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Abstract—Enterprise network security management is a com-
plex task of balancing security and usability, with trade-offs
often necessary between the two. Past work has provided ways
to identify intricate attack paths due to misconfiguration and
vulnerabilities in an enterprise system, but little has been done to
address how to correct the security problems within the context
of various other requirements such as usability, ease of access,
and cost of countermeasures. This paper presents an approach
based on Boolean Satisfiability Solving (SAT Solving) that can
reason about attacks, usability requirements, cost of actions,etc.
in a unified, logical framework. Preliminary results show that
the approach is both effective and efficient.

Index Terms—Boolean Satisfiability Problem (SAT), Com-
puter Network Management, Computer Network Security, Risk
Analysis, Security

I. I NTRODUCTION

Enterprise networks continue to grow in both size and
complexity and with this increase, concerns for security grow
apace. Vulnerabilities are regularly discovered in a wide va-
riety of software applications, so even a network of moderate
size can have dozens of possible attack paths, overwhelming
a human user with the amount of information. With all of
this complexity, it is near impossible for a human to fully
and accurately identify which configuration settings should
be changed to address security problems.

To make things more complicated, requirements for usabil-
ity are often at odds with those for security. Configuration
management would be a trivial problem if one only needed
to consider security requirements; simply shutting down the
whole network would resolve any security issues. But con-
figuration changes aimed at correcting security flaws must
be made in a context-aware manner, carefully balancing the
system’s security and usability.

Existing works in enterprise network security analysis, such
as MulVAL [19], [20], can identify all possible attack paths
in an enterprise system and output them in a graph structure.
This structure provides a good foundation for addressing how
to automatically find the best way to correct the security
problems presented in the analysis results.

We have developed a systematic approach, shown in Fig-
ure 1, to aid a human in confronting these difficulties.
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Fig. 1. SAT-based configuration generation

The current (problematic) network configuration settings are
passed into the MulVAL toolkit, which produces a logical
proof graph identifying all potential attack paths by whichan
attacker might exploit system resources. This proof graph is
converted into a Boolean formula in conjunctive normal form
that relates configuration settings and attacker actions with
potential effects, such as an attacker being able to execute
arbitrary code on a computer in the network. Security and
usability requirements, provided by the human user, are also
converted into conjunctive normal form and added to the
Boolean formula, and this combined formulaφ is processed
by a SAT solver.

A human user can further train the SAT solver as to the
relative value of various system resources and usages. Work-
ing interactively, the human user is able to quickly identify
and resolve network security issues without unknowingly
lessening the system usability. As the tool is trained, the
degree of automation should increase, producing sound and
desirable reconfiguration suggestions with minimal human
involvement.

In this approach, we use two SAT solving techniques:

1) MinCostSAT can utilize user-provided discrete cost
values, associated with changing a given configuration
setting or allowing an attacker a given amount of access,
to find a mitigation solution that minimizes the cost in
terms of both security risk and usability impairment.

2) By examining the UnSAT core, a minimal set of con-
figurations and policy requirements that conflict, we
narrow the complexity of a reconfiguration dilemma to
a straightforward choice between options. Past policy
decisions by the human user are placed in a partial-



order lattice and used to further reduce the scope of the
decisions presented to the user.

By this approach, the human user is not expected to fully
comprehend the effects, both good and bad, of all aspects
of network configuration, but only to make decisions on the
immediate relative value of specific instances of usability
and security. In this way, we reduce an extremely complex
problem to one of more manageable proportions, automating
the verification of both security and usability policies while
introducing a method by which conflicts can be quickly and
verifiably resolved.

II. M ULVAL SECURITY ANALYZER

We use the MulVAL tool suite [19], [20] for our work.
MulVAL is a security analyzation tool that, given initial
network configurations (machines, active services, inter-host
reachability,etc.) and a database of known vulnerabilities,
can identify all potential attack paths by which an attacker
can exploit the system. These attack paths are assembled in
a logical proof graph, showing how potentially successful
attacks into the network are enabled by initial attacks on
the outer edges. MulVAL’s reasoning engine is specified
declaratively in Datalog [1], providing inherent soundness of
the results as well as an efficientO(N2) running time [19].

