Deflnlng Fu nctions Functions in SML
froﬁml-:(a):zliff

Defining values of simple types from Leavens
— va | i = 3 : Defining Functions
val i =3 : int

Defining function values:

— val inc = fn (x) = x + 1;

val inc = fn : int —> int
— inc(3);
val it =4 : int

— val is_.3 = fn x =
if x =3 then "

yes" else "no";

val is.3 = fn : int —> string
— is_3 4;
val it = "no" : string

Function types: fn: <domain type> -> <range type>

Fun with fun

The previous definitions can be abbreviated:

fun <identifier>(<parameter list>) = <expression>;

— fun inc(x) = x + 1;
val inc = fn : int — int

— fun is_3 x =

if x =3 then "yes" else "no";
val is.3 = fn : int —> string

— fun test(x,y) = if x < y then y else x+1;
val test = fn : int % int — int

Functions in SML
Amtoft

from Hatcliff
from Leavens

Defining Functions

ML Programs

A (simple) ML program is generally a sequence of
function definitions

fun push (value, stack)

fun pop (stack)

fun empty (stack)

fun make—stack (value)

Functions in SML
Amtoft

from Hatcliff
from Leavens

Defining Functions

FunCtionS as Values Functions in SML

Amtoft
from Hatcliff
from Leavens

Functions can be anonymous

Functions as Values

— fn x = x + 2;

val it = fn : int — int

Functions can be tuple components

—val p=(fn (x,y) = x + v,
fn (x,y) = x — y);

val p = (fn,fn)
(int * int — int) * (int * int — int)

- #1(p)(2.3);

val it =5 : int

- #2(p)(2,3);

val it = 71 : int

Functions in SML

Functions as Values

Amtoft
from Hatcliff
from Leavens

Functions can be list elements

— fun addl(x) = x + 1; Functions as Values
val addl = fn : int — int

— fun add2(x) = x + 2;

val add2 = fn : int —> int

— fun add3(x) = x + 3;

val add3 = fn : int — int

— val |s = [addl,add2,add3];
val Is = [fn,fn fn] : (int — int) list

— hd(Is)(3);
val it =4 : int

~ hd(tl(1s))(3);

val it =5 : int

Higher-Order Functions Functions in SML
Amtoft
from Hatcliff

Functions can be given as arguments from Leavens
— fun do_fun(f,x) = f(x) + x + 1;
val do_fun = fn : (int — int) % int —> int St ot s Vidhes

— do_fun(add2,3);
val it =9 : int

— do_fun(add3,5);

val it = 14 : int

Functions can be returned as results

— fun make_addx(x) = fn(y) = y + x;

val make_addx = fn : int —> int —> int

— val add5 = make_addx(5);
val addb = fn : int — int

— add5(3);
val it =8 : int

Functions in SML

Functions Are Values

Amtoft
from Hatcliff
from Leavens

A higher-order function
> “processes”’ other functions Functions as Values

» takes a function as input, and/or
returns a function as a result

In SML, functions are first-class citizens

Just like any other value: they can be
» placed in tuples
» placed in lists
» passed as function arguments

» returned as function results

Compare with C

We must use function pointers (and it's ugly):

#include <stdio.h>

int add3(int x)

{
}

int do_fun(int (xfp)(int x), int y)

{
}

void main(void)

{
}

return x + 3;

return (xfp)(y) + vy + 1;

printf("%d\n" ,do_fun(add3,5));

Functions in SML
Amtoft

from Hatcliff
from Leavens

Functions as Values

Compal’e With Pascal Functions in SML
Amtoft
from Hatcliff
from Leavens

A little better, but we can't return functions as a result.

function add3(x : integer): integer; - -
begin
add3 = x + 3;
end;
function do_fun(f (x : integer): integer;

y: integer): integer;

begin
do_fun = f(y) + vy + 1;
end;

begin
writeln(do_fun(add3,5));
end .

Scope of Variables

— val a = 2;

val a = 2 : int

— fun myfun x = x + a;

val myfun = fn : int —> int
— val a = 4;

val a =4 : int

— myfun(5);

777

val it =7 : int

» Declarations at the top-level may seem like
assignments.... but they're not!

» Technically speaking, ML is statically scoped

» New definitions of the same variable don't overwrite old
definitions; they shadow the old definitions

> For efficiency, old definitions may be garbage collected if
they are not referred to.

Functions in SML
Amtoft

from Hatcliff
from Leavens

Functions as Values

Multiple Argument Functions

> In reality, each SML function takes exactly one
argument and returns one result value.

