,.” For the
same reason, the forward reasoning hagpthede and the backward reasoning hasdheode. In/s, the
fact that an attacker sends an exploit to a machine leadstodimpromise of the machine. The forward
reasoning is also not certain, since the exploit may failXecate on the target host. We have used the
confidence level — attackers typically make sure their exploit will likely vkobefore using it in an attack.
In the other direction, sending in a remote exploit is just ohmany possible ways to compromise a host.
Thus the reverse reasoning by has thep mode. I, is the only assertion in this model that has two facts
on the left-hand side. Like in typical logic-programmingdmages, the comma represents the AND logical
relation. The forward direction has tipemode: if an attacker compromised two machiés H,, the two
machines can possibly exchange BotNet control messagesdrethem to coordinate further attacks. The
backward direction has themode: if two machines are exchanging BotNet control messdgeh of them
must have been compromised.

3.4 Simplereasoning rules
As a result of combining the observation correspondende thé internal model we can derive many useful
assertions with different levels of certainty. To descitibis reasoning process we usg(F, m) < Pfto
represent that “the internal faét is true with modalitym”, and Pf is the proof which shows the derivation
steps in the logic arriving at the conclusion. We have desigieclarative rules that simulate human rea-
soning with uncertainty. Many but not all of the rules are@enand straightforward. This section explains
the simple rules and the next section explains the proefigthening rule which is the core of handling
uncertainty.

From an observation one can derive an internal belief withesdegree of certainty, based on the obser-
vation correspondence assertion. This is captured in fl@fiog rule called “obsMap”.

obg0) obg0) - int(F)
int(F, m) < obsMagobg0))

obsMap

As an example of an application of this rule, the open IRC8bidentified through memory dump in the
case study will be an input to our systeobhgmemoryDumplRCSocket(172.16.9.20,172.16)9Thgether
with observation correspondengg, the above reasoning rule will derive:

int(exchangeCtlMessage('172.16.9.20°/172.16.9.l)'x=
obsMagobgmemoryDumplRCSocket('172.16.9.20°,172.16.9)1")

3The predicateprobeOtherMachinespecifically means the malicious probing performed by aaci#r and does not include
benign probing from non-malicious parties.

The following two derivation rules capture the reasonirgduiced by each internal-model predicate.

int(F,m) < Pfint(F) ™ int(F") m'=mUm; "
int(F”, m') < intL(int(F, m) < PY) n

int(F,m) < Pt int(F’) 2% int(F) m' =mUms R
In

int(F',m’) < intR(int(F, m) < Pf)

We usem; U ms to denote the “join” relation between modes, which takeddhser degree of certainty
from the two. For exampld,Up = p; [lUc = [; and so on. The intuition is that the confidence level of a fact
arising from a chain of reasoning is the confidence level ®@itkbakest link in the chain. As an example, the
internal factint(exchangeCtIMessage(172.16.9.20,172.16,9) Yerived above, together with the internal
model predicatds, would yield the following derivation trace.

int(compromised(172.16.9.20) <
int(exchangeCtlIMessage(172.16.9.20,172.16.9) 1=
obsMagobg memoryDumplIRCSocket(172.16.9.20, 172.16)9.1)

Since the backward reasoning modefis ¢, joined with the mode inint(exchangeCtIMessage(172.16.9.20,
172.16.9.1), l)we getc U [= [as the mode for the resulting faot(compromised(172.16.9.2@).

3.5 Proof strengthening

As can be easily seen, the simple reasoning rules above tamniecrease the confidence level of a fact.
The key purpose of reasoning about uncertainty is to deigie-tonfidence fact from low-confidence ones.
In the case study, the system administrator strengthersaoelief that the Trend Micro server was compro-
mised by combining three pieces of evidence: netflow filtealtesshowing communication with a blacklisted
IP address, memory dump result showing likely maliciouseamdules, and memory dump result showing
open IRC sockets with other Trend Micro servers. These thieees of evidence aiadependent— they
are rooted on observations at different aspects of theraystad yet they artogically connected— all of
them indicate that the Trend Micro server is likely compreed. Thus they altogether can strengthen our
belief in the fact that the server is compromised. We geizer#his reasoning process in the following proof
strengthening rule.

int(F,m1) < P, int(F,mg) < Pf, Pf, || P,
int(F, strengthettm, msy)) < strengthenedRPf,, Pf,)

strengthenedPf

The|| relation indicates that two proofs are independent — basetisjoint sets of observations and internal

conditions. This deduction rule states that if we have tvasoaing paths to a fact with some confidence
levels, and if the two paths are based on independent obissrvand deductions, then the confidence level
of the fact will be strengthened. Tls&rengtherfunction is defined below.

