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Call Trees

fun s u m l i s t n i l = 0
| s u m l i s t ( x : : x s ) = x + s u m l i s t xs

has a linear call-tree

s u m l i s t ( [ 2 , 1 ] )
|

s u m l i s t ( [ 1 ] )
|

s u m l i s t ( n i l )

fun f i b 0 = 0
| f i b 1 = 1
| f i b n = f i b ( n−1) + f i b ( n−2)

has a non-linear (branching) call-tree

f i b ( 3 )
/ \

f i b ( 2 ) f i b ( 1 )
/ \

f i b ( 0 ) f i b ( 1 )
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Stacking Bindings

fun r e v e r s e n i l = n i l
| r e v e r s e ( x : : x s ) = r e v e r s e xs @ [ x ]
− va l L = [ 1 , 2 , 3 ] ;
− r e v e r s e ( L ) ;

Environment during recursion: (see p. 67)

+−−−−−−−−−−−−−−−−−+
| | . . added i n r e v e r s e ( n i l )
+−−−−−−−−−−−−−−−−−+
| xs n i l |
| x 3 | . . added i n r e v e r s e ( [ 3 ] )
+−−−−−−−−−−−−−−−−−+
| xs [ 3 ] |
| x 2 | . . added i n r e v e r s e ( [ 2 , 3 ] )
+−−−−−−−−−−−−−−−−−+
| xs [ 2 , 3 ] |
| x 1 | . . added i n r e v e r s e ( [ 1 , 2 , 3 ] )
+−−−−−−−−−−−−−−−−−+
| L [ 1 , 2 , 3 ] |
| . . . | . . top l e v e l env i ronment
+−−−−−−−−−−−−−−−−−+
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Running Time

fun r e v e r s e n i l = n i l
| r e v e r s e ( x : : x s ) = ( r e v e r s e xs ) @ [ x ]

I Consider calling reverse on a list of length n
I it makes n calls to append
I which takes time 1, 2, . . . n − 2, n − 1, n

the running time is thus quadratic.
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Performance Test

We need generator of large data:

fun from i j =
i f i > j then n i l
e l s e i : : from ( i +1) j

Execute reverse L where L is the value of (from 1 n)

n running time

10,000 2 seconds
20,000 7 seconds
40,000 34 seconds

100,000 very slow

When testing sum list, we rather want

fun ones 0 = n i l
| ones n = 1 : : ones ( n−1)
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Assessment

fun r e v e r s e n i l = n i l
| r e v e r s e ( x : : x s ) = ( r e v e r s e xs ) @ [ x ]

Why must we call append?

I :: only allows us to add items in front of list

I reverse does non-trivial computation only when
going up the tree

We might consider doing computation when going down
the tree
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Passing Results Down In Call Tree

Recall that list reversal is special case of foldl

fun f o l d l f e n i l = e
| f o l d l f e ( x : : x s ) = f o l d l f ( f ( x , e ) ) xs

fun m y r e v e r s e xs = f o l d l op : : n i l x s ;

Specializing foldl wrt op:: yields

fun r e v a c c e n i l = e
| r e v a c c e ( x : : x s ) = r e v a c c ( x : : e ) xs

fun r e v e r s e a c c xs = r e v a c c n i l x s

I e holds “the results so far”

I e is flowing down the tree, informing the recursion at
the next level of something that we have
accumulated at the current level
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Performance Comparison

I Recall that reverse had quadratic running time.

I Since reverse acc uses no append, we expect
linear running time.

When called on the value of from 1 n

n reverse reverse acc
10,000 2 seconds instantaneous
20,000 7 seconds instantaneous

100,000 very slow instantaneous
1,000,000 infeasible 3 seconds
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Tail Recursion

fun r e v a c c e n i l = e
| r e v a c c e ( x : : x s ) = r e v a c c ( x : : e ) xs

This function is tail recursive:

I no computation happens after the recursive call

I value of recursive call is the return value

I thus, no variables are referenced after recursive call

This kind of recursion is actually iteration in disguise!
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Iterative Reverse

fun r e v a c c e n i l = e
| r e v a c c e ( x : : x s ) = r e v a c c ( x : : e ) xs

can be converted to “pseudo-C (renaming e to acc):

l i s t r e v e r s e ( xs : l i s t ) {
l i s t acc ;
acc = [ ] ;
whi le ( xs != n i l ) do {

acc = hd ( xs ) : : acc ;
x s = t l ( xs ) ;

}
return acc ;

}

I acc holds result

I xs and acc are updated each time through the loop
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Tail Recursion versus Non-Tail Recursion

(∗ v e r s i o n 1 : w i thout accumu la to r ∗)
fun r e v e r s e n i l = n i l
| r e v e r s e ( x : : x s ) = r e v e r s e xs @ [ x ]

(∗ v e r s i o n 2 : w i th accumu la to r ∗)
fun r e v a c c e n i l = e
| r e v a c c e ( x : : x s ) = r e v a c c ( x : : e ) xs

x is used after recursion in v.1, but not in v.2
I for tail-recursive functions, we do thus not need to

stack variable bindings for the recursive calls
I parameter passing can be implemented in the

compiler by destructive updates (that is,
assignment)!