> If we need to pass multiple arguments, we generally

package the arguments up in a tuple.
— fun add3(x,y,z) = x +y + z;
val add3 = fn : int % int *x int —

» If a function takes n argument, we say that it has
arity n.

int

Functions in SML
Amtoft

from Hatcliff
from Leavens

Multiple Arguments

Multiple Argument Functions

Can we implement “multiple argument functions”
without tuples or lists?
> Yes, use higher-order functions
— fun add3(x) =

fn (y) = fn (z) = x + y + z;
val add3 = fn : int — int —> int — int

— ((add3(1))(2))(3):

val it =6 : int

— add3 1 2 3; (* omit needless parens x)

val it =6 : int

Abbreviate definition

— fun add3 xy z =x +y + z;

val add3 = fn : int — int —> int —> int

— add3 1 2 3;
val it =6 : int

Functions in SML
Amtoft

from Hatcliff
from Leavens

Multiple Arguments

Functions in SML

Interpreting Function Types

Amtoft
from Hatcliff
from Leavens

Look closely at types:

1. fn:int —> int —> int —> int
abbreviates
2. fn:int —> (int —> (int —> int))
which is different from
3. fn:(int —> int) —> (int —> int)

Multiple Arguments

» The first two types describes a function that

> takes an integer as an argument and returns a
function of type int —> int —>int as a result.

» The last type describes a function that

> takes a function of type int —> int as argument
and returns a function of type int —> int.

Currying

The function

— fun add3(x) =
fn (y) = fn (z) = x + vy + z;
val add3 = fn : int — int —> int — int

is called the “curried” version of

— fun add3(x,y,z) =x +y + z;
val add3 = fn : int * int * int — int

History:

» The process of moving from the first version to the
second is called “currying” after the logician Haskell
Curry who supposedly first identified the technique.

» The technique actually goes back to another logician
named Schonfinkel

» but we still call it “currying” (thank goodness!).

Functions in SML
Amtoft

from Hatcliff
from Leavens

Currying

Instantiating Curried Functions

Curried functions are useful because they allow us to create
partially instantiated or specialized functions where some (but
not all) arguments are supplied.

— fun add x y = x + y;
val add = fn : int — int —> int

— val add3 = add 3;
val add3 = fn : int —> int

— val add5 = add 5;
val add5 = fn : int —> int

— add3 2 + add5 6;
val it = 16 : int

Functions in SML
Amtoft

from Hatcliff
from Leavens

Currying

Polymorphic Functions

The theory of polymorphism underlying SML is an
elegant feature that clearly distinguishes SML from other
languages that are less well-designed.

— fun id x = x;

val id = fn : 'a —> ’a

— id 5;

val it =5 : int

— id "abc";

val it = "abc” : string

—id (fn x = x + x);

val it = fn : int —> int
— id(2) + floor(id(3.5));
val it =5 : int

Polymorphism: (poly = many, morph = form)

Functions in SML
Amtoft

from Hatcliff
from Leavens

Polymorphism

Polymorphic and Monomorphic Functions

— hd;

val it = fn : 'a list —> ’a
— hd [1,2 3]

val it =1 int

— hd ["a”,"b","c"];

val it = "a" : string
— val hd_int = hd : int list — int;
val hd_int = fn : int list —> int

— hd_int [1,2,3];
val it =1 : int
~ hd_int ["a".,"b" "c"1;
Error: operator and operand don't...

Functions in SML
Amtoft

from Hatcliff
from Leavens

Polymorphism

Polymorphism

— val two_ids = (id,id);

val

two_ids = (fn,fn) : ('a —> 'a) * ('b —> 'b)

— val two_id = (id : int — int, id)

val

>

two_id = (fn,fn) : (int — int) * ('a = 'a)

Think of fn : ’a —> ’a as the type of a function
that has many different versions (one for each type).
’a is a type variable; a place holder where we can fill
in any type.

» A type can contain more than one type variable

» The SML implementation always comes up with the

most general type possible, but we can override with
a specific type declaration.

» A type with no type variables is called a ground type.

» There are many subtle and interesting points about

polymorphism that we will come back to later.

Functions in SML
Amtoft

from Hatcliff
from Leavens

Polymorphism

A Higher-order Polymorphic Function et

Amtoft
from Hatcliff
from Leavens

Compose: o (pre-defined function)

— val add8 = add3 o add5;

val add8 = fn : int — int

— add8 3; Polymorphism
val it = 11 : int

— (op 0); (* convert infix to non—infix x)

val it = fn

(‘fa—> "b) * ('c => 'a) => 'c —=> b
User-defined version:

— fun myo (f,g) = fn x = f(g(x));
val my.o = fn
(‘fa— "b) * ('c => 'a) => 'c —=> b

	Defining Functions
	Functions as Values
	Multiple Arguments
	Currying
	Polymorphism

