
Using Bayesian Networks for Cyber Security Analysis

Peng Xie∗, Jason H Li∗, Xinming Ou†, Peng Liu‡, Renato Levy∗
∗Intelligent Automation Inc. Rockville, MD, USA, email:{pxie, jli, rlevy@i-a-i.com}

†Kansas State University, Manhattan, KS, USA, email:xou@ksu.edu
‡ Penn State University,University Park, PA, USA,email: pliu@ist.psu.edu

Abstract

Capturing the uncertain aspects in cyber security is
important for security analysis in enterprise networks.
However, there has been insufficient effort in studying what
modeling approaches correctly capture such uncertainty,
and how to construct the models to make them useful in
practice. In this paper, we present our work on justifying
uncertainty modeling for cyber security, and initial evi-
dence indicating that it is a useful approach. Our work is
centered around near real-time security analysis such as
intrusion response. We need to know what isreallyhappen-
ing, the scope and severity level, possible consequences,
and potential countermeasures. We report our current
efforts on identifying the important types of uncertainty and
on using Bayesian networks to capture them for enhanced
security analysis. We build an example Bayesian network
based on a current security graph model, justify our mod-
eling approach through attack semantics and experimental
study, and show that the resulting Bayesian network is not
sensitive to parameter perturbation.

1 Introduction
To carry out enterprise security analysis, graphical

models capturing relationships among vulnerabilities and
exploits have become the main-stream approach [3], [13],
[18], [21]. An attack graph illustrates possible multi-stage
attacks in an enterprise network, typically by presenting
the logical causality relations among multiple privileges
and configuration settings. Such logical relations aredeter-
ministic: the bad things will certainly happen in their worst
forms as long as all the prerequisites are satisfied, and no
bad things will happen if such conditions do not hold.
While it is important to understand such logical relations,
the deterministic nature has limited their use in practical
network defense, especially when the graphical models are
to be used in real-time intrusion response.

Internet

Demilitarized zone
(DMZ)

Corporation

webServer

workStation
webPages

fileServer

Firewall 2

buffer

overrun

Trojan horsesharedBinary
NFS shell

Firewall 1

Fig. 1. An example attack scenario.

Let us look at an example, shown in Fig. 1, which is
taken from Ref. [21]. Suppose the following potential at-
tack paths are discovered after analyzing the configuration.
An attacker first compromiseswebServer by remotely
exploiting vulnerability CVE-2002-0392 to get local
access on the server. SincewebServer is allowed to
accessfileServer through the NFS protocol, he can
then try to modify data on the file server. There are two
ways to achieve this. If there are vulnerabilities in the
NFS service daemons, he can try to exploit them and get
local access on the machine; or if the NFS export table
is not set up appropriately, he can modify files on the
server through the NFS protocol by using programs like
NFS Shell1. Once he can modify files on the file server,
the attacker can install a Trojan-horse program in the
executable binaries onfileServer that is mounted by
machineworkStation. The attacker can now wait for an
innocent user onworkStation to execute it and obtain
control on the machine. A portion of the corresponding
attack graph is shown in Figure 2.

The nodep4 and its parentsp1, p2, p3 express the

1. A program that provides user-level access to an NFS server
(ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz)

p2

p1

p3

p4

p6

…

…
…

p5

Fig. 2. A portion of the example graph.

causality relation in the NFS Shell attack: if an attacker
compromises the web server (p1), the web server can
access the file server through the NFS protocol (p2), and
the file server exports a partition to the web server (p3),
then the attacker will be able to launch an NFS Shell attack
to access files on the file server (p4). Suppose we want to
use this piece of information in real-time security analysis.
When we suspect the web server has been compromised,
with how much confidence can we say that the files on the
file server have been compromised? The answer is far less
certain than the deterministic logic can provide. How can
we know whether the attacker has chosen to launch this
attack? Even if he did so, how can we know that the attack
has succeeded? Moreover, how can we account for the real-
time observations that may be relevant? For example, a file
system integrity checker such as Tripwire [16] may report
that certain files have been modified. How shall we update
our belief about possible attacks given this observation?

Real-time security analysis is a far more imprecise
process than deterministic reasoning. We do not know
the attacker’s choices, thus there is the uncertainty from
unknown attacker behaviors. Cyber attacks are not always
guaranteed to succeed, thus there is the uncertainty from
the imperfect nature of exploits. The defender’s observa-
tions on potential attack activities are limited, and as a
result we have the uncertainty from false positives and false
negatives of intrusion detection system (IDS) sensors. Nev-
ertheless, the logical causality encoded in a deterministic
attack graph is invaluable to understand security events,
and will be useful for building practical network defense
tools if we canappropriatelyaccount for the uncertainty
inherent in the reasoning process.

Recent years have seen a number of attempts at using
Bayesian networks to model such uncertainty in security
analysis [2], [10], [11], [12]. A Bayesian network (BN) is
a graphical representation of cause-and-effect relationships
within a problem domain. More formally, a Bayesian
network is a Directed Acyclic Graph (DAG) in which:
the nodes represent variables of interest (propositions);the
directed links represent the causal influence among the

variables; the strength of an influence is represented by
conditional probability tables (CPT). For example, if we
imagine that the graph structure in Figure 2 is a Bayesian
network, then nodep4 could have the following CPT
associated with it.

p1 p2 p3 p4

T T T 0.8
otherwise 0

Essentially this CPT indicates that if all ofp4’s parents
are true, the probability ofp4 being true is0.8; in all other
cases the probability is0 (p4 is false).

Bayesian Network is a powerful tool for real-time
security analysisif a BN model can be built that reflects
reality. However, it is not trivial to construct a Bayesian
Network from an attack graph.