strengtheiil,!) = ¢ strengthefil,p) = ¢ strengthelp,!) = ¢
Simply put, two independent proofs can strengthen to “a®ribat least one of them can yield a “likely”
mode. There is no definition f@trengthenvhen both parameters apeor at least one of them is Since

the p mode represents very low confidence we do not allow strengtbdrom just possible facts. There is
no need to strengthen a fact if it is already proved to be icerta

3.6 Implementation

All the above reasoning rules can be straightforwardly igecin Prolog. We also implemented a simple
proof-generator so that when a fact is derived, the prooétcan also be displayed. We applied the reasoning
system and the model described[1nl 3.2 3.3 on the inputuocase study. The result is shown in

9

| ?- show_trace(int(conprom sed(H),c)).
int(conpronised(’172.16.9.20"),c) strengthenedPf
i nt (conprom sed(’ 172.16.9.20"),1) intRule_4
i nt (exchangeCt| Message(’ 172.16.9.20",'172.16.9.1"),1) obsRule_5
obs(menor yDunpl RCSocket (’ 172.16.9.20','172.16.9.1"))
i nt (conprom sed(’ 172.16.9.20"),1) obsRule_4
obs(menor yDunpMal i ci ousCode(’ 172. 16.9.20’))
i nt (conprom sed(’ 172.16.9.20"),1) obsRule_3
obs(netfl owBl ackLi stFilter(’172.16.9.20",'129.7.10.5"))

int(conpronised(’172.16.9.1"),c) strengthenedPf
(1) int(conpronmised(’172.16.9.1'),1) intRule_4
i nt (exchangeCt| Message(’ 172.16.9.20",'172.16.9.1"),1) obsRule_5
obs(menor yDunpl RCSocket (’' 172.16.9.20",'172.16.9.1"))
(2) int(conpromised(’172.16.9.1'),p) intRule_2
int(sendExploit(’'172.16.9.1",'172.16.9.20’),p) intRule_3
int(conpronised(’172.16.9.20"),!) obsRule_4
obs(menor yDunpMal i ci ousCode(’ 172. 16.9.20’))
(3) int(conpronmised(’172.16.9.1'),p) intRule_2
int(sendExploit(’'172.16.9.1",'172.16.9.20"),p) intRule_3
int(conpromi sed(’172.16.9.20"),1) obsRule_3
obs(netfl owBl ackListFilter(’'172.16.9.20",'129.7.10.5"))
(4) int(conpronised(’172.16.9.1'),p) intRule_3
int(sendExploit(’172.16.9.20",’172.16.9.1’),p) intRule_2
int(conpronised(’172.16.9.20"),1) obsRule_4
obs(menor yDunpMal i ci ousCode(’ 172. 16.9.20'))
(5) int(conpronmised(’172.16.9.1'),p) intRule_3
int(sendExploit(’172.16.9.20",'172.16.9.1'),p) intRule_2
int(conprom sed(’172.16.9.20"),1) obsRule_3
obs(netfl owBl ackLi stFilter(’172.16.9.20",'129.7.10.5"))

Figure 5: Result of applying the reasoning system on the stasly

Figure® (we annotated the second derivation trace with samwbers for presentation purposes). The user
enters the querghowt race(i nt (conproni sed(H), c)), to find out all the provable facts in the form of
conpr oni sed(H) with “certain” mode. This is essentially asking the quastiwhich machines are certainly
compromised”. The reasoning engine prints out two depvatraces. The first one is far2. 16. 9. 20,
the IP address (fake) for the compromised Trend Micro seixaridentified by the SA. The second one
is for 172. 16. 9. 1, another Trend Micro server with which the first one mairdaam open IRC socket. It
is clear that the first derivation trace exactly matches @asoning process the human SA did to identify
the compromised server — the confidence level is strength&foen concordant evidence emanated from
netflow dump and memory dump. The second derivation traceoi® fimteresting. The fact's “certain”
mode is also strengthened from a number of evidence tradestrdce marked by (1) is based on the fact
that the machine maintains an IRC connection with anothahima. This by itself does not provide high-
certainty evidence that the host has been compromisedhBuither machinel¢2. 16. 9. 20) is also likely
compromised (third line on each of (2) — (5)) from other ingleglent observations. (2) and (4) are based
on the memory dump result; whereas (3) and (5) are based ametilew dump. (2) and (3) reflects the
possibility that172. 16. 9. 1 is used as a stepping stone to compromize 16. 9. 20; whereas (4) and (5)
reflects the possibility that72. 16. 9. 20 is a stepping stone to compromise2. 16. 9. 1. Each can only
derive a “possible” mode for the fact that2. 16. 9. 1 is compromised (first line on each of (2) — (5)).
However, combined with the evidence in (1) the fact's modstiengthened to “certain”. This exactly
matches the rationale behind the human reasoning.

