## Call Trees

```
fun sum_list \(\mathrm{nil}=0\)
    sum_list \((x:: x s)=x+\) sum_list \(x s\)
```

has a linear call-tree
sum_list $([2,1])$

```
fun fib \(0=0\)
    fib \(1=1\)
    fib \(n=f i b(n-1)+f i b(n-2)\)
```

has a non-linear (branching) call-tree


## Stacking Bindings

```
fun reverse nil = nil
| reverse (x::xs) = reverse xs @ [x]
- val L = [1,2,3];
- reverse(L);
```

Environment during recursion: (see p. 67)


## Running Time

```
fun reverse nil = nil
    reverse (x::xs) = (reverse xs) @ [x]
```

- Consider calling reverse on a list of length $n$
- it makes $n$ calls to append
- which takes time $1,2, \ldots n-2, n-1, n$
the running time is thus quadratic.


## Performance Test

We need generator of large data:
fun from $\mathrm{i} \mathrm{j}=$
if $\mathrm{i}>\mathrm{j}$ then nil
else $\mathrm{i}::$ from $(\mathrm{i}+1) \mathrm{j}$

Execute reverse $L$ where $L$ is the value of (from $1 n$ )

| $n$ | running time |
| ---: | :--- |
| 10,000 | 2 seconds |
| 20,000 | 7 seconds |
| 40,000 | 34 seconds |
| 100,000 | very slow |

When testing sum_list, we rather want
fun ones $0=$ nil

$$
\text { ones } n=1: \text { ones }(n-1)
$$

## Assessment



Why must we call append?

- : : only allows us to add items in front of list
- reverse does non-trivial computation only when going up the tree
We might consider doing computation when going down the tree

Further Examples
Summary

## Passing Results Down In Call Tree

Recall that list reversal is special case of fold
fun foldl f e nil $=e$
l foldl fe $(x:: x s)=$ foldl $f(f(x, e))$ xs
fun my_reverse $x s=$ foldl op:: nil xs;
Specializing foldl wrt op: : yields
fun rev_acc e nil $=e$ rev_acc e (x::xs) = rev_acc (x::e) xs
fun reverse_acc xs $=$ rev_acc nil $x s$

- e holds "the results so far"
- e is flowing down the tree, informing the recursion at the next level of something that we have accumulated at the current level


## Performance Comparison

- Recall that reverse had quadratic running time.
- Since reverse_acc uses no append, we expect linear running time.

When called on the value of from $1 n$

| $n$ | reverse | reverse_acc |
| ---: | :--- | :--- |
| 10,000 | 2 seconds | instantaneous |
| 20,000 | 7 seconds | instantaneous |
| 100,000 | very slow | instantaneous |
| $1,000,000$ | infeasible | 3 seconds |

Run-Time Structures
Accumulators
Tail Recursion
Further Examples
Summary

## Tail Recursion

fun rev_acc e nil $=e$
rev_acc e $(x:: x s)=r e v \_a c c(x:: e) x s$
This function is tail recursive:

- no computation happens after the recursive call
- value of recursive call is the return value
- thus, no variables are referenced after recursive call

This kind of recursion is actually iteration in disguise!

## Iterative Reverse

```
fun rev_acc e nil = e
| rev_acc e (x::xs) = rev_acc (x::e) xs
```

can be converted to "pseudo-C (renaming e to acc):
list reverse(xs:list) \{
list acc;
acc = [];
while (xs != nil) do \{
acc $=$ hd (xs) :: acc;
$\mathrm{xs}=\mathrm{tl}(\mathrm{xs})$;
\}
return acc;
\}

- acc holds result
- xs and acc are updated each time through the loop


## Tail Recursion versus Non-Tail Recursion


x is used after recursion in v.1, but not in v. 2

- for tail-recursive functions, we do thus not need to stack variable bindings for the recursive calls
- parameter passing can be implemented in the compiler by destructive updates (that is, assignment)!
Computation occurs after recursion in v.1, but not in v. 2
- for tail-recursive functions, we do thus not need to stack return addresses; a call can be implemented in the compiler as a goto!