Fig. 2. A MulVAL proof graph

Figure 2 shows part of the proof graph for an example
enterprise network we studied. The diamond-shaped nodes in
the graph represent privileges an attacker can gain through
the exploits depicted as the elliptical nodes. System con-
figuration data are represented by the rectangular nodes,
such asc1, c2, c3, c4, c5. These can be both administrator-
defined configuration settings, like host access permissions,
and unintentional facts, such as an existing vulnerabilityin a
specific application. The potential exploits -e1, e2, e3 - link
the causality relationship between a privilege that an attacker
can gain and the preconditions that make this possible. For
example, nodee1 could correspond to a remote buffer-
overflow attack on a service. It links the effect of the attack,
p1 (which means the attacker can gain privilege on the victim
machine), to pre-conditions for the attack, such asc1 (which
could mean the existence of a buffer-overflow vulnerabilityin
the service program), andp2 (which could mean the attacker’s
ability to send a maliciously crafted packet to the vulnerable

service). All the arcs coming out of an exploit node likee1
form a logical AND relation, requiring all of its children to
be true before this exploit can be used. The arcs coming out
of a privilege node likep1 form a logical OR relation, in
which multiple descendant nodes indicate alternative exploits
by which an attacker can gain this privilege.

Although we have chosen to build our implementation
based on the MulVAL proof graph, our approach can be based
easily on other, similar tools for the production of network
attack graphs (or fault propagation models) [6], [7], [11].

III. R ECONFIGURATION USING SAT SOLVING

Since any network misconfiguration is technically resolv-
able (if only by removing all inter-machine access), reconfig-
uration decisions must be made in consideration of the cost of
the changes needed and of usability requirements. We have
developed two approaches based on advanced SAT solving
techniques that can automatically suggest optimal configura-
tion changes to address the security problems presented in a
proof graph. Our approaches allow a user to provide feedback
to the SAT solver so that constraints on usability, cost of
deployment, and potential damage due to successful attacks
can all be optimized in a unified framework.

A. Transforming proof graphs to Boolean formulas

We first extract the causality relationships represented ina
MulVAL proof graph and express them as a Boolean formula.
This is best explained through an example. In the dependency
proof graph of Figure 2, the AND nodee1 means that the
remote exploit is successful, since all of its children nodes
p2, c1, c2 are enabled, and the result of the exploit is that the
attacker gains privilegep1.
This can be expressed by the following formula,

p2 ∧ c1 ∧ c2 ⇒ p1

Or, equivalently,

¬p2 ∨ ¬c1 ∨ ¬c2 ∨ p1

We similarly convert the other exploit nodes to construct the
following formulae:

e1 = ¬p2 ∨ ¬c1 ∨ ¬c2 ∨ p1

e2 = ¬c2 ∨ ¬c3 ∨ ¬c5 ∨ p1

e3 = ¬c4 ∨ ¬c5 ∨ p2

Let φ = e1 ∧ e2 ∧ e3, then φ is a Boolean formula in
conjunctive normal form (CNF) whose size is linear in the
size of the proof graph1. φ encodes all the causality rela-
tionships between configuration data and potential attacker
privileges shown in the proof graph. For example, if all of
c1, c2, c3, c4, c5 are assigned the truth valueT (as in the
current configuration), thenp1, p2 must be assignedT to make
a satisfying assignment forφ. Therefore, if one wishesp1, p2

to be false (meaning an attacker can gain neither of these
privileges), at least some ofc1, c2, c3, c4, c5 must be assigned

1A MulVAL proof graph’s size is quadratic in the size of the network
(number of hosts) [19].



F , meaning some of the current configuration settings need to
be changed. Letψ = φ∧¬p1∧¬p2; then seeking a satisfying
assignment toψ amounts to finding configuration settings that
can prevent an attacker from gaining privilegesp1, p2.

Every variable representing a configuration setting will be
assignedT (meaning that the setting is “enabled”) orF (“dis-
abled”). Since every configuration setting isT (“enabled”)
when the proof graph is constructed, removing or “disabling”
that setting will negate the associated variable. For example,
if c1 represents the existence of a software vulnerability on
the web server, the negation of that node means patching
the vulnerability; if c5 represents a reachability relationship
between the Internet and the VPN server, disabling that node
means blocking that access. If we feedψ to a SAT solver,
we can get a satisfying assignment by simply disabling all
the configuration nodesc1, c2, c3, c4, c5. This is certainly not
an optimal solution; we need a secure configuration that
maintains basic network usability.