This case study also demonstrates that our internal modeingact yet powerful enough to handle
complicated reasoning in intrusion analysis. We also alestrat all the simple reasoning rules in our logic

10

can be encoded as Datalog programs, and the proof-stremggheule can be easily implemented with a

Datalog proof generator. Datalog has polynomial time caxipl and can be efficiently executed in the

XSB Prolog system. Indeed, it has been shown that an attagiggenerator based on Datalog evaluation
can scale to enterprise networks with thousands of macf@@z21].

4 Experimentsand Results

Evaluation of intrusion detection systems has always béf#icult due to the lack of data from a large
variety of scenarios and settings. Performance result orgéeglata set in the form of false positive/negative
numbers can hardly be persuasive, since one can always thjldo work well for a particular data set.
Indeed, it has been pointed out that by just looking at the fi@ld of the packets in the MIT Lincoln Lab
data set([1i1] one can distinguish between malicious packatsnon-malicious packets, due to the way the
data was generated [2,114]. In this section we describe &ant ef experimenting our reasoning model from
a different perspective. Instead of trying to obtain thedgbositive and false negative numbers as is typical
of IDS research, we would like to discover whether our reampmodel developed from studying the true-
life incident can be applied to a completely different dagtand find interesting attack traces. We use the
Treasure Hunt (TH) data sef [27it(t p: /7 www. cs. ucsb. edu/ ~vi gna/ t r easur ehunt /), which was
created as a part of the competition organized in a gradeatgity course at University of California, Santa
Barbara. Our motivation to use this particular data set Wwadarge amounts of diverse system monitoring
data in the forms of TCPdump, Syslogs, Snare logs, Apacherskgs, kernel audit loggtc. Moreover,

the data set provides the valuable “meta data” such as thesbary (competition task details) and network
topology which can help us understand the result (The nétiopology and task details are provided for
reference in Appendiik] 7). We would like to see how easy it igfply our unmodified reasoning system to
this data set.

4.1 Data pre-processing

We applied Snort to the TCPdump to generate IDS alerts, wiviete sent to thd’relude Manager(a
program for collecting, managing and storing alerts frons I8ensors). By usingrelude-Correlatorthe
alerts were clustered based on Snort rule ID’s as well axe@md destination IP addresses. We then hand-
coded the clustered alerts into Datalog format understgodubp reasoning system, some samples shown
below. (The Time field is not used since our logic currentlgsloot handle time stamps)

[+ obs(snort(ID, FronHost, ToHost, Tinme)). =/

[+ \Web-M sc guesbook. pl access fromexternal IP to WNWVserver */

obs(snort(’1:1140’, ’128.111.49.46’, ’'192.168.10.90", _)).
obs(snort(’1:1140’, ’128.111.49.137', '192.168.10.90’, _)).

[+ WEB-M SC /etc/passwd access fromexternal IP to WAV server */
obs(snort(’1:1122', '128.111.49.47', '192.168.10.90", _)).
Observation correspondence We already have the internal model and reasoning engindagmdefrom
the case study, but we do not yet have the observation comdspce assertions for the Snort alerts gener-
ated from the TH data set. As a rationale for writing the a&s®s, we made use of the Snort rule and the
natural-language description available at the Snort ep@sitory as well information that can be found at
Bugtrag,etc. For example, the Snort rule for “WEB-MISC guestbook.pl astalert is

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(msg: "WEB- M SC guest book. pl access"; flow to_server, established;
uricontent:"/guestbook. pl"; nocase; netadata:service http;

cl asstype: attenpted-recon; sid:1140; rev:12;)

This rule alerts for all the web request containing “/guestbpl” in the URI. The observation correspon-
dence for the alert is

11

http://www.cs.ucsb.edu/~vigna/treasurehunt/

[+ \\eb-m sc guest book. pl access */
obsMap(obsRul e_thl, obs(snort(’1:1140', FronHost, ToHost, _Tine)),
i nt (sendExpl oi t (FromHost, ToHost)), p).

The assertion is mappeddendExpl oi t (FronHost, ToHost) because the vulnerable “guestbook.pl” script
can be used faremote code executiand has gossiblemode because the rule alerts for legitimate access
also. Similarly, for the Snort alert “WEB-MISC Apache CheadkEncoding transfer attempt”
(http://www. snort. org/ pub- bi n/sigs.cqi ?si d=1: 1807) the description and observation corre-
spondence are given as

This event is generated when an attempt is made to exploibarkwulnerability on a web server or a
web application resident on a web server.

[+ Apache chunked encodi ng transfer attenpt =/
obsMap(obsRul e_t h5, obs(snort(’1:1807', FronmHost, ToHost, _Tine)),
i nt (sendExpl oi t (FronHost, ToHost)), c).

