Deflnlng Fu nctions Functions in SML
froﬁml-:(a):zliff

Defining values of simple types from Leavens
— va | i = 3 : Defining Functions
val i =3 : int

Defining function values:

— val inc = fn (x) = x + 1;

val inc = fn : int —> int
— inc(3);
val it =4 : int

— val is_.3 = fn x =
if x =3 then "

yes" else "no";

val is.3 = fn : int —> string
— is_3 4;
val it = "no" : string

Function types: fn: <domain type> -> <range type>



Fun with fun

The previous definitions can be abbreviated:

fun <identifier>(<parameter list>) = <expression>;

— fun inc(x) = x + 1;
val inc = fn : int — int

— fun is_3 x =

if x =3 then "yes" else "no";
val is.3 = fn : int —> string

— fun test(x,y) = if x < y then y else x+1;
val test = fn : int % int — int
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ML Programs

A (simple) ML program is generally a sequence of
function definitions

fun push (value, stack)

fun pop (stack)

fun empty (stack)

fun make—stack (value)
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FunCtionS as Values Functions in SML
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Functions can be anonymous

Functions as Values

— fn x = x + 2;

val it = fn : int — int

Functions can be tuple components

—val p=(fn (x,y) = x + v,
fn (x,y) = x — y);

val p = (fn,fn)
(int * int — int) * (int * int — int)

- #1(p)(2.3);

val it =5 : int

- #2(p)(2,3);

val it = 71 : int



Functions in SML

Functions as Values
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Functions can be list elements

— fun addl(x) = x + 1; Functions as Values
val addl = fn : int — int

— fun add2(x) = x + 2;

val add2 = fn : int —> int

— fun add3(x) = x + 3;

val add3 = fn : int — int

— val |s = [addl,add2,add3];
val Is = [fn,fn fn] : (int — int) list

— hd(Is)(3);
val it =4 : int

~ hd(tl(1s))(3);

val it =5 : int



Higher-Order Functions Functions in SML
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Functions can be given as arguments from Leavens
— fun do_fun(f,x) = f(x) + x + 1;
val do_fun = fn : (int — int) % int —> int St ot s Vidhes

— do_fun(add2,3);
val it =9 : int

— do_fun(add3,5);

val it = 14 : int

Functions can be returned as results

— fun make_addx(x) = fn(y) = y + x;

val make_addx = fn : int —> int —> int

— val add5 = make_addx(5);
val addb = fn : int — int

— add5(3);
val it =8 : int



Functions in SML

Functions Are Values
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A higher-order function
> “processes”’ other functions Functions as Values

» takes a function as input, and/or
returns a function as a result

In SML, functions are first-class citizens

Just like any other value: they can be
» placed in tuples
» placed in lists
» passed as function arguments

» returned as function results



Compare with C

We must use function pointers (and it's ugly):

#include <stdio.h>

int add3(int x)

{
}

int do_fun(int (xfp)(int x), int y)

{
}

void main(void)

{
}

return x + 3;

return (xfp)(y) + vy + 1;

printf("%d\n" ,do_fun(add3,5));
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Compal’e With Pascal Functions in SML
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A little better, but we can't return functions as a result.

function add3(x : integer): integer; - -
begin
add3 = x + 3;
end;
function do_fun( f (x : integer): integer;

y: integer): integer;

begin
do_fun = f(y) + vy + 1;
end;

begin
writeln(do_fun(add3,5));
end .



Scope of Variables

— val a = 2;

val a = 2 : int

— fun myfun x = x + a;

val myfun = fn : int —> int
— val a = 4;

val a =4 : int

— myfun(5);

777

val it =7 : int

» Declarations at the top-level may seem like
assignments.... but they're not!

» Technically speaking, ML is statically scoped

» New definitions of the same variable don't overwrite old
definitions; they shadow the old definitions

> For efficiency, old definitions may be garbage collected if
they are not referred to.
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Multiple Argument Functions

> In reality, each SML function takes exactly one
argument and returns one result value.