A careful observation of the proof graph shows that by
disabling c5 without altering c1, c2, c3, c4, we can prevent
all the attack paths in the system, but we must consider
the effects of this decision. It is not necessarily the case
that a minimal number of system changes represents the
optimal reconfiguration. Suppose again thatc5 represents
accessibility of the VPN server from the Internet. Removing
this access would certainly block an attacker, but it would
also prevent legitimate users from remotely logging into the
network via the VPN server. This type of trade-off between
security and usability is often present in system configuration
management.

In configuring an enterprise network, we want to compare
not only the potential cost in damage from a successful attack,
but also the potential losses arising from decreased network
usability. If the cost of completely securing the network
against attackers is much higher than the potential losses from
attacks, it could be a better solution simply to acknowledge
and tolerate the possibility that an attacker can obtain some
minor privileges on the enterprise system. In this example,
we may decide that an optimal solution would not forcep2

to be false, so we can redefine our goal to beψ = φ ∧ ¬p1.
We must now re-examine the proof graph in light of

this newψ. Suppose thatc1 and c3 represent vulnerabilities
present in system applications. By patching these two vulner-
abilities, we can disable these two nodes and thus eliminate
all attack paths that could enable an attacker to gain privilege
p1. This configuration would negatep1 without violatingφ,
so it satisfiesψ.

Though it is relatively easy to examine and reconfigure this
small example, a reliable and automated approach is needed
to address security concerns in real-size enterprise networks.
We now introduce two applications of SAT solving to resolve
network misconfigurations by balancing costs and potential
damage.

B. MinCostSAT

MinCostSAT is a SAT problem which minimizes the cost
of the satisfying assignment [9]. Mathematically, given a

Boolean formulaψ with n variablesx1, x2, . . . , xn, each with
cost ci ≥ 0, find a truth-value assignmentX ∈ {0, 1}n such
thatX satisfiesψ and minimizes

C =

n∑

i=1

cixi

wherexi ∈ {0, 1} and1 ≤ i ≤ n.

MinCostSAT has been thoroughly studied by the SAT
solving community [2], [5], [9], [14]. Although the problem
is NP-hard, modern SAT solvers have been very successful in
practice, being able to handle Boolean formulas with millions
of variables and clauses in seconds. We use the MinCostChaff
solver [5] which is a MinCostSAT solver based on the zChaff
SAT solver [13].

The MinCostSAT problem minimizes the cost for variables
that are assignedT . This matches the semantics for privilege
variables, whoseT assignment means an attacker can gain
some privilege and thereby cause some damage. But for
configuration variables, the cost would be incurred when
it is disabled, or assignedF . To model this correctly, we
first transform our formula to use the negation of a Boolean
variable to represent each configuration node. This way, when
the variable is assignedT , it means that the corresponding
configuration node is disabled, which will incur some cost.
For the example we used, the new formula derived from the
attack graph will bẽφ = ẽ1 ∧ ẽ2 ∧ ẽ3, where

ẽ1 = ¬p2 ∨ c̃1 ∨ c̃2 ∨ p1

ẽ2 = c̃2 ∨ c̃3 ∨ c̃5 ∨ p1

ẽ3 = c̃4 ∨ c̃5 ∨ p2

Here c̃1, c̃2, c̃3, c̃4, c̃5 are the new Boolean variables such that
c̃i = ¬ci(1 ≤ i ≤ n). For ψ̃ = φ̃ ∧ ¬p1, the MinCostSAT
solution toψ̃ would be the desired solution for the enterprise
system’s reconfiguration, if we have correctly defined the
costs for all variables.

With the expressiveness of Boolean formulas and the power
of a SAT solver, a system administrator can ask questions
like “what is the best way to reconfigure my system if I want
to guarantee that the file server will not be compromised?”
This can be done by forcing the Boolean variablex that
corresponds to the privilegeexecCode(fileServer,
someUser) to be false( i.e., conjoining¬x to the original
formula). He can also ask questions like “Can I make the file
server secure while allowing the web server to be accessed
from the Internet?” We have implemented mechanisms that
allow a system administrator to specify those additional
constraints for the various queries he would like to conduct.
Those constraints can be straightforwardly specified in Dat-
alog and automatically transformed into additional clauses
in the Boolean formula to be solved by the MinCostSAT
solver. This kind of constraint can also become a part of
the configuration policy. For example, a user might decide
that the web server must be accessible from the Internet. If
the variable representing this configuration setting is forced
true in the Boolean formula, MinCostSAT will never return
a suggested reconfiguration that requires this access to be
removed. Similarly, potential attacker privileges can be forced



to be always false; for example, a user might decide that an
attacker should never access the data historian, and so this
access could be forced to be false, meaning that MinCostSAT
will never allow it to be true. This effect could also be
simulated by assigning unrealistically high costs for those
variables; however, forcing them to be true or false will ensure
that no reconfiguration suggestion will reverse this decision.

