Functions on Trees

A Datatype for Binary Trees

Amtoft
from Hatcliff

Binary Trees

One of many possible definitions (no interior values)

datatype bi_tree =
Leaf of int
| Node of bi_tree % bi_tree;

Possible constructors:

— Leaf;

val it = fn : int —> bi_tree

— Node;

val it = fn : bi_tree % bi_tree —> bi_tree
— Leaf(4);

val it = Leaf 4 : bi_tree
— Node(Leaf(3),Leaf(4));
val it = Node (Leaf 3,Leaf 4) : bi_tree

Recursion Template

datatype bi_tree =
Leaf of int
| Node of bi_tree x bi_tree;

Recall our guiding principle:

A recursive function
follows the structure

of inductively-defined data.

Recursion template:

fun tree_rec(Leaf(n)) =
| tree_rec(Node(btl, bt2)) =

.tree_rec(btl)...

.tree_rec(bt2)...;

Functions on Trees

Amtoft
from Hatcliff

Binary Trees
Examples

Sum of Tree Data

Sample tree:

— val t = Node(Node(Leaf(3),Leaf(4)),Leaf(1));

val t = Node (Node (Leaf #,Leaf #),Leaf 1)
bi_tree

Desired behavior

— use "tree_library .sml"”;

val tree_sum = fn : bi_tree —> int

— tree_sum(t);
val it =8 : int

Implementation:

fun tree_sum(Leaf(n)) =n
| tree_sum (Node(btl, bt2)) =
tree_sum(btl) + tree_sum(bt2);

Functions on Trees

Amtoft
from Hatcliff

Examples

Flipping a Tree

— val t = Node(Node(Leaf(3),Leaf(4)),Leaf(1));

val t = Node (Node (Leaf #,Leaf #),Leaf 1)
bi_tree

Desired behavior

— use "tree_library .sml"”;

val tree_flip = fn : bi_tree —> bi_tree
— tree_flip(t);
val it = Node
(Leaf 1,Node (Leaf #,Leaf #)) : bi_tree

Implementation:

fun tree_flip(Leaf(n)) = Leaf(n)

| tree_flip (Node(btl,6 bt2)) =
Node(tree _flip (bt2),
tree_flip(btl));

Functions on Trees

Amtoft
from Hatcliff

Examples

Fringe of a Tree

— val t = Node(Node(Leaf(3),Leaf(4)),Leaf(1));

val t = Node (Node (Leaf #,Leaf #),Leaf 1)
bi_tree

Desired behavior

— use "tree_library .sml"”;

val tree_fringe = fn : bi_tree —> int list
— tree_fringe(t);
val it = [3,4,1] : int list

Implementation:

fun tree_fringe(Leaf(n)) = [n]
| tree_fringe (Node(btl,K bt2)) =
tree_fringe (btl)
@ tree_fringe(bt2);

Functions on Trees

Amtoft
from Hatcliff

Examples

A Datatype for General Trees

Trees with arbitrary branching (still no interior values)

datatype 'a gtree =
Leaf of 'a
| Node of 'a branches
and 'a branches =
Empty
| Branch of 'a gtree % 'a branches;

A recursive function
still follows the structure
of inductively-defined data.

Recursion template now involves mutual recursion:

fun gtree_ x (Leaf(n)) =

| gtree_x (Node(bs)) = ...branches_x(bs)...

and branches_x (Empty) = ...
| branches_x (Branch(gt,bs)) =

...gtree_x(gt)....branches_x(bs)...;

Functions on Trees

Amtoft
from Hatcliff

Examples

General Trees

SU m Of Tree Data Functions on Trees

datatype 'a gtree =

and

fun

and

Amtoft
from Hatcliff

General Trees

Leaf of 'a

Node of 'a branches

"a branches =

Empty

Branch of 'a gtree *x 'a branches;

gtree_sum (Leaf(n)) =n
gtree_sum (Node(bs)) = branches_sum(bs)

branches_sum (Empty) = 0

branches_sum (Branch(gt,bs)) =
gtree_sum (gt)

+ branches_sum(bs);

Lifting to Higher-Order Functions

datatype 'a gtree =
Leaf of 'a
| Node of 'a branches
and 'a branches =
Empty
| Branch of 'a gtree % 'a branches;

As for lists, we can write a map function

fun gtree_map f (Leaf(n)) = Leaf(f(n))
| gtree_map f (Node(bs)) =
Node(branches_map f bs)
and branches_map f (Empty) = Empty
| branches_map f (Branch(gt,bs)) =
Branch(gtree_map f gt,
branches_map f bs);

val gtree_addl = gtree_map (fn x = x +
What about filter or fold?

Functions on Trees

Amtoft
from Hatcliff

General Trees

	Binary Trees
	Examples

	General Trees

