
A Secure Web Browser Without Isolation Kernels 
 

Eugene Vasserman and Keith McVey 
Kansas State University 

 
Abstract (poster) 
 

Web browsers have come to embody the interface to the Internet, and securing those 
interactions is more important than ever. Highly secure browsers have generally taken 
one of two approaches: use advanced operating system security features (e.g. Chromium 
and SELinux) or design an isolation kernel below the various browser components (e.g. 
OP). We present the design of a secure web browser, enforcing strong website isolation 
and cross-site scripting protection while also protecting the user in case of total browser 
compromise, all without using only light-weight OS-provided mechanisms. 

Our “ultra-thin” browser design delegates security enforcement to the underlying 
operating system, using existing security mechanisms like user and process isolation, 
fine-grained object access permissions, and resource limits to prevent insecure interaction 
between different websites and between websites and the user’s system. We treat 
individual websites as “pseudo-users” of the operating system, with a subset of regular 
user permissions. Each website’s browser instance runs in a user context created only for 
that website (connected via a persistent socket to that website only), so even bugs in the 
browser will not allow malicious websites to take control of the user’s account or the 
underlying system, nor connect to third-party sites unless explicitly permitted. The 
proposed design offers many benefits over current browsers, including increased 
performance through lower security overhead, support for multiple client-side languages 
(not just JavaScript), a richer client-side storage infrastructure compatible with HTML5, 
and even the ability to run native code on the client (without static analysis), making full 
use of local features such as 3D acceleration (without the need for WebGL). 

Our browser is made up of three logical components: a rendering engine to display 
test and graphics in a browser-like window, a language support module to execute 
untrusted code downloaded from websites, and a client-side storage modules to store 
website state (e.g. cookies). Each presents unique challenges in terms of design, 
implementation, and backward compatibility. The renderer must display websites in 
separate processes, but modern web pages are composed of many elements, some from 
different domains than the one hosting the page. For backward compatibility, all these 
elements must be displayed in the same window, but for security, they should run in 
different memory spaces. The language support module (LSM) accepts untrusted website 
code and runs it on the local machine, inheriting the permissions of the sending website’s 
pseudo-user. It must allow interaction between downloaded code and the displayed 
browser window, since a large number of websites modify their display elements 
dynamically, so the rendering engine exports hooks for inter-process communication-
based interaction with the webpage DOM. Based on the OS process and user model, 
untrusted code is already prevented from interacting with other processes’ memory or 
files, and cannot access the network except to communicate with the sending site only, 
through the use of socket and file descriptor limits. 