C. Scalability

To test the scalability of our approach, we constructed
simulated enterprise networks with two different sizes:

I: 100 host machines, evenly divided in 10 subnets
II: 250 host machines, evenly divided in 25 subnets

We also tested using two different cost functions:

A: All clauses were assigned an equal cost. The effect
of this cost policy would simply be to minimize the
number of configuration changes made plus the number
of compromised machines.

B: Clauses representing code-execution privileges on a ma-
chine were assigned costs based on the machine’s posi-
tion in the network. The effect of this cost policy would
be to have increasingly high costs for penetrations deeper
into the network. The costs for blocking network access
to hosts or disabling network services were significant.
All other changes had equal, low cost.

The test was conducted on a Linux machine with Opteron
Dual-Core 2214 2.2 GHz CPU, with 16GB memory, and
running Gentoo Linux with kernel version 2.6.18-hardened-
r6.

Sz Cfn # variables # clauses time (sec)
I A 11,853 12,053 0.11
I B 11,853 12,053 0.21
II A 70,803 72,553 3.03
II B 70,803 72,553 6.49

The simulated networks on which we performed the above
tests were certainly not representative of realistic enterprise
network settings, but the performance indicates that modern
SAT solvers are likely to be powerful enough to handle
the configuration management problem we describe in this
paper. Also, a highly correlated network configuration may
produce nontrivial runtimes. A full-scope understanding of
the scalability of this approach will require extensive real-
world testing, currently planned for future work.

D. Iterative UNSAT Core Elimination

We now introduce the second SAT solving technique, in
which the concept of UNSAT core is leveraged for the iden-
tification and resolution of conflicts in the network policies.
Definition 1. An unsatisfiable core is a subset of the
original CNF clauses that is unsatisfiable in itself [4].

When a SAT solver finds a set of clauses to be unsatisfiable,
a byproduct of this decision is the UNSAT core. Logically,
given an unsatisfiable Boolean formulaψ in CNF, the UNSAT
coreµ = u1, u2, . . . , um is a subset of all the clauses inψ

(shorthandedµ ⊆ ψ hereafter) such thatψ will remain unsat-
isfiable whileµ remains unchanged. We generate the UNSAT
core using the zChaff SAT solver’s zcore function [13].

In this approach we will not rely on cost assignments, but
rather on the balance between security and usability policies.
Returning to the example from section II, let security policy
δ = ¬p1; then our security policy specifies that an attacker
should not be able to gain privilegep1. Let usability policies
γ1 = c1∧c2∧c4∧c5 andγ2 = c2∧c3∧c5; then our usability
policies together specify that all current configuration settings
are necessary to maintain basic network usefulness. Soψ =
φ ∧ δ ∧ γ1 ∧ γ2.

An unsatisfiable formula arises when one policy demands
that a certain fact be true while another policy demands thatit
be false. Let the UNSAT core beµ = φu∧δu∧γu, whereφu ⊆
φ, δu ⊆ δ, andγu ⊆ γ. Each UNSAT core, then, will have
some collection of derivation clauses based on MulVAL logic
rules as well as security and usability policies specified bythe
user. Together, these constitute an unsatisfiable instance.

Obviously, the user cannot change the logical foundations
of the MulVAl derivation rules, so theµ cannot be resolved
by altering any ofφu. To make the necessary reconfiguration
decision, we request from the user an immediate decision of
the relative importance among the elements ofδu andγu. In
this example, the user would be prompted to choose the more
desirable ofδ and γ1. Let us suppose that the user decides
that the security of the system is more important, and chooses
to relax theγ1 constraint.

Relaxing γ1 (removing it from ψ) does not necessarily
mean that its preconditions will all be disabled; instead,
only the configuration variables that conflict withδ will be
disabled. The other configuration variables will remain true
(unchanged). It is possible, of course, that multiple UNSAT
cores exist in a single Boolean formula. In our approach, we
iteratively present each UNSAT core, prompting the user to
decide for each core which policy constraint can be relaxed.
In this way, a satisfiable configuration solution will eventually
be reached. Note that if multiple UNSAT cores exist, the
final, satisfiable configuration can be affected by the order
of presentation of the UNSAT cores.