> If we need to pass multiple arguments, we generally

package the arguments up in a tuple.
— fun add3(x,y,z) = x +y + z;
val add3 = fn : int % int *x int —

» If a function takes n argument, we say that it has
arity n.

int
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Multiple Argument Functions

Can we implement “multiple argument functions”
without tuples or lists?
> Yes, use higher-order functions
— fun add3(x) =

fn (y) = fn (z) = x + y + z;
val add3 = fn : int — int —> int — int

— ((add3(1))(2))(3):

val it =6 : int

— add3 1 2 3; (* omit needless parens x)

val it =6 : int

Abbreviate definition

— fun add3 xy z =x +y + z;

val add3 = fn : int — int —> int —> int

— add3 1 2 3;
val it =6 : int
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Functions in SML

Interpreting Function Types
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Look closely at types:

1. fn:int —> int —> int —> int
abbreviates
2. fn:int —> (int —> (int —> int))
which is different from
3. fn:(int —> int) —> (int —> int)

Multiple Arguments

» The first two types describes a function that

> takes an integer as an argument and returns a
function of type int —> int —>int as a result.

» The last type describes a function that

> takes a function of type int —> int as argument
and returns a function of type int —> int.



Currying

The function

— fun add3(x) =
fn (y) = fn (z) = x + vy + z;
val add3 = fn : int — int —> int — int

is called the “curried” version of

— fun add3(x,y,z) =x +y + z;
val add3 = fn : int * int * int — int

History:

» The process of moving from the first version to the
second is called “currying” after the logician Haskell
Curry who supposedly first identified the technique.

» The technique actually goes back to another logician
named Schonfinkel

» but we still call it “currying” (thank goodness!).
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Instantiating Curried Functions

Curried functions are useful because they allow us to create
partially instantiated or specialized functions where some (but
not all) arguments are supplied.

— fun add x y = x + y;
val add = fn : int — int —> int

— val add3 = add 3;
val add3 = fn : int —> int

— val add5 = add 5;
val add5 = fn : int —> int

— add3 2 + add5 6;
val it = 16 : int
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Polymorphic Functions

The theory of polymorphism underlying SML is an
elegant feature that clearly distinguishes SML from other
languages that are less well-designed.

— fun id x = x;

val id = fn : 'a —> ’a

— id 5;

val it =5 : int

— id "abc";

val it = "abc” : string

—id (fn x = x + x);

val it = fn : int —> int
— id(2) + floor(id(3.5));
val it =5 : int

Polymorphism: (poly = many, morph = form)
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Polymorphic and Monomorphic Functions

— hd;

val it = fn : 'a list —> ’a
— hd [1,2 3]

val it =1 int

— hd ["a”,"b","c"];

val it = "a" : string
— val hd_int = hd : int list — int;
val hd_int = fn : int list —> int

— hd_int [1,2,3];
val it =1 : int
~ hd_int ["a".,"b" "c"1;
Error: operator and operand don't...
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Polymorphism

— val two_ids = (id,id);

val

two_ids = (fn,fn) : ('a —> 'a) * ('b —> 'b)

— val two_id = (id : int — int, id)

val

>

two_id = (fn,fn) : (int — int) * ('a = 'a)

Think of fn : ’a —> ’a as the type of a function
that has many different versions (one for each type).
’a is a type variable; a place holder where we can fill
in any type.

» A type can contain more than one type variable

» The SML implementation always comes up with the

most general type possible, but we can override with
a specific type declaration.

» A type with no type variables is called a ground type.

» There are many subtle and interesting points about

polymorphism that we will come back to later.
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A Higher-order Polymorphic Function et
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Compose: o (pre-defined function)

— val add8 = add3 o add5;

val add8 = fn : int — int

— add8 3; Polymorphism
val it = 11 : int

— (op 0); (* convert infix to non—infix x)

val it = fn

(‘fa—> "b) * ('c => 'a) => 'c —=> b
User-defined version:

— fun myo (f,g) = fn x = f(g(x));
val my.o = fn
(‘fa— "b) * ('c => 'a) => 'c —=> b
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