First, it is difficult to model the uncertainty inherited
in security analysis. For example, we know that due to
the uncertainty from the attacker’s choice,p4 may not
become true after all ofp1, p2, and p3 are true simply
because the attacker did not choose to launch the attack.
There may be other reasons whyp4 does not become true
after all its parents are true — for example, the attacker
may have chosen to launch the attack but the attack failed
due to the difficult nature of the exploit. Such uncertainty
will have to be encoded in the same CPT associated
with p4. Thus the CPT number0.8 will have a number
of contributing factors in it, which makes the generation
and maintenance of the CPT parameters a difficult task.
For example, when we see the same attack activity in
other parts of the network, we may want to increase the
likelihood that an attacker may choose to use this attack.
But in the unmodified graph structure there is no easy way
to separate this attacker-choice uncertainty from the other
factors in the CPT number of0.8. As a result this type
of correlation cannot be conducted elegantly. This is just
one example problem we have discovered in the literature
on building BN models from attack graphs for security
analysis. We believe a more disciplined BN construction
methodology is needed.

Second, cyber security analysis, unlike other more well-
behaved problem domains, does not naturally lend itself
to statistical analysis. In general, we do not have the
ground truths in real traces from which we can learn
the large number of CPT parameters, and the attackers
are constantly adapting. As a result, the CPT parameters
need to be produced from often vague and subjective
judgments. However, it is infeasible to ask a human expert
to assign every CPT parameter for every BN model. The
vast majority of these numbers need to be computed
automatically from various sources that reflect various
types of uncertainty in cyber security. A BN model that
modularizes and separates the various types of uncertainty
will make this process easier. Since those numbers are
imprecise in nature, the results of BN analysis should not

 11 15 16

9

11 15 16

9

T T

otherwise

11 15 16

T

9

1
0

Fig. 3. Attack structure and CPT at node 9.

be too sensitive to CPT parameters.
While previous studies have proposed various ways of

building BN models from attack graphs, there are a number
of potential problems in the current approaches. In this
paper, we present a BN modeling approach that we believe
possesses the following properties:

1) The graphical structure shall modularize: it should
separate various types of uncertainty and avoid min-
gling different types of uncertainty in the same CPT.

2) The majority of CPT parameters shall be computed
automatically from realistic data sources.

3) The BN model should not be too sensitive to pertur-
bation on the CPT parameters.

How to build a BN model for practical security analysis
is a non-trivial problem. Extensive research must be done
to justify the BN modeling approach and to study its
applicability in real-world security analysis.

2 Capturing uncertainty in security analysis
In this section we provide a taxonomy of uncertainty in

cyber security, describe what we believe the best way to
capture them in a BN model, and explain how they can be
used in real-time security analysis.

2.1 Uncertainty in attack structure

Figure 3 shows another portion of the full attack graph.
Let us look at the following nodes. 1) Node 11: The
attacker obtains network access towebServer on tcp/80;
2) Node 15: The programhttpd is a service running
on webServer as userapache, listening on tcp/80; 3)
Node 16: The vulnerabilityCAN-2002-0392 exists in
thehttpd program onwebServer; and 4) Node 9: The
attacker obtains code execution privilege onwebServer.
The relationship of these nodes is simple: “nodes 11, 15,
and 16 altogether enable node 9”. Hence, we can obtain the
basic attack structure, as shown in Fig. 3. The logic AND
can be represented using Bayesian network techniques via
the conditional probability table (CPT) stored at node 9.

Essentially, attacks can only happen by obeying both of
the two mandates: 1)Physical path:attacks can only occur
by following network connectivity and reachability; this is
the physical limit for attacks. 2)Attack structure: attacks
can only happen by exploiting some vulnerability, with
pre-conditions enabling the attacks and post-conditions as
the consequence (effect). Careful inspection reveals that
almost all attack graphs to date embed the physical path
and attack structure information in the models, though
the graph generation algorithms themselves may or may

 11 15 16

9

11 15 16

9

T T

otherwise

11 15 16

T

9

0.8

0

Fig. 4. Attack structure and modified CPT that
captures uncertainty.

not have considered doing so explicitly. Furthermore, it is
noted that while the physical paths are obviously network
specific, the attack structure can be abstract knowledge
without encoding any network specific information (e.g.
particular hosts). Therefore, the abstract knowledge can be
modeled and managed independent of specific networks.

The attack structures contain inherent uncertainty, since
most attacks do not have 100% guarantee of success. Given
that nodes 11, 15, and 16 are all true, is it absolutely
the case that node 9 is achieved by an attacker? More
generally, knowing that there is a vulnerability in a net-
work service accessible to an attacker, can the attacker
absolutely obtain privilege on the server? In reality, the
answer is often mixed. For example, National Vulnerability
Database (NVD) [1] publishes a large number of software
vulnerabilities, many of which are categorized as remote
vulnerabilities that can cause privilege escalation. But
undoubtedly there are variations in the difficulty of exploit
among those vulnerabilities. For a particular vulnerability,
such asCAN-2002-0392 in the example, we may know
that a working exploit is already publicly available and it
works most but not all of the time. Given that, maybe we
should change the CPT accordingly, as shown in Fig. 4.

There exist already standardized metrics on the exploit
difficulty of vulnerabilities. For example, CVSS [19], [23]
is a standard for specifying vulnerability attributes. The
base metric ofAccess Complexity (AC)describes the
complexity of exploiting the vulnerability and can take
the values of “high”, “medium”, or “low”. This metric
indicates the success likelihood of an exploit when all the
necessary pre-conditions are met and an attacker launches
the exploit. The AC metric is part of the Basic metrics in
CVSS which are already maintained by NVD for every
reported vulnerability. Hence we can use this existing data
source to derive the CPT parameter (Table 1). Another
relevant CVSS metric is theExploitability (E)metric from
the Temporal category. This metric describes the current
state of exploit and can take the values of “unproven”,
“proof-of-concept”, “functional”, or “high”. The E metric
may change over time when new exploits are published or
new attack data are collected. This metric would also be
useful to derive the CPT parameter — a vulnerability with
“high” exploitability is more likely to yield a successful
attack than a “proof-of-concept” exploitability. However,
NVD currently does not maintain any Temporal metric,
including the E metric. These CVSS metrics are good

TABLE 1. CVSS AC metrics and success like-
lihoods

AC metric Success Likelihood
high 25%
medium 75%
low 85%

TABLE 2. Discrete probability levels
Name Value
certain 100%
probable 85%
expected 75%
unlikely 25%
improbable 15%
impossible 0%

sources to derive the CPT parameters for attack structures
that involve exploiting software vulnerabilities. We can
specify a function that maps the vulnerability’s AC and/or
E metric to the CPT parameter of the corresponding node
in the BN, like node 9 above. We currently only use the
AC metric in Table 1.