In this example, the newψ = φ∧δ∧γ2 is again submitted
to the SAT solver to check for a satisfiable solution, and again
we find an UNSAT core. In thisµ, we find a conflict between
δ andγ2, and the user is again prompted to decide which of
the two may be relaxed. Suppose that the user again decides in
favor of strong security, and chooses to relaxγ2. Soψ = φ∧δ
and we can now find a satisfiable solution.

Utilizing the UNSAT core in this way precludes the need to
assign costs to each network configuration setting beforehand,
as is required for the MinCostSAT solution. So long as
security and usability policies do not conflict, the user is not
asked to decide between any two policies or attempt to assign
discrete values to them. These decisions are only faced when
an actual conflict has arisen, so the human user makes only
necessary choices about system resource valuations.

Partial-order lattice: To further reduce the breadth of
decisions faced by a human user, we have implemented a
partial-order lattice to store the relative priorities between



pairs of policies. Each time the human user is presented
with the causes of an unsatisfiable conflict and selects one
or more of those constraints to be relaxed, this decision is
recorded in the partial-order lattice to be used as a reference
for deciding future conflicts. We assume that the constraints
that the user allows to be relaxed have a lower overall priority
than any clauses that were not relaxed, and this ordering
is recorded in the lattice. In future decisions where two
conflicting constraints appear for which an ordering is already
known, the constraint with higher priority will not be offered
to the user as a possibility for relaxation. In this way, conflicts
are reduced to comparisons between configuration settings
or policy requirements for which relative priorities are not
known. Once known, these decisions need not be faced again.

IV. EXPERIMENTS

Figure 3 shows an example enterprise network that is
based on a real (and much bigger) system. We are not able
to disclose the real system due to the sensitivity of the
information. However, the specific problems we encountered
are the same for both the real and the adapted system.
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Operating 
Station
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Web Server
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Fig. 3. An example enterprise network

Subnets: There are three subnets: a DMZ (Demilitarized
Zone), an internal subnet (CORP Internal), and an Energy
Management System (EMS) subnet, which is a control-system
network for power grids.

Hosts: The functionalities of most of the hosts are self-
explanatory. One functionality of the EMS network is to
gather real-time statistics, such as voltage, load,etc., from
the power generation and transmission facilities. This infor-
mation, stored on the data historian, triggers various control
signals through the communication servers to maintain proper
operation of the power grid.

Accessibility: Both the web server and the VPN server are
directly accessible from the Internet. The web server can
access the file server through the NFS file-sharing protocol;
the VPN server is allowed access to all hosts in the internal
subnet. From the internal subnet, only the Citrix server is
allowed access to the EMS subnet, and then only to the data
historian.

Threats: An attacker with privileges on the EMS machines
could potentially take control of physical infrastructures and
drive them to a failed state, such as causing the turbine of a
power generator to spin at a high speed until self-destruction.

Vulnerabilities: All the machines in the system may have
software vulnerabilities in their various services and software
applications. The users of the enterprise network may not
be careful to protect their log-in credentials and might leak
their user name and password to an attacker through various
means, including social engineering. The data historian and
the communication servers run a proprietary communication
protocol that can be easily sabotaged.

A. Application of MinCostSAT approach

We began with a simple configuration policy that assigned
an equal cost to all changes in basic settings and to all
potential attacker privileges. Based on this policy, running
MinCostSAT produced recommendations to remove access
from the Internet to the web server and VPN server as well
as removing network services from the Citrix server, VPN
server, and workstation, essentially cutting off all outside
connections to the network. We then started refining the cost
functions in awareness of realistic requirements on usability.
In our testing, it took only three to four iterative steps to
produce a realistic suggestion. We began by assigning high
costs to changes in desired network access permissions and
network services, as well as varying costs for allowing an
attacker access to machines in various subnets, with highest
costs in the control network subnet, lower in the internal
subnet, and still lower in the DMZ. In this way, the policy
asserted that there were higher potential costs in allowingan
attacker access further into the system. After several more
iterations of reassessing and reassigning costs, the suggested
changes are to patch the existing vulnerability in webServer
and either remove one employee’s account on the VPN server
or ensure that the employee’s log-in information will not be
compromised. Acting on these suggestions, an administrator
could patch the vulnerability and spend some time ensuring
that the employee understands good security procedures, such
as using strong passwords. Based on the costs we used in our
policy, MinCostSAT has determined that an attacker might be
allowed minimal access to the webServer or vpnServer but
will be prevented from accessing any machine in the internal
and EMS subnets.