Computation occurs after recursion in v.1, but not in v.2
I for tail-recursive functions, we do thus not need to

stack return addresses; a call can be implemented in
the compiler as a goto!
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Parameter “Assignment”

The tail-recursive function

fun f ( y 1 , . . . , y n ) =

. . .
f (<exp−1>, . . . , <exp−n>)

...is roughly equivalent to...

. . . f ( y 1 , . . . , y n ) {

whi le . . . {
. . .
. . .
y 1 = <exp−1>;
. . .
y n = <exp−n>;
}

}
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Converting SumList to Tail Recursion

fun s u m l i s t n i l = 0
| s u m l i s t ( x : : x s ) = x + s u m l i s t xs

I The recursive calls are unfolded until we reach the
end of the list, from where we then move to the left
while summing the results.

fun s u m l i s t a c c acc n i l = acc
| s u m l i s t a c c acc ( x : : x s ) =

s u m l i s t a c c ( x+acc ) xs

I Summation proceeds while moving left to right.

I Top-level call: sum list acc 0 xs

Performance comparison on the value of ones n

n sum list sum list acc
4,000,000 5 seconds instantaneous
5,000,000 21 seconds instantaneous
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Tail-Recursive MultList

fun m u l t l i s t a c c acc n i l = acc
| m u l t l i s t a c c acc ( x : : x s ) =

m u l t l i s t a c c ( x∗ acc ) xs

Question: what happens if we hit a 0?

fun m u l t l i s t a c c e x i t acc n i l = acc
| m u l t l i s t a c c e x i t acc ( x : : x s ) =

i f x = 0 then 0 e l s e
m u l t l i s t a c c e x i t ( x∗ acc ) xs

In C, we might have

i n t m u l t l i s t ( xs : l i s t ) {
i n t acc ;
acc = 1 ;
wh i l e ( xs != n i l ) do {

i f ( hd ( xs ) = 0) then
r e t u r n 0 ; /∗ e scape ∗/

e l s e
acc = hd ( xs ) ∗ acc ;
xs = t l ( xs ) ;

}
r e t u r n acc ;

}
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Making Fibonacci Tail-Recursive

fun f i b 0 = 0
| f i b 1 = 1
| f i b n = f i b ( n−2) + f i b ( n−1)

has a branching call-tree, and can be made tail-recursive
by using two accumulating parameters:

fun f i b a c c p r e v c u r r n =
i f n = 1 then c u r r
e l s e f i b a c c c u r r ( p r e v+c u r r ) ( n−1)

fun f i b o n a c c i a c c n =
i f n = 0 then 0 e l s e f i b a c c 0 1 n

Performance comparison

n fib fibonacci acc
42 7 seconds instantaneous
43 11 seconds instantaneous
44 17 seconds instantaneous
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Correctness of Tail-Recursive Fibonacci

With F the fibonacci function we have

F (0) = 0; F (1) = 1; F (n) = F (n − 2) + F (n − 1)

which can be tail-recursively implemented by

fun g ( n , prev , c u r r ) =
i f n = 1 then c u r r
e l s e g ( n−1, c u r r , p r e v+c u r r )

Correctness Lemma: for all n ≥ 1, k ≥ 0:

g(n, F (k), F (k + 1)) = F (n + k)

This can be proved by induction in n.

I the base case is n = 1 which is obvious.

I for the inductive case, n > 1,
g(n, F (k), F (k+1)) = g(n−1, F (k+1), F (k)+F (k+1)) =

g(n−1, F (k+1), F (k+2)) = F ((n−1)+(k+1)) = F (n+k)

Thus F (n) = g(n, F (0), F (1)) = g(n, 0, 1).
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Summary

I a tail-recursive function is one where the function
performs no computation after the recursive call

I a good SML compiler will detect tail-recursive
functions and implement them iteratively

I as loops
I there is no need to stack bindings or return addresses
I recursive calls become gotos
I we can think of arguments as being “assigned to”

(destructively update) formal parameters.

I this substantially reduces execution time and space
(for stack) overhead
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