For attack structures that are not about exploiting
software vulnerabilities, we can specify the likelihood of
success directly in the attack-structure knowledge base.
We also use discrete levels similar to those found in
CVSS metrics, as shown in Table 2. For example, the
attack structure that leads to nodep4 in Figure 2 is an
NFS Shell attack. For this specific type of exploit we can
estimate its success likelihood when all the preconditions
are met. Here the number 75% will be used as the CPT
parameter. We believe that providing these numbers in such
a discrete manner is reasonable, since the numbers are
already imprecise: what is the difference between “75%”
and “80%” to a human? In Section 4 we demonstrate
that the resulting BN is not sensitive to input parameter
purturbation, further justifying the use of discrete levels in
deriving CPT parameters.

2.2 Uncertainty about attacker actions

This is the unique and perhaps the biggest uncertainty in
real-time security analysis. Suppose for the simple attack
structure (as shown in Fig. 3 and 4) we have used CVSS
to derive the success likelihood of the attack. Then can
we use that number as the CPT parameter? If what we
want to know is “whatcould happen” then the answer
is yes. This is the typical kind of questions asked during
pre-deployment planning phase, and the Bayesian network
model can sufficiently answer them. However, the above
node structure is not sufficient for real-time analysis. In
real-time analysis, even when all the prerequisites become
true, there may not be an attacker there. For analogy,
if the door is open to a potential attacker, the attack
may not happen until an attacker approaches the door.
Since what we care about in real-time analysis is “what’s
really happening”, the key difference from pre-deployment
planning is that we need to model whether an attack is

happening or not. This is the unique uncertainty inherent
in real-time analysis. To this end, we introduce a new kind
of node in our Bayesian network models, called the attack
action node (AAN).

An attack action node is introduced as an additional
parent node for those important attacks (Fig. 5). An AAN
is an artifact introduced by the modeler for better modeling
power and clarity. “AAN is true” means the attacker action
is present, and other prerequisites become effective. “AAN
is false” means no attacker action is present. This will
“block” all other prerequisites from being effective. In
other words, the CPT at node 9 will have a zero probability
for all rows where AAN is false, as shown below.

11 15 16 AAN 9
T T T T 0.8

otherwise 0
Not all attack nodes need an AAN; typically only those

“important” nodes in Bayesian network models should be
equipped with AAN nodes. For example, those first (or
very early) stepping stones in multi-step attacks should
have AAN nodes associated with them to indicate whether
or not attacks are ongoing. As another example, an AAN
is not necessary when a privilege does not need an attacker
to take any action,e.g.a privilege that can be “naturally”
obtained as a result of NFS file-sharing semantics.

The next question is: how can one obtain information
about the AAN states? Knowing whether or not the attack
is ongoing will greatly help the subsequent reasoning
process. First, the CPT at the AAN node represents the
prior likelihood of an attack. This number can be set
globally by the user. For example, if this type of attack
has been seen recently, the user may decide to increase
the AAN node’s prior likelihood for all such attacks to
indicate an increased threat level. Second, many security
monitoring systems can provide evidence of possible attack
activities and these observations indicate an increased
posterior likelihood of the attack. To model this correlation
we introduce a sensor node as the child of an AAN
whenever a sensor is available that can report potential
attack activity of this sort. In our Bayesian network models,
which focus on high-level reasoning rather than low-level
data processing, the sensor node can hardly be a physical
tell-tale sensor. Most likely it captures aggregated results
from low-level sensors (e.g. IDS sensors), which indicate
the presence of certain attacks. The reliability of the sensor
node is reflected in its local CPT, with false positive and
false negative probabilities explicitly expressed (Fig. 5).
This is one example of the local observation model to be
discussed in the next section.

2.3 Uncertainty about alerts

It is well known that alerts coming from intrusion
detection systems tend to have some amount of false
positives. In this work, we will not model raw alerts

11 15 16

9

AAN

Sensor

SA ¬S

T

CPT at node S

0.9 0.1

0.95F 0.05

Fig. 5. Uncertainty related to attacker action.

ObservationO

A Actual State
OA ¬O

T

F

CPT at node O

0.9 0.1

0.150.85

The rest of
the Bayesian
Network

False positive

Fig. 6. Local observation model.

directly. Instead, we will only input relevant correlated
alerts that can help high-level reasoning. Nonetheless, the
correlated alerts may still contain a fair amount of false
positives. If for some reason we know that the correlated
alerts come from a high-fidelity alert correlation process,
we may impose high confidence level upon them. Lower
confidence will be put otherwise.

We propose to use alocal observation model (LOM)
to model such uncertainty about alerts. As shown in
Fig. 6, for states that can be inferred from imperfect
sensors, we introduce a pair of nodes: theActualState
node and theObservation node. TheActualState
node is not observable itself. TheObservation node
is a direct child of theActualState node, and the
Observation node provides observations to infer the
true state of theActualState node. Suppose both the
ActualState node and theObservation node are
binary, and the CPT associated with theObservation
node represents how theActualState node will affect
the Observation node. In this CPT, a false positive
probability is inherently included.

A concrete evidence about nodeObservation will
change the posterior probability of nodeActualState
by computing P(ActualState|Observation=True). This kind
of “backward” computation is routine in hidden Markov
models (HMM), and Bayesian networks can naturally
execute such kind of inference. Further, such computations
can be executed in some fairly efficient manner [15][22].

2.4 Modularized CPT computation

There are well-studied BN modeling techniques that can
modularize various sources of uncertainty in the compu-
tation of CPT parameters. We provide two examples that
may be directly applied to cyber security analysis.