The policy thus produced can be saved for re-use in the
future. We added to our example a second web server and
file server, with a remote exploitation vulnerability in the
newly-added web server. Running MulVAL and MinCostSAT
again, using the same cost policy, immediately showed that
this vulnerability must be patched. In this way, it took much
less effort to produce useful results once a baseline policyhas
been well established.

It is important to note that assigning different costs can
easily produce different suggestions. For example, if the cost
assigned to patching the vulnerability in the web server was
sufficiently high, the suggested solution might be to change
the accessibility from the web server into the internal subnet



and/or to remove the file sharing relationship between the
Citrix server and the file server. The cost for changing a
specific configuration parameter and the cost caused by a
potential attacker privilege will vary from one organization
to another. There is no one-size-fits-all cost function suitable
for all enterprise systems, and the user of the tool will have
to define costs based on local requirements and policies.

B. Application of UNSAT Core approach

In applying the UNSAT core approach to this example,
we began with an empty partial-order lattice. Our security
policies stated that an attacker should not gain privilege to
execute code on any host in the system, and for our usability
policies, we required that each configuration setting remain
unchanged.

Not surprisingly, we immediately encountered an UNSAT
core. We were prompted to choose from among several
constraints, some of which must be relaxed2:

1) Attacker must not be able to execute code on the web server
2) Allow access from Internet to web server via HTTP, port 80
3) The service httpd is running on the web server
4) A vulnerability exists in httpd on the web server

Suppose that we look into the vulnerability on the web
server and find that no patch currently exists for it. We decide
that the benefits of the web server outweigh the potential
damage of an attack at this level in the network, so we relax
the security constraint stating that an attacker should notgain
privileges on the web server.

With this updated policy, we run the SAT solver and again
encounter an UNSAT core. In this instance, we are asked to
select from among the following constraints:

1) Attacker must not be able to execute code on the VPN server
2) Allow access from the Internet to the VPN server
3) The VPN service must be running the VPN server
4) User ordinaryEmployee is classified as “incompetent”
5) User ordinaryEmployee has an account on the VPN server

This decision is slightly harder, since an attack through
the VPN server could cause more damage. We decide that
the VPN server must remain accessible to employees, so we
cannot impair its usefulness by blocking access from the In-
ternet or removing the VPN service. User ordinaryEmployee
is classified as “incompetent,” meaning that he should not be
expected to use strong, unique passwords and that his login
data could easily be compromised. We decide, then, that his
account on the VPN server should be disabled until such time
as he can be trusted to follow strong security guidelines.

Running the SAT solver with the updated policy con-
straints, we now find a satisfiable configuration for the system.
By adjusting our security policy (in acknowledging that
an attacker might gain some privileges on the web server)
and usability policy (by disabling ordinaryEmployee’s VPN
account) we can identify a system configuration that adheres
to the remaining policy constraints.

2We give here the natural language meanings of the Boolean formulas
presented by the application. For example, the first policy is the meaning
of a constraint wherein the privilege to execute code on the web server is
negated.

V. D ISCUSSION

MinCostSAT requires cost functions that assign numeric
values to every configuration setting and security or usability
policy; these cost valuations may be difficult to assign fairly
to all resources. Once decided, however, a minimum-cost
configuration can be determined at any time, simply by
comparing the relative costs of potential security breaches
to usability requirements. The biggest challenge with the
MinCostSAT approach is determining the basis for the cost
functions. Although any metric can be utilized, we suggest
an approach wherein a uniform monetary amount is assigned,
indicating, for example, the potential liability if an attacker
gains access to a specific server or the cost of applying a fix
to a known vulnerability.

The UNSAT core for conflict resolution requires no up-
front cost assignments, relying instead on immediate deci-
sions made only when a conflict is discovered. We believe
that introducing a form of machine learning may assist the
reasoning engine in ordering priorities of clauses that have
not been previously directly compared, to further reduce
the decisions a user faces. The nature of the UNSAT core,
however, necessitates that a human user carefully examine
all conflicts and make decisions as needed for all occurring
conflicts.