The observation correspondence has a “certain” mode beeauan exploit rather than a feature it is used
only by an attacker.

4.2 Applying the reasoning engine

It is important to note that we use the same internal modelraasioning system developed from the case
study. As in the case study, the main goal of the analysishieeed by issuing a Prolog query to find out the
hosts that areertainly compromised. Figuriel 6 shows the partial results of runriigduery on the (pre-
pared) TH data. The numbers in parentheses have been adtaddjyo aid in discussion of the output. (1)
shows that host92. 168. 10. 90 (WWW server) wagertainly compromised. The output also lists the facts
that were used by the reasoning process to strengthen fhisvel goal to certain mode. (2) is the “TCP
portscan” alert for probing activity from WWW server to thkefserver, which happened after WWW server
was attacked. (3) is the “Apache Chunked-Encoding trarstempt” exploit sent to the WWW server. The
guestbook.phccess which can give the attacker unauthorized accessossibly escalated privileges by
remote code execution on the WWW server is shown in (4) taggedssibleattack. This set of proofs is
sufficient for the reasoning system to strengthen the iatenodelconpr om sed(192. 168. 10. 90)
(WWW server) tocertainas indicated by the strengthening rule in sedfioh 3.5.

The reasoning system also used heuristic functions to aeanching for evidences of attack. One of
the heuristic function used is given in Figlile 7(a). Thisristic was used to search fguestbook.ppattern

| ?- show_trace(int(conprom sed(H), c)).

(1) int(conpronised(’192.168.10.90'),c) strengthenedPf
(2) i nt (conprom sed(’ 192.168.10.90"),1) intRule_1
i nt (probeQ her Machi ne(’ 192. 168. 10. 90", 192. 168.70.49"),1) obsRule_th6
obs(snort(’122:1','192.168. 10.90",' 192. 168. 70. 49’ , _h272))

(3) i nt (conprom sed(’ 192.168.10.90"),1) intRule_3
i nt (sendExpl oit(’128.111.49.46",'192.168.10.90’),c) obsRul e_th5
obs(snort (' 1:1807',' 128.111.49.46",’ 192. 168. 10. 90", _h336))
(4) i nt (conprom sed(’ 192.168.10.90"),p) intRule_3

i nt (sendExpl oi t (' 128. 111. 49. 137’ ,’ 192. 168. 10. 90’), p) obsRul e_th1
obs(snort (’1:1140°,’ 128.111.49. 137’ ,’ 192. 168. 10. 90’ , _h588))

Figure 6: Partial output trace from the reasoning system

12

http://www.snort.org/pub-bin/sigs.cgi?sid=1:1807

/* heuristic function for searching guestbook.pl pattern*/
heuri stics(heuristics_thi,
obs(snort(’1:1140', _FronmHost, ToHost, Tine)),
target (ToHost, | og_pattern(’ apache_access’, Tine, 'guesthbhook.pl’))).

(a): An example heuristic function

128.111.49.47 - - [06/Dec/2002:12: 31: 47 -0800] "CET
/ cgi - bi n/ guest book. pl ?/ et c/ passwd HTTP/ 1. 1" 200 1924 "-" "Mbzilla/5.0
(X11; U, Linux i686; en-US; rv:1.0.1) Gecko/20021003"

128.111.49.47 - - [06/Dec/2002: 12: 43: 12 -0800] "GET

/ cgi - bi n/ guest book. pl ?guest book. t xt ; user add%20- G20r oot %20- p%¥20f oobar ¥20- r %20bi | |
HTTP/ 1. 1"

200 632 "-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.1)

Gecko/ 20021003"

(b): Partial Output from the targeted search

Figure 7: Targeted search using heuristic function

in the Apache logs on the target host. With information pided by the heuristic, we narrowed down our
search in the Apache logs. Partial output of manual log seiarshown in Figur&l7(b). The log indicates
auser add command was injected via web request to gain access to the Bash concrete evidence
accompanying the output of the reasoning engine helped nf&rrmohow the attacker compromised the
system.

4.3 Result validation and analysis

An attack targeted on a host followed by a probing activipnirthat host allows us to conclude that the host
was compromised. Referring back to Figlile 6, our reasonistgs made use of the two stages of attack:
attempts to compromise the WWW server ((3), (4)) and attaaktvity like probing on the file server (2)
to strengthen the proof associated withpr oni sed(Wy to certain.