The first example is called “Noisy-And”, and it extends
from the deterministic AND logic. With deterministic
AND (see Fig. 7), nodeEscalation will become True

Net Access Vuln Exist

Escalation

Net Access Vuln Exist

Escalation
01TT

0.80.2FT

0.60.4TF

0.920.08=0.2
�
0.4FF

P(¬Escalation)P(Escalation)Vulnerability ExistNet Access

01TT

0.80.2FT

0.60.4TF

0.920.08=0.2
�
0.4FF

P(¬Escalation)P(Escalation)Vulnerability ExistNet Access

Fig. 7. Noisy-And example.

NFS Shell execCode

accessFile

NFS Shell execCode

accessFile
0.06=0.2

�
0.30.94TT

0.30.7FT

0.20.8TF

1.00.0FF

P(¬accessFile)P(accessFile)execCode implies file accessNFS Shell

0.06=0.2
�
0.30.94TT

0.30.7FT

0.20.8TF

1.00.0FF

P(¬accessFile)P(accessFile)execCode implies file accessNFS Shell

Fig. 8. Noisy-Or example.

only when both its parentsNetAccess andVulnExist
are True. This says thatEscalation will never happen
otherwise. A Noisy-And however does not imply that a
child is definitely false if one of the parents is false.

To model the “leaky” chances thatEscalation may
still happen without requiring all of the parents to be
True, “leaky” parameters are introduced. In particular, each
parent has an associated (enabling) influence to the child
that is represented by a probability. For example, suppose
the vulnerability scanner does not report any findings
(VulnExist is False). In practice, however, there could
be zero-day vulnerabilities in a piece of software. Let
0.2 represent the likelihood of the existence of zero-
day vulnerability in the software under concern. In other
words, 0.2 is the leaky chance for the vulnerability to
be actually true (though reported False). Hence, the leaky
parameterP (E|¬V) = 0.2 represents the likelihood that
vulnerability scanner misses a true vulnerability. We can
define another leaky parameterP (E|¬N) = 0.4, which
could mean the likelihood the attacker is able to circumvent
the firewall to gain network access, even when attack-graph
analysis shows that there is no network path.

The second example is called “Noisy-Or” and it extends
from the deterministic OR logic. With deterministic OR
(see Fig. 8), nodeaccessFile is True as long as one
or more of its parents become True. A Noisy-Or logic
however does not imply that a child is definitely true if
one of the parents is true.

As in Noisy-And, the leaky parameters are introduced
to model the “leaky” chances thataccessFile may not
always be True when one or more of its parents is True. For
example, in Fig. 8, letP (¬accessFile|NFSShell) = 0.3,
which means thatNFSShell being True does not nec-
essarily imply thataccessFile is True; there is still a
30% chance thataccessFile will not happen. Similarly,
we can define another (inhibiting) leaky parameter as
P (¬accessFile|execCode) = 0.2.

It is noted that in ”Noisy-And” and ”Noisy-Or” logic,
the leaky parameter is defined separately and indepen-

dently. This independence assumption simplifies the speci-
fication of the parameters and enables simple and efficient
calculation of the probability distribution. As shown in
Fig. 7 and Fig. 8, the CPTs at nodesEscalation
and accessFile have 8 entries. However, justtwo
leaky parameters are specified; all other entries can be
easily computed from these parameters. For instance,
P (E|N = F, V = F) = 0.2 × 0.4 = 0.08. Further, the
independent assessment of the leaky parameters is more
intuitive for human experts, since humans are known to
perform relatively better in a “case-by-case” manner. It
would be an extremely daunting task for human experts
to assess situations considering different combinations of
multiple factors, which is exponential with the number of
parents and also non-intuitive. The independence assump-
tion alleviates the difficulty.

2.5 Summary

Our BN modeling approach separates three important
types of uncertainty in real-time security analysis: the
uncertainty on attack success, the uncertainty of attacker
choice, and the uncertainty from imperfect IDS sensors.
This enables computing CPT parameters from existing
data sources such as NVD/CVSS. The more advanced BN
modeling techniques such as Noisy-And and Noisy-Or can
further modularize the sources of uncertainty within a CPT.
Our BN modeling approach satisfies the first two desirable
properties described in Section 1.

3 Implementation

In this section we describe how to build a Bayesian
network from an attack graph tool. We use the MulVAL
attack graph toolkit [21] for our implementation, but the
approach can extend to other attack graphs with similar
semantics [8], [13], [26]. The MulVAL reasoning system
can incorporate CVSS metrics from NVD data sources and
output the AC metric. We use the same example as in
Section 1 to describe how we derive the BN structure from
the attack graph.

3.1 Adding new nodes

Attack Action Node (AAN).As discussed in section 2.2,
we need to introduce the AAN node to model the existence
of an attacker actively exploiting the system. Thus, for
some nodes in the graph model that represent conse-
quences of an attack, we may put an AAN node as its
parent. The attack’s post-condition will become true only
if all its pre-conditions are metand the AAN node is
true. This changes the graph’s semantics from “what could
happen” to “what has happened”. A separate AAN is used
for each selected attack node, rather than sharing a single
AAN node among multiple attack nodes. This is because
the attacker may choose one of many possible attack paths.

Node1_reach_Inet_wsVR Node2_attack_loc

Node3_netAccess_WSvr Node4_netSrv_httpxl

Node5_vul_httpd

Node6_AAN_WS

Node7_HDS_WS Node8_NDS_httpdNode9_execCode_WSvr

Node10_reach_WS_FS

Node11_netAccess_FS Node12_vul_mountd Node13_AAN_FS

Node14_IDS_mountd
Node15_netServ_mountd

Node17_canAccessFile_FS

Node18_nfsEpt_FS_WS

Node19_reach_WS_FS_nfs

Node22_nfsAttack_Accomplish

Node20_AAN_nfsShell

Node21_IDS_nfsShell
Node23_localFile_Modification

Node24_accessFile_FS Node25_nfsMounted_WS_FS

Node30_TripWire

Node26_accessFile_worksta

Node27_trojanHorse_installed

Node28_anti_Malware_HIDS1

Node31_AAN_trojanHorse_Exec

Node32_fileExec_Event_Alert Node33_anti_Malware_HIDS2 Node29_execCode_worksta

Node16_execCode_FS

Fig. 9. An example Bayesian network model.