## Parameter "Assignment"

The tail-recursive function

$$
\text { fun } f(y-1, \ldots, y-n)=
$$

$$
\mathrm{f}(<\exp -1>, \ldots,<\exp -n>)
$$

Run-Time Structures

## Accumulators

Tail Recursion
Further Examples
Summary
...is roughly equivalent to...

$$
\begin{aligned}
& \ldots f\left(y \_1, \ldots, y \_n\right) \text { \{ } \\
& \text { while } \\
& y-1=\langle\exp -1\rangle ; \\
& \text { y_n }=\langle\exp -\mathrm{n}>\text {; } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

## Converting SumList to Tail Recursion

| fun | sum_list $n i l=0$ |
| :--- | :--- |
| $\mid$ | sum_list $(x:: x s)=x+$ sum_list $x s$ |

- The recursive calls are unfolded until we reach the end of the list, from where we then move to the left while summing the results.
fun $\left.\begin{array}{c}\text { sum_list_acc acc } n i l=a c c \\ \mid \quad \text { sum_list_acc acc }(x:: x s)= \\ \text { sum_list_acc } \quad(x+a c c) \times s\end{array}\right)=$
- Summation proceeds while moving left to right.
- Top-level call: sum_list_acc 0 xs

Performance comparison on the value of ones $n$

| $n$ | sum_list | sum_list_acc |
| ---: | :--- | :--- |
| $4,000,000$ | 5 seconds | instantaneous |
| $5,000,000$ | 21 seconds | instantaneous |

## Tail-Recursive MultList

```
fun mult_list_acc acc nil = acc
    mult_list_acc acc (x::xs) =
    mult_list_acc (x*acc) xs
```

Question: what happens if we hit a 0 ?

```
fun mult_list_acc_exit acc nil = acc
| mult_list_acc_exit acc (x::xs) =
    if x = 0 then 0 else
    mult_list_acc_exit (x*acc) xs
```

In C, we might have

```
```

int mult_list(xs: list) \{

```
```

int mult_list(xs: list) \{
int acc;
int acc;
acc $=1$;
acc $=1$;
while (xs $!=$ nil) do $\{$
while (xs $!=$ nil) do $\{$
if $($ hd $(x s)=0)$ then
if $($ hd $(x s)=0)$ then
return 0 ; /* escape */
return 0 ; /* escape */
else
else
acc $=\mathrm{hd}(\mathrm{xs}) * \mathrm{acc}$;
acc $=\mathrm{hd}(\mathrm{xs}) * \mathrm{acc}$;
$\mathrm{xs}=\mathrm{tI}(\mathrm{xs})$;
$\mathrm{xs}=\mathrm{tI}(\mathrm{xs})$;
\}
\}
return acc;
return acc;
\}

```
```

\}

```
```

Run-Time Structures
Accumulators
Tail Recursion
Further Examples
Summary

## Making Fibonacci Tail-Recursive

```
fun fib \(0=0\)
    fib \(1=1\)
    fib \(n=f i b(n-2)+f i b(n-1)\)
```

has a branching call-tree, and can be made tail-recursive

```
fun fib_acc prev curr \(n=\)
    if \(\mathrm{n}=1\) then curr
    else fib_acc curr (prev+curr) (n-1)
```

fun fibonacci_acc $n=$
if $n=0$ then 0 else fib_acc $01 n$
Performance comparison

| $n$ | fib | fibonacci_acc |
| ---: | :--- | :--- |
| 42 | 7 seconds | instantaneous |
| 43 | 11 seconds | instantaneous |
| 44 | 17 seconds | instantaneous |

## Correctness of Tail-Recursive Fibonacci

With $F$ the fibonacci function we have

$$
F(0)=0 ; \quad F(1)=1 ; \quad F(n)=F(n-2)+F(n-1)
$$

which can be tail-recursively implemented by
fun $g(n, p r e v, c u r r)=$

$$
\text { if } \mathrm{n}=1 \text { then curr }
$$

else $g(n-1, c u r r, p r e v+c u r r)$
Correctness Lemma: for all $n \geq 1, k \geq 0$ :

$$
g(n, F(k), F(k+1))=F(n+k)
$$

This can be proved by induction in $n$.

- the base case is $n=1$ which is obvious.
- for the inductive case, $n>1$,

$$
\begin{aligned}
& g(n, F(k), F(k+1))=g(n-1, F(k+1), F(k)+F(k+1))= \\
& g(n-1, F(k+1), F(k+2))=F((n-1)+(k+1))=F(n+k)
\end{aligned}
$$

Thus $F(n)=g(n, F(0), F(1))=g(n, 0,1)$.

## Summary

 performs no computation after the recursive call- a good SML compiler will detect tail-recursive functions and implement them iteratively
- as loops
- there is no need to stack bindings or return addresses
- recursive calls become gotos
- we can think of arguments as being "assigned to" (destructively update) formal parameters.
- this substantially reduces execution time and space (for stack) overhead

