

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

A Lock-free Multi-threaded Algorithm for the Maximum Flow Problem

Bo Hong
Drexel University, Philadelphia, PA 19104

bohong@coe.drexel.edu

Abstract

The maximum flow problem is an important graph prob-
lem with a wide range of applications. In this paper, we
present a lock-free multi-threaded algorithm for this prob-
lem. The algorithm is based on the push-relabel algorithm
proposed by Goldberg. By using re-designed push and rela-
bel operations, we derive our algorithm that finds the maxi-
mum flow with O(|V |2|E|) operations. We demonstrate that
as long as a multi-processor architecture supports atomic
‘read-update-write’ operations, it will be able to execute the
multi-threaded algorithm free of any lock usages. The pro-
posed algorithm is expected to significantly improve the effi-
ciency of solving maximum flow problem on parallel/multi-
core architectures.

1 Introduction

Given the increasing emphasis on multi-core architec-
tures, the extent to which an application can be multi-
threaded to keep the multiple processor cores busy is likely
to be one of the greatest constraints on the performance of
next generation computing platforms. However, except for
the embarrassingly parallel workload where no particular
effort is needed to segment the problem into a very large
number of independent tasks, multi-threading is often very
challenging to achieve efficiency due to the intrinsic data or
control dependencies in the applications.

In this paper, we study the maximum network flow prob-
lem in the settings of multi-processor platforms. A flow
network is a graph G(V,E) where edge (u, v) ∈ E has ca-
pacity cuv . G has source s ∈ V and sink t ∈ V . A flow
in G is a real valued function f defined over V × V that
satisfies the following constraints:

1. f(u, v) ≤ cuv for u, v ∈ V
2. f(v, u) = −f(u, v) for u, v ∈ V
3.

∑
v∈V f(v, u) = 0 for u ∈ V − {s, t}

The value of a flow f is defined as |f | =
∑

u∈V f(s, u).
The maximum network flow problem searches for a flow

with the maximum value. The maximum network flow
problem is an important graph problem with a wide range
of applications. For example, certain placement and routing
problems in VLSI design are formulated as maximum flow
problems.

In this paper, we present a lock-free multi-threaded algo-
rithm for the maximum network flow problem. We demon-
strate that as long as a multi-processor architecture supports
atomic ‘read-update-write’ operations, it will be able to ex-
ecute our algorithm using an arbitrary number of threads
(up to the number of network vertices) and the execution is
free of any lock usages. To the best of our knowledge, this
is a first lock-free parallel algorithm for the maximum net-
work flow problem. This algorithm has important practical
significance: the performance bottleneck is no longer due
to the lack of parallelism in the algorithm. As long as the
computer architecture has enough bandwidth to support the
algorithm’s concurrent accesses to the shared memory, lin-
ear speed-up can be expected as the number of processors
increases.

The proposed algorithm is based on the push and rela-
bel algorithm by Goldberg [9]. The lock-free property is
enabled by the re-designed push and relabel operations. We
prove that the proposed algorithm finds maximum flow with
O(|V |2|E|) operations.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly review algorithms and parallel implemen-
tations for maximum network flow problems. Section 3
presents the model of the target multi-processor platform.
The algorithm is presented in Section 4, where we prove
its optimality in Section 5 and its complexity bound in Sec-
tion 6. Discussions are provided in Section 7.

2 Related Work

Early solutions to the maximum network flow problem
are based on the augmenting path method due to Ford and
Fulkerson [6]. Edmonds and Karp [5] demonstrated that
pushing flow along the shortest augmenting path has a poly-
nomial running time of O(|V ||E|2). Dinitz [4] suggested
searching for augmenting paths in phases and handling all

1

augmenting paths of a given shortest length in one phase,
which yields an execution time of O(|V |2|E|). The con-
cept of preflow was introduced by Karzanov in [13], which
leads to a O(|V |3) algorithm. The execution time of has
been further improved by using various techniques such as
capacity scaling [7] and dynamic trees [10].

Goldberg etc. designed the push-relabel method [9] that
maintains a preflow and a distance labeling, and uses push
and relabel operations to update the preflow until a maxi-
mum flow is found. The raw algorithm is of O(|V |2|E|)
complexity. By executing the push and relabel operations
in a FIFO order, an O(|V |3) algorithm is achieved in [9].
The running time of the push-relabel method is improved to
O(|V ||E| log(|V |2|E|)) in [9] by using dynamic trees. An
excellent survey of recent development in maximum net-
work flow problem is presented in [8].

Parallel and distributed algorithms for the maximum
flow problem have also received a lot of attention. A first
parallel algorithm, due to Shiloach and Vishkin [15], runs in
O(|V |2 log |V |) time using a |V |−processor PRAM. Gold-
berg pointed out that the dynamic tree algorithm in [9] can
be implement on an EREW PRAM, taking O(|V |2 log |V |)
time and O(|V |) processors. Parallel algorithms