Local Observation Model (LOM).Section 2.3 intro-
duces the notion of local observation model that can be
used to incorporate the various detectors used in cyber se-
curity, such as IDS. In real-time security analysis, there are
methods to monitor and detect potential security threats.
For example, an IDS could be used to detect the existence
of an attacker and a file system monitor such as Tripwire
can be used to detect file-system modifications. However,
the observation or detector may not always be accurate. In
our LOM, a new node is introduced to model the inaccurate
observation (detectors), and an arc from the actual state to
the observation state represents the fact that the observation
is influenced by the actual state.

Fig. 9 shows the generated BN structure for the attack
scenario shown in Fig. 1. Using conditional probabili-
ties (and Noisy-And and Noisy-Or semantics), there is
no distinction between AND/OR nodes any more. Node
22 indicates that the NFS Shell attack against the file
server has been accomplished by the attacker. Obviously,
if there is no attacker, no attack can be accomplished.
So we introduced an AAN node for node 22. When an
attacker is present and sending the file server an NFS shell
exploit packet, this action could be detected by a network-
based IDS, such as Snort. Thus we introduced an LOM
observation node 21 so that whenever the IDS reports a
suspected NFS exploit packet, this node will be true. If the
attacker successfully modified the files through the exploit,
node 24 will be true. In this case, a Tripwire monitor could
report a suspicious file modification. Thus we added an
LOM observation nodeTripwire to capture this event.

3.2 Determining the CPT tables

Each node in a Bayesian network needs to be associated
with a CPT which is the probability distribution of the
node’s possible states conditioned on the parents’ states.
For a node with no parent (root nodes), the CPT is

the node’s prior probability distribution. By adopting the
Noisy-Or and Noisy-And techniques discussed in Sec-
tion 2, the CPT computation can be reduced to obtaining
certain likelihood values associated with individual condi-
tions, such as the difficulty level of exploiting a vulner-
ability, the likelihood that a piece of software contains a
zero-day vulnerability,etc. Many of them can be derived
from currently-available data sources, such as the National
Vulnerability Database, which provides various metrics
for security vulnerabilities in the CVSS format. In our
implementation, we assign the CPT values based on the
values from Table 2. We use the exact values corresponding
to the likelihood such ascertain andimpossible and
use the middle values of the ranges corresponding to other
likelihood. For example, we use value 20% to reflect the
likelihood for unlikely.

However, there are still CPT entries that would rely on
human experts to fill in, such as the false positive and false
negative rates for IDS detectors, the a priori likelihood
for attacks, etc. We can have the experts specify those
conditional probabilities using the discrete values givenin
Table 2. In this work, we assign those levels manually
based on our understanding of the security problems.

4 Experimental Results
Although the CPT tables of a BN-based security anal-

ysis tool are often determined by human experts, the
effectiveness of the BN-based security analysis tool must
be evaluated in anobjectiveway.

4.1 Evaluation Methodology

In our experiments, we want to check if the BN-
based tool can help the security administrator in security
analysis. We evaluate the performance of a BN-based tool
by comparing its outputs with a Referee’s. The Referee
knows all the ground truth and is absolutely correct.
In our experiments, the ground truth is a fully ordered
sequence of events; the Referee has complete and perfect
knowledge on which events are malicious and which events
are legitimate. The order of the events is determined by
the start time of the events. For simplicity, we assume
that each event will be instantly finished. In this way, we
ignore the differences among event durations. The BN-
based tool can only access the information generated by
IDS sensors, which is already readily available to the
security administrator. Note that in our experiments, the
BN-based tool actually sees a distorted version of the
ground truth since the sequence of the events witnessed
by each IDS sensor may be different from the ground
truth due to the sensor’s false positive, false negative and
detection latency. Moreover, the errors in firewall rules and
(Nessus) vulnerability reports also contribute to distortthe
ground truth.

In our experiments, we ask the BN-based tool two

TABLE 3. Pre-Deployment Ground Truth
Label Vulnerability
Node 1 reachability (Internet, webService, TCP,80)
Node 4 networkServiceInfo(webServer, httpd,tcp,80,apache)
Node 5 VulExists(webServer,’CAN-2002-0392’,httpd,remoteExploit, privEscalation
Node 10 reacability(webserver,fileserver,rpc,100005
Node 12 vulExists(fileserver,vulID,mountd,remoteExploit,privEscalation)
Node 15 networkServiceInfo(fileServer,mountd,rpc,100005,root)
Node 17 canAccessFile(fileServer,root,write,’/export’)
Node 18 nfsExportInfo(fileServer,’/export’,write,webServer)
Node 19 reachability(webserver,fileServer,nfsProtocol,nfsPort)
Node 25 nfsMounted(workstation,’/usr/local/share’,fileServer,’/export’,read)

TABLE 4. Good events and attack events
Event ID Event
Event 1 Mallory (i.e., the attacker) sends probing packet #B1 (after TCP 3-way handshake) to port 80 of

webServer, but packet #B1 fails.
Event 2 Good packet #G1 gets into port 80 of webServer.
Event 3 Good packet #G2 gets into port 80 of webServer.
Event 4 Mallory sends probing packet #B2 to webServer, but packet #B2 fails.
Event 5 Good packet #G3 gets into port 80 of webServer.
Event 6 Good packet #G4 gets into port 80 of webServer.
Event 7 Good packet #G5 gets into port 80 of webServer.
Event 8 Mallory sends probing packet #B3 to webServer; packet #B3 succeeds.
Event 9 Mallory sends probing packet #B4 to the RPC port of fileServer, but packet #B4 fails.
Event 10 Good packet #G6 gets into the RPC port of fileServer.
Event 11 Mallory sends probing packet #B5 to the rpc port of fileServer; packet #B5 succeeds. The network

is now in the state specified by Node 23.
Event 12 Good packet #G7 gets into the RPC port of fileServer.
Event 13 Good packet #G8 gets into the RPC port of fileServer.
Event 14 Good packet #G9 gets into the RPC port of fileServer.
Event 15 Binary file X in directory “/export” is changed by a good user.
Event 16 Binary file X in directory “/export” is changed by another good user.
Event 17 Mallory changes file X in directory “/export” to install a Trojan horse.
Event 18 Binary file Y in directory “/export” is changed by a good user.
Event 19 File X, the Trojan horse, is executed by admin. The Trojan horse executes code on workStation

with root privilege.
Event 20 Binary file Y in directory “/export” is changed by another good user.
Event 21 File Y is executed by a regular user.
Event 22 Binary file Z in directory “/export” is changed by another good user.
Event 23 File Z is executed by a regular user.