The published TH data set did not include a truth file (a filetaming information on how the actual at-
tacks were carried out and to what extent they were sucdessiterify the correctness of our experimental
results. We performed manual analysis of the logs and cadpawith the output. In the process, we made
a couple of observations that are interesting not just tostudy but intrusion analysis in general. First, we
found that the reasoning engine had used the alert “ApachelCEncoding transfer attempt” to strengthen
the confidence of a proof. But from our manual analysis, tleeess of this alert was inconclusive because
the Apache access log had a “Bad Request” (Apache respodse 400) as response to all such requests
made to the Apache server. While it is possible that all thengtts failed, the absence of evidence is not
a conclusive proof that none of the attempts succeeded. ¥ biscause the behavior of a program (in this
case, Apache) after a successful exploit is not fully ptadhie. An alert verification process like thatin[26]
would have removed the alert from entering the reasoningnenay using probing techniques to find if the
service is running (The data set had no such details to aghmoving the alert).

Our reasoning system was able to identify the second stag#tanfks on the File Server. However,
there is yet another stage of attack. The third stage oflatiadhe SQL server was not captured. Here,
the attacker gained access to the SQL server by creating &aedulent account on the file server which
provides authentication information to the SQL Server. ISsitenarios are not currently handled in the
internal model because the nature of logged informatiomtthe attack makes it far from conclusive. This
aspect needs further research.

13

5 Reated Work

Uncertainty in data, specifically in the context of secudtyalysis, has been handled in previous works
using various statistical tools, especially the Bayesiatwdrks (BN) [8,13[2B]. Zhai et al [28] use BN
to correlate complementary intrusion evidence from botB ierts and system monitoring logs so that
high-confidence traces can be distinguished from ones tadéss certain. While statistical tools like BN
is theoretically rigorous and elegant, having been provitt/e in other areas of research, they have an
unaddressed gap, namely, how to set statistical parametingns of hard probability distributions: in the
specific case of BN, the conditional probability table (ClRF)each node in a BN. In practice, it has proven
very hard not only to estimate the probabilities necessargplso hard to learn them from large real-life data
because of overwhelming volume of background data thatdhae €liminated from the “signal” of intrusion
data. [1] andllB] converge on this difficulty from two differteviewpoints, estimation theory and learning
theory, respectively. For security analysis, it is neanhpossible to obtain the ground truth in real traces
and it is hard if not impossible to simulate attacks. On thepohand, in practice SAs have been managing
to detect attacks in logs and real-time alerts without theebeof such theoretical models. This inspired
us to formulate a logic that approximates human reasoniagvtiorks with a qualitative assessment on a
few confidence levels that are relatively easy to underst@fedacknowledge that this formulation not only
hides the lack of knowledge of base probabilities but alflects the great deal of ambiguity that genuinely
exists in intrusion analysis of real data. We hope that bgtaorg an option to specify the confidence level
explicitly and by providing practical tools to manipulakete uncertain pieces of knowledge, we can bypass
some of these fundamental problems and gain experiencenthaimake some statistical approaches viable
in the future.

BotHunter [10] is an application for identifying Bot machithrough correlating Snort alerts with a
number of other system-monitoring events. The notion offitence score” and “evidence threshold” are
introduced to capture the uncertainty in the correlatiascess, and specific processes are designed for the
purpose of Bot detection. The goal of our work is to providenapée model for the general problem of
intrusion analysis, not specifically targeted at a speygjaé Of attack such as Bot infection.

There is more literature on intrusion alert correlatibh@4.18,[19 26 26] than can be done justice
to in a short section. These vital works have provided ingrinsights into logical causality relations
in IDS alerts that have informed this work. Most of these vgonkodel around IDS alerts with pre- and
postconditions, which drives an internal reasoning basegtaphs. However, we have found that sometimes
it is difficult to come up with a compact pre- and post-comditmodel for ubiquitous observations that can
be symptomatic of a wide variety of seen and unseen conditibar example, in our study there were too
many possibilities for the abnormally high network traffieat. Our observation correspondence model
assigns airect meaning to an observation and our internal model allows soehnings to be flexibly
linked together based on their inherent semantics. Weugetteat such flexibility is important in intrusion
analysis, especially in cases where the evidence is tenudogther general model for incorporating all
possible types of data in security analysis is M2D2 [17]. Afram the fact that M2D2 does not deal with
uncertainty in modeling, our model is much easier to undesfor a non-expert — rather than classifying
the incoming information into various categories with neatfatical notations, we represent knowledge in
our model as simple “statements”that can be easily traessiato natural language.

One step in our reasoning process is data pre-processirg wivolves data reduction based on clus-
tering and simple correlation of local observations. Muokvpus work in IDS has addressed this prob-
lem [18,[26] and we intend to use applicable tools and appesatrom the prior work to reduce the number
of observations that need to be entered into our reasonstgray Recent work by Martignost al. [12] pro-
posed a “layered approach” for detecting malicious bemayishich could be combined with the approach
presented in this paper to link low-level monitoring trasaesh as system calls to high-level meanings with
uncertainty for intrusion analysis.