Both approaches to configuration resolution, MinCostSAT
and the UNSAT core, carry advantages and disadvantages.
The optimal approach may be a combination of the two. As
these approaches are refined, we believe that many of the
low-level configuration settings will no longer be examined
or weighed by the human user, who will deal only with
policy requirements. A more automated reasoning engine can
compare security and usability policies, identify conflicts,
prompt for human prioritization between the two, and alter the
necessary underlying configuration settings needed to resolve
this conflict without introducing new conflicts into the system.

VI. RELATED WORK

SAT solving has been used to address general configuration
management problems in the ConfigAssure project at Telcor-
dia [16], [17]. The general configuration problem concerns
various requirements on service availability, performance,
fault-tolerance, and security. The requirements are specified
in a Prolog-like language and a Prolog partial evaluator
carries the resulting constraints in the form of quantifier-free
formula which is subsequently solved by a SAT solver. This
technique supports both configuration synthesis and problem
diagnosis and resolution in a logical framework. Our work
is closely related to ConfigAssure, and we present a Datalog
proof analysis technique that can convert a complete proof-
graph into a linear-sized Boolean formula for configuration
generation and policy specification. Besides, our focus is on
attack modeling and how to resolve security threats in the
context of usability requirements. It is likely that the two
technologies can be integrated into a unified framework to
address a complete set of requirements regarding enterprise
network configuration management.



Dewri, et al. [3] formulates the security hardening problem
as amulti-objective optimizationproblem, in which the cost
for security hardening and the cost for potential damage
caused by successful attacks are two objectives in the multi-
objective optimization problem, whose solution is searched
for by a genetic algorithm (GA). We adopt a different
approach, MinCostSAT, to find aprovably minimum-cost
solution to the configuration problem. GA, on the other hand,
cannot always guarantee to converge to the global optimum.
MinCostSAT is a specific optimization problem that has been
studied extensively and thus is likely to outperform a general
optimization algorithm such as GA for the specific problem.
Adopting the SAT solving approach also allows the user to
make the various queries we discussed in this paper and
resolve potential conflicts in policy specification, in addition
to finding the optimal solution for reconfiguration. The benefit
of multi-objective optimization is that a user can be presented
multiple optimal trade-offs between the two objectives. Itwill
be interesting to study whether the MinCostSAT techniques
can be extended to provide multiple trade-off solutions for
the optimization problem.

Wang et al. [22] developed a graph search-based method
for network hardening, with previous work by Noelet al. [18].
Their approach is different from ours. An attacker’s goal is
expressed as a propositional formula on the initial conditions
through recursive substitution during graph traversal. The
formula is then converted to disjunctive normal form (DNF)
which will give all possible hardening options, from which
an optimal one is chosen. The converted DNF could be
exponential in the size of the attack graph, as admitted in
the paper. In our approach, we formulate the optimization
problem as a MinCostSAT problem on a Boolean formula
whose size islinear in the size of the proof graph, and applies
a well developed modern SAT solver to find the solution. This
is likely to yield better performance since SAT solvers have
been very successful in efficiently finding solutions to large
Boolean formulas arising from practical problems.

A number of other works addressed the problem of how to
use attack graphs to better manage the security of enterprise
networks [8], [10], [12], [15], [21], [23]. The observations
and insights from these previous works helped us develop
the approach in this paper, and our work either complements
or improves upon them. Our contribution is the development
of formal, logic-based approaches where proof graphs from
security analysis are used to compute reconfiguration sugges-
tions automatically, taking into account not only securityre-
quirements, but also requirements on usability and trade-offs
between costs of security hardening, costs of possible damage
due to successful attacks, and costs of loss in usability.

VII. C ONCLUSION

We have introduced a methodology where the system
security requirements can be converted to a Boolean formula
and, using SAT solving techniques, one can quickly correct
misconfigurations that may lead to multi-step, multi-host
attacks in enterprise networks. This approach can account for
both security and usability requirements, through the adoption

of modern SAT solving techniques such as MinCostSAT and
UNSAT core elimination. We presented a unified framework
in which the competing requirements can be specified in a
Boolean formula and an optimal solution can be searched
for that provides a reasonable trade-off between the various
requirements for practical security administration. Preliminary
experimental results on both realistic and synthesized enter-
prise network settings indicate that the SAT solving approach
is effective and scalable.
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