questions at proper time points:
(Q1) Which machines are very likely to have been

compromised?
(Q2) Which exploits have happened but not been de-

tected yet? What alerts are missing?
These two questions are typically asked by the security

administrator. We evaluate the BN-based tool by compar-
ing its answers with the ground truth.

4.2 Experiment Settings

In our experiments, we adopt the attack scenario shown
in Fig. 1 and the corresponding BN shown in Fig. 9. We
have two types of ground truth: Pre-Deployment Ground
Truth, which addresses the pre-deployment vulnerabilities,
and Post-Deployment Ground Truth, which focuses on
the post-deployment attack events. The Pre-Deployment
Ground Truth is shown in Table 3. Note that Node 18 is a
false vulnerability report which is mistakenly reported by
an imperfect vulnerability scanner.

The Post-Deployment Ground Truth includes two types
of events: attack events and good events. In our settings,
each experiment will involve different alert events, but all
the experiments will in fact have the same sequence of
interleaved attack events and good events. The good events
and attack events adopted in our experiments are listed in
Table 4. In our experiments, we adopt nine alerts and one
false negative as shown in Table 5. Note that AE4 is a
false positive alert.

TABLE 5. Alert events
Label Semantics
AE 1 against Event 1: saying that packet #B1 matches a signature compromising webServer.
AE2 against Event 8: saying that packet #B3 matches a signature compromising webServer.
AE3 against Event 8 and #B3. However, due to detection latency, this alert is raised after Event 13.
FN1 False Negative against Event 11: the sensor did not raise anyalert about #B5.
AE4 false positive: saying that webServer runs a malicious NSF shell.
AE5 against event 15: saying that file X in directory “/export” ischanged.
AE6 against event 16: saying that file X in directory “/export” ischanged.
AE7 against event 17: saying that file X in directory “/export” ischanged.
AE8 against event 17: saying that file X is a Trojan horse.
AE9 against event 19: saying that Trojan horse is being executed.

4.3 Simulation Experiments

Summary of all results: We have run six simulation
experiments. In each experiment, we adopt a different
sequence of ground truth and alert events. In other words,
effects of imperfect IDS on the BN-based tool in these
experiments are different.

Through the six experiments, we compare the answers
from the BN-based tool to questions Q1 and Q2 with the
ones from the Referee. Even though the BN-based tool
does not always give the perfect answers, most of the
answers given by the BN-based tool is reasonably close to
the ground truth. Moreover, with more and more ground
truth revealed, the answers from the BN-based tool are
more and more closer to the truth. Furthermore, the BN-
based tool can effectively infer the missed false negative
alarm and mitigate the disturbance caused by an imperfect
IDS.

Experiment 1: In this experiment, we use the following
complete sequence of events: E1→ AE1 (report, AI1)→
E2 → E3 → E4 → E5 → E6 → E7 → E8 → AE2 (do
not report, AI2)→ AE3 (do not enter, AI3)→ E9→ E10
→ E11→ FN1 (node 14, do not report, AI4)→ E12→
E13→ AE3 (report, AI5)→ E14→ E15→ AE5 (report,
AI6) → E16 → AE6 → E17 → AE7 (do not report)→
AE8 (report, AI7)→ E18 → E19 → AE9 (report, AI8)
→ E20→ E21→ E22→ E23.

In this sequence,→ represents the absolute time order
between events. Command “report” means that a new
evidence is visible to the BN-based tool. Command “do
not report” means that no new evidence visible to the BN-
based tool. “AI1” (Answer It) represents the first timepoint
when the Referee asks the BN-based tool to answer Q1 and
Q2. “AI2” represents the second answer-it timepoint, etc.
The results of Experiment 1: As shown in Table 6,
“WEB” denotes webServer; “FS” denotes fileServer; “WS”
denotes workStation; “NFS” denotes “NFS shell”. In this
table, each column represents (a) a timepoint when the
BN-based tool is asked to answer Q1 and Q2, and (b)
the corresponding answers given by the Referee and the
BN-based tool at that specific timepoint.

The results from Experiment 1 show that the BN-based
tool can help the security administrator to find the most
likely compromised machine. As shown in Table 6, the
BN-based tool gives a reasonably correct answer at time-
point AI5 when alert AE3 is reported. At this timepoint,

the BN-based tool tells the likelihood of webServer being
compromised is 89.92%. At timepoint AI6 when alert
AE5 is visible, the BN-based tool shows the likelihood of
webServer being compromised is 92.73%. Therefore, the
BN-based tool are more confident about this conclusion.
Moreover, the BN-based tool shows the likelihood of file
server being compromised is 53.04% at timepoint AI6,
a correct conclusion though a weak one. At timepoint
AI7, BN’s answer is more useful. When a Trojan horse
is detected, the BN-based tool is able to tell which one is
the real causeof the Trojan horse. As shown in Table
6, the BN-based tool derives that the likelihood of the
NFS shell attack being the real cause is 57.53% while
the likelihood of themountdattack being the real cause
is 68.93% which is much higher. Hence, the BN-based
tool suggests that themountd attack is the real cause,
which is a correct conclusion. At timepoint AI8 when
true alert AE9 is detected, the Referee can conclude that
workStation has been compromised. It can be seen that
the BN-based tool also gives the perfect answer (100%
WS). Other probability values remain the same as those at
timepoint AI7.