14

There is a strong literature on creating logics for dealintip wincertainty. While many of them may
prove to be useful theoretical underpinnings for our systesm have not investigated this direction. In
particular Friedman and Halpern introduced a new appraaamodeling uncertainty based on “plausibility
measures”[[[7]. Our notion of the uncertain modes is motivdte similar considerations but we do not
require this precise definition because the meaning of iregest not always clear in our context. We note
that our logic withmode operatorss inspired by modal logic. A formal description of our logis a
modal logic is the subject of future research. Recent yaas see revolutionary works that integrate logic
programming and statistical modeling, most notably theSANRBystem [[24]. Whether our logic can be
expressed in a formal language like PRISM will be our fut@search.

6 Conclusions and Future Work

We presented a practical approach to modeling uncertainigtiusion analysis. Our goal is to help the
system administrator in reaching conclusions quickly alpmssible intrusions, when multiple pieces of
uncertain data have to be integrated. The model languageesigrebd has two components: observation
correspondence and internal model. The observation gameence gives a direct meaning to low-level
system monitoring data with explicit uncertainty tags, aad be derived from natural-language description
that already exists in some IDS knowledge baseagthe Snort rule repository. The internal model is concise
and captures general multi-stage attack conditions in aergmse network. We developed a reasoning
system that is easy to understand, handles the uncertaistgm in both observation correspondence and
the internal model, and finds high-confidence attack tracea many possible interpretations of the low-
level monitoring data. Our prototype and experiments shHwt the model developed from studying one
set of data is effective for analyzing a completely différdata set with very little effort. This is a strong
indication that the modeling approach can codify the seglyniad-hoc reasoning process found in intrusion
analysis and yield practical tools for enterprise-netwamkironments.

As this is the first time that uncertainty has been dealt witthis explicit but qualitative manner, much
work remains to be done, some of which we have already alltmlearlier. Specifically, our modality is
a very crude operator — we do not distinguish the various $oofruncertainty, such as lack of accuracy vs
lack of precision. On a practical level adding too much canity to the modality itself may be counter-
productive. But with some maturity of modeling and expecenwve hope to be separate in our model these
two sources of uncertainty as well. As in any modeling tdagré is a natural question of how granular our
models have to be to achieve best results. Because the ainterf knowledge increases after a certain
granularity, we expect that there is an optimal point that oaly be discovered with experience. Our
modeling and reasoning are monotonic and we do not deal wijation in our models. Although we did
not need it in the two datasets that we analyzed, it is pléutilat a new observation caeducethe modality
of an internal condition, e.g. from likely to possible. Thsa subject for future research.

References

[1] Stefan Axelsson. The base-rate fallacy and the difficaftintrusion detectionACM Trans. Inf. Syst.
Secur, 3(3):186—-205, 2000.

[2] S.T. Brugger and J. Chow. An assessment of the DARPA IRfuetion dataset using snort. Technical
Report CSE-2007-1, University of California, Davis, Depagnt of Computer Science, 2007.

[3] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What glways wanted to know about Datalog (and
never dared to ask)EEE Transactions Knowledge and Data Engineeyih(l):146-166, 1989.

15

[4] Steven Cheung, UIf Lindgvist, and Martin W Fong. Modeglimultistep cyber attacks for scenario
recognition. INDARPA Information Survivability Conference and Expositi@®ISCEX IIl), pages
284-292, Washington, D.C., 2003.

[5] Frédéric Cuppens and Alexandre Miege. Alert cotielain a cooperative intrusion detection frame-
work. InIEEE Symposium on Security and Priva2@02.

[6] C. Drummond and R.C. Holte. Severe class imbalance: Witiebalgorithms aren’t the answer. In
Machine Learning: ECML 20Q5volume 3720 ofLecture Notes in Computer Sciengmages 539 —
546. Springer US, 2005.

[7] N. Friedman and J.Y. Halpern. Plausibility measures @&fult reasoningJ. ACM 48(4):648—-685,
2001.

[8] Saurabh Bagchi Gaspar Modelo-Howard and Guy LebanoterBéning placement of intrusion detec-
tors for a distributed application through bayesian nekwoodeling. In11th International Symposium
on Recent Advances in Intrusion Detection (RAID 208&ID, September 2008.

[9] G. Gu, A.A. Cardenas, and W. Lee. Principled reasonimgj@ractical applications of alert fusion in in-
trusion detection systems. ASIACCS '08: Proceedings of the 2008 ACM symposium on liaftiom
computer and communications securipages 136-147, 2008.

[10] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.HBoter: Detecting malware infection
through ids-driven dialog correlation. Proceedings of the 16th USENIX Security Symposium (Secu-
rity’07), August 2007.

[11] Joshua W Haines, Richard P Lippmann, David J Fried, EashTran, Steve Boswell, and Marc A
Zissman. 1999 DARPA intrusion detection system evaluatibesign and procedures. Technical
Report TR-1062, MIT Lincoln Laboratory, 2001.

[12] Matt Fredrikson Lorenzo Martignoni, Elizabeth Stinsand Somesh Jha John Mitchell. A layered
architecture for detecting malicious behaviors.1ltth International Symposium on Recent Advances
in Intrusion Detection (RAID 2008RAID, September 2008.

[13] UIf Lindgvist Magnus Almgren and Erland Jonsson. A maknsor model to improve automated
attack detection. Idl1th International Symposium on Recent Advances in ImnuBietection (RAID
2008) RAID, September 2008.

[14] M.V. Mahoney and P.K. Chan. An analysis of the 1999 DAREAcoln Laboratory evaluation data for
network anomaly detection. Froceedings of the Sixth International Symposium on Rexdvances
in Intrusion Detection2003.

[15] J. McHugh. Intrusion and intrusion detectiomternational Journal of Information Security.:14 —
35, 2001.

[16] John McHugh. Testing intrusion detection systems:idqae of the 1998 and 1999 DARPA intru-
sion detection system evaluations as performed by Lincalookatory. ACM Trans. Inf. Syst. Secur.
(TISSEC)3(4):262—-294, 2000.

[17] Benjamin Morin, Hervé, and Mireille Ducassé. M2D2:férmal data model for IDS alert correlation.
In 5th International Symposium on Recent Advances in IntnuBietection (RAID 2002)pages 115—
137, 2002.

16

[18] Peng Ning, Yun Cui, Douglas Reeves, and Dingbang XulsTand techniques for analyzing intrusion
alerts. ACM Transactions on Information and System Securif§):273—-318, May 2004.

[19] Steven Noel, Eric Robertson, and Sushil Jajodia. Catirg Intrusion Events and Building Attack
Scenarios Through Attack Graph Distances2@th Annual Computer Security Applications Confer-
ence (ACSAC 2004pages 350—- 359, 2004.

[20] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A stddeapproach to attack graph generation.
In 13th ACM Conference on Computer and Communications Se¢@@S) pages 336—345, 2006.

[21] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. AlppMulVAL: A logic-based network
security analyzer. 144th USENIX Security Symposiug05.

[22] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Anatysf computer intrusions using sequences of
function calls. INEEE Transactions on Dependable and Secure Computing (TP&jes 137 — 150,
2006.

[23] Prasad Rao, Konstantinos F. Sagonas, Terrance Svaftidls. Warren, and Juliana Freire. XSB: A
system for efficiently computing well-founded semantiecsPtoceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic ReasonifNMR’97) pages 2—-17, Dagstuhl,
Germany, July 1997. Springer Verlag.

[24] Taisuke Sato and Yoshitaka Kameya. Parameter leamwfinggic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research5:391-454, 2001.

[25] F. Valeur.Real-Time Intrusion Detection Alert CorrelatioRhD thesis, University of California, Santa
Barbara, May 2006.

[26] Fredrik Valeur, Giovanni Vigna, Christopher Kruegahd Richard A. Kemmerer. A Comprehensive
Approach to Intrusion Detection Alert CorrelationEEE Transactions on Dependable and Secure
Computing 1(3):146-169, 2004.

[27] G. Vigna. Teaching Network Security Through Live Exees. In C. Irvine and H. Armstrong, editors,
Proceedings of the Third Annual World Conference on InfaiomeSecurity Education (WISE ,3)ages
3-18, Monterey, CA, June 2003. Kluwer Academic Publishers.

[28] Yan Zhai, Peng Ning, Purush lyer, and Douglas S. ReeéReasoning about complementary intrusion
evidence. IrProceedings of 20th Annual Computer Security Applicatioosference (ACSACpages
39-48, December 2004.

17

7 Appendix

7.1 Network Topology used for TreasureHunt experiment

f/-/mpha UAA 49
19216820,

D% r &
(:temm I otz — WWWI .80
4 4 ethd B = \(/ oMz
S bt G
ANt

192,168.10.0/24 |~
— e
“—\‘-n—/

~e WWW2 80
Omega

UoOo 48

500 6 TOO 157

Note: The figure is taken from the TH websiiief p: 77 www. cs. ucsb. edu/ ~vi gna/ t r easur ehunt /

7.2 List of tasksused during the treasure hunt exercise

Task Description Max Duration
1 Determine the active hosts in subnet X.Y.Z. Also determeimeh host's OS and 20 minutes
the services/applications that are remotely accessibt@anisng techniques
that will evade detection by the Snort system will receiveigohal bonus

points.
2 Get interactive access to the web server host by explagtimgeb-based vul- 30 minutes
nerability. You must be able to login into the host as a useoawt other than
root.
3 Get root privileges on the web server host. 30 minutes
4 Determine the hosts that are located in the specified mitesubonet. Also 20 minutes

determine their OSs and the services/applications thataretely accessible.
Scanning techniques that will evade detection by the Syetem will receive
additional bonus points.
5 Access the MySQL database on host SQL and obtain the casftéme table 20 minutes

Employees.