The BN-based tool also detects the missed alert event.
In this experiment, the BN-based tool can tell that HIDS-
Alert is a missed alert. As shown in Table 6, the likelihood
that HIDS-Alert is true is 85.06% even though no alert
is reported. Therefore, the BN-based tool can help the
security administrator to infer that the HIDS-Alert is most
likely missed. Nevertheless, we found that the BN-based
tool gives a wrong answer at timepoint AI7 by saying that
the likelihood of workStation being compromised is 60%,
which is a weak false alarm.

Results of the Other Experiments: The other experi-
ments are similar to Experiment 1 except for the following
differences. (a) Experiment 2 lets false alert FN1 have
substantial detection latency, i.e., it is raised after Event
18. The results show that the BN-based tool can generate
useful conclusions in most timepoints. (b) Experiment 3
lets the alert AE8 have detection latency and the results
show that the BN-based tool performs consistently well in
identifying delayed alerts. (c) Experiment 4 shows that the
BN-based tool can leverage additional types of evidence
beyond alerts and vulnerability reports. The ability to use
extra evidence in a handy way is a major advantage of the
BN-based tool. In this experiment, the results show that
correlation evidence such as AE5 and the event that file
X is executed onworkStation increases the likelihood
of workStation being compromised. (d) Experiment 5
shows that the BN-based tool has strong capability in miti-
gating the disturbance generated by false positives: the BN-
based tool can give a correct answer even in the presence
of a false alert. In this experiment, we first let the false
alert, AE4 be raised, and true alert AE5 be raised later. The

TABLE 6. The results of Experiment 1
Q1: AI1 AI2 AI3 AI4 AI5 AI6 AI7 AI8
Referee’s None WEB WEB WEB; FS WEB; FS WEB; FS WEB; FS; Trojan WEB; FS; Trojan; WS
BN’s 83.13% WEB 83.13% WEB 83.13% WEB 83.13% WEB 89.92% WEB 92.73% WEB 97.23% WEB; +100.0WS

85.06% HIDS ALERT 85.06% HIDS ALERT 85.06% HIDSALERT 41.14% FS 43.10% FS 53.04% FS; 51.39% WS 68.93% FS; 60% WS;
38.47% Trojan 100% Trojan;

57.53% NFS shell; 68.93% FS
mountd

BN-based tool says that the likelihood of fileServer being
compromised is 74.8%, while the likelihood of NFS Shell
attack being enforced is 61.19%, which is much lower.
As confirmed by the Referee, the fileServer is the correct
answer. (e) Experiment 6 shows the perfect case. In this
experiment, there are no false positives and false negatives,
and only AE2 has insignificant latency. The results show
that the BN-based tool performs extremely well in this
case.

4.4 Sensitivity Analysis

In order to make the BN-based tool practical in real-
time security analysis, one question must be answered:
how sensitive is the BN-based tool to its CPT tables? Since
the CPT tables are generated based on human expertise,
they cannot be the absolute truth; instead, they are only
approximate to the truth in the real world. Therefore, the
BN-based tool must be robust against reasonable (small)
changes on its CPT tables. In other words, the quality
of the answer given by the BN-based tool should not be
significantly affected by a slight changes on its CPT tables.
The most desirable sensitivity analysis should be holistic,
i.e., the combined effects of all related parameters should
be considered in the analysis. However, such sensitivity
analysis method is extremely difficult to develop. In our
work, we analyze the sensitivity of the BN-based tool in an
isolated way, i.e., if there are multiple parameters related to
the answers, we only consider the effect of one parameter
at a time while keeping others constant.

In our experiments, we have carried out extensive sensi-
tivity analysis experiments by using the sensitivity analysis
tool, called SamIam [5] to check the sensitivity of the
answers from the BN-based tool to its related parameters.
When the BN-based tool generates an answer with some
probability, we use SamIam to reversely check the effects
of related CPT tables, i.e., we change the probability
associated with an answer by 5%, 10% and 15% and check
the required changes on the related CPT tables.

We find out that in all these experiments, the changes in
CPT tables can only result in at most the same amount of
change on the answers reported by the BN-based tool. For
example, in order to generate +5% change on the answer
at time AI1 (83.13%), theminimum change required on
parameters is 5%. The same holds for a -5% change.

Therefore, the BN-based tool in our experiments is not
sensitive to the CPT tables in the sense that changes in

CPT tables are not amplified on the answers given by the
BN-based tool.

5 Related work

Bayesian network techniques have been applied to
intrusion detection systems [4], [17], [25]. Our application
of BN is at a different level. Our workmakes useof
the output of intrusion detectors and incorporates it into
a holistic security analysis framework. Our BN model
does not deal with low-level system events such as raw
IP packets, system calls,etc., which have already been
taken care of by various types of intrusion detectors.

Frigault et al. [10], [11] study how to use Bayesian
Network and attack graphs to measure network security
risk. Their work focuses on the pre-deployment planning
phase in the sense that the security metrics produced by the
BN reflect the inherent risk in a network. Our BN model
address a wider range of security anlysis, most importantly
the problem of real-time situation awareness which must
account for various types of run-time observations like IDS
alerts to answer the question of “what is really going on”.

Attack graphs have been widely studied in the context
of enterprise security management, intrusion detection
and response, and security metrics [12], [13], [9], [14],
[20], [21], [27]. Our work further extends the utility of
attack graphs by constructing a well-founded Bayesian
network model that enables reasoning with uncertainty
for situation-awareness security analysis. Dantu and Kolan
also construct Bayesian networks based on attack graphs
for risk management [6]. However, our Bayesian network
model is fundamentally different from theirs. Dantu and
Kolan use Bayesian networks to model the attacker’s
behaviors, whereas we use Bayesian networks to model
uncertainties inherent in the causality relationships among
system conditions in an attack graph as well as run-time
observations. Our Bayesian networks model does not use
any attacker profiles.