6 Get interactive access to the MySQL server host. You habte @ble to login 20 minutes
with an account that is not root

7 Get root access to the MySQL server host. 20 minutes

8 Modify the database table Employees, setting the accaumbar of each em- 10 minutes
ployee to an account number of your choice.

9 Obtain access to the transaction service on host TRN. 8hedpaycheck 30 minutes

payment that will transfer the employee paychecks to yocowat.

7.3 Observation correspondence and internal model used in the experiment

/+* nmodel _th.P - predicates that describes the nodels Cbservation

18

http://www.cs.ucsb.edu/~vigna/treasurehunt/

Correspondence and Internal Conditions */

| *

-- obs: (bservations like Snort alerts, syslog etc
-- int: Internal condition

-- target: hint on howto target the search

* [

[**xx% Expl anation of observation predicates used in the nodel #***xx
obs(snort (1D, FronHost, ToHost, Tine)):
Snort alert generated at time Tinme by Snort rule id ID;

**/

[*xxx%xxx Explanation of internal predicates used in the nodel ***x%x*xx
int(conpronised(H)): Host His conprom sed.

i nt (sendExpl oit (FromHost, ToHost)): FronmHost sent an exploit to ToHost
int(port_open(H P)): Port Pis open on host H

**/

[*xxx%xxx Explanati on of targeting predicates used in the nodel ***x%x*xx

target (H, |og_pattern(Log, Tine, Pattern)): target the Log on host H
around time Tine and | ook for Pattern.

target (H, open_port(P)): check whether port P is open on host H

***/

[*xxx%xxxx CQDservati on COrrespondence **x**xx*xxx*x /[

/+ attenpt to exploit the guestbook.pl vulnerability */
obsMap(obsRul e_t hl,

obs(snort(’1: 1140, FromHost, ToHost, _Tine)),

i nt (sendExpl oi t (FromHost, ToHost)), p).

/* oversize chunk encoding */

obsMap(obsRul e_t h3,

obs(snort(’'119:16', FronmHost, ToHost, _Tine)),
i nt (sendExpl oi t (FromHost, ToHost)), p).

[+ Apache chunked encodin transfer attenpt =/
obsMap(obsRul e_t h4,

obs(snort(’1:1807', FronmHost, ToHost, _Tine)),
i nt (sendExpl oi t (FromHost, ToHost)), c).

[+ Apache chunked encodi ng worm attack =/
obsMap(obsRul e_t h5,

obs(snort(’1:1809', FromHost, ToHost, _Tine)),
i nt (sendExpl oi t (FromHost, ToHost)), c¢).

[+ 1 CMP PI NG NVAP */

obsMap(obsRul e_t h6,

obs(snort(’1:469, FronHost, ToHost, _Tine)),
i nt (probeQ her Machi ne(FronmHost, ToHost)), I).
/* TCP Portscan x/

obsMap(obsRul e_t h6,

obs(snort(’122:1’', FronHost, ToHost, _Tine)),
i nt (probeQ her Machi ne(FromHost, ToHost)), |)

19

[*xxx*xx | nternal nodel *xxx*xxx%x/
intRule(intRule_1,

i nt (conproni sed(FronHost)),

i nt (probeQ her Machi ne(FromHost, _ToHost)),
p, ¢).

intRul e(intRule_2,
i nt (conprom sed(Hl)),
int(sendExploit(HL, _H2)),
p, ©).

intRul e(intRule_3,
int(sendExploit(_Hl, H2)),
i nt (conprom sed(H2)),
I, p).

intRul e(intRul e_4,
i nt (conproni sed(HL)), int(conpromni sed(H2)),
i nt (exchangeCt| Message(Hl, H2)),
p, c).

[*xxx*xxx Heuristics on targeting information **x**xx/
heuri stics(heuristics_thi,
obs(snort(’1:1140', _FronHost, ToHost, Tine)),

target (ToHost, |og_pattern(’ apache_access’, Tinme, ’'guestbook.pl’))).

heuri stics(heuristics_th2,
int(port_open(H P)),
target (H, open_port(P))).

20