Tang [24] applies Dempster-Shafter (DS) theory [7]
in fault-diagnosis for overlay networks. The focus of our
work is on analyzing cyber attacks which has very different
characteristics than faults, due to the exitence of malicious
players.

6 Conclusions

Graphical models are important tools for analyzing se-
curity events in enterprise networks. Although it may seem

straightforward to combine attack graphs and Bayesian
networks, one should not simply juxtapose these two and
think that they will work nicely together. By doing this,
either the real semantics and inference power of Bayesian
networks are not fully utilized, or Bayesian networks
are used in an inappropriate manner. As pointed out in
previous sections, the key to using Bayesian networks
correctly is to identify and represent relevant uncertainties.

In this paper, we have built an example Bayesian
network model to capture uncertain relationships, and
experimental results show that using Bayesian networks
may bring in new opportunities for improved enterprise
security analysis. To the best of our knowledge, our work
is the first effort that investigates systematic approachesto
combining attack graphs and Bayesian networks.

7 Acknowledgement

This work was partially supported by Army Research
Office, contract W911NF-07-C-0101. Xinming Ou was
partially supported by U.S. NSF under Grant No.0716665,
and U.S. AFOSR under contract FA9550-09-1-0138.
Peng Liu was supported by ARO MURI on Computer-
aided Human Centric Cyber Situation Awareness, AFOSR
MURI FA9550-07-1-0527, NSF CNS-0905131, NSF CNS-
0916469, and AFRL FA8750-08-C-0137.

References
[1] NVD CVSS national vulnerability database cvss support.

http://nvd.nist.gov/cvss.cfm, April 2008.
[2] Magnus Almgren, Ulf Lindqvist, and Erland Jonsson. A

multi-sensor model to improve automated attack detection.
In RAID 2008. RAID, September 2008.

[3] Paul Ammann, Duminda Wijesekera, and Saket Kaushik.
Scalable, graph-based network vulnerability analysis. In
CCS 2002, Washington, DC, 2002.

[4] Pablo Garcia Bringas. Intensive use of Bayesian belief
networks for the unified, flexible and adaptable analysis of
misuses and anomalies in network intrusion detection and
prevention systems. In18th International Conference on
Database and Expert Systems Applications, 2007.

[5] Hei Chan and Adnan Darwiche. When do numbers really
matters. Journal of Artificial Intelligence Research, pages
265–287, 2002.

[6] Ram Dantu and Prakash Kolan. Risk management using
behavior based bayesian networks. InIEEE International
Conference on Intelligence and Security Informatics, May
2005.

[7] A.P. Dempster. Upper and lower probabilities induced bya
multivalued mapping.Ann. Statistics, 28:325–339, 1967.

[8] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell
Whitley. Optimal security hardening using multi-objective
optimization on attack tree models of networks. InCCS’07,
2007.

[9] Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi,
and Eugene Spafford. Adepts: Adaptive intrusion response
using attack graphs in an e-commerce environment. In
DSN2005, June 2005.

[10] Marcel Frigault and Lingyu Wang. Measuring network

security using bayesian network-based attack graphs. In
STPSA’08, 2008.

[11] Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil
Jajodia. Measuring network security using dynamic
bayesian network. InProceedings of the 4th ACM workshop
on Quality of protection, 2008.

[12] Saurabh Bagchi Gaspar Modelo-Howard and Guy Lebanon.
Determining placement of intrusion detectors for a dis-
tributed application through bayesian network modeling. In
RAID 2008. RAID, September 2008.

[13] Kyle Ingols, Richard Lippmann, and Keith Piwowarski.
Practical attack graph generation for network defense. In
ACSAC 2006, Miami Beach, Florida, December 2006.

[14] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological
analysis of network attack vulnerability. In V. Kumar,
J. Srivastava, and A. Lazarevic, editors,Managing Cyber
Threats: Issues, Approaches and Challanges, chapter 5.
Kluwer Academic Publisher, 2003.

[15] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian
updating in causal probabilistic networks by local computa-
tions.Computational Statistics Quarterly, 4:269–282, 1990.

[16] Gene H. Kim and Eugene H. Spafford. The design and
implementation of tripwire: A file system integrity checker.
In CCS’94, 1994.

[17] Christopher Kruegel, Darren Mutz, William Robertson,and
Fredrik Valeur. Bayesian event classification for intrusion
detection. InACSAC’03, December 2003.

[18] Richard Lippmann, Kyle Ingols, Chris Scott, Keith Pi-
wowarski, Kendra Kratkiewicz, Mike Artz, and Robert
Cunningham. Validating and restoring defense in depth
using attack graphs. InMILCOM 2006, Washington, DC,
U.S.A., October 2006.

[19] Peter Mell, Karen Scarfone, and Sasha Romanosky.A Com-
plete Guide to the Common Vulnerability Scoring System
Version 2.0. FIRST’07, June 2007.

[20] Steven Noel and Sushil Jajodia. Managing attack graph
complexity through visual hierarchical aggregation. In
Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 109–118,
New York, NY, USA, 2004.

[21] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A
scalable approach to attack graph generation. InCCS 2006,
pages 336–345, 2006.

[22] Judea Pearl.Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufman, 1999.

[23] Mike Schiffman, Gerhard Eschelbeck, David Ahmad, An-
drew Wright, and Sasha Romanosky.CVSS: A Common
Vulnerability Scoring System. National Infrastructure Advi-
sory Council (NIAC), 2004.

[24] Yongning Tang and Ehab AI-Shaer. Sharing end-user
negative symptoms for improving overlay network depend-
ability. In DSN2009, June 2009.

[25] Alfonso Valdes and Keith Skinner. Adaptive, model-based
monitoring for cyber attack detection. InRAID’00, 2000.

[26] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-
cost network hardening using attack graphs.Computer
Communications, 29:3812–3824, November 2006.

[27] Leevar Williams, Richard Lippmann, and Kyle Ingols.
Garnet: A graphical attack graph and reachability network
evaluation tool. InVizSEC’08, 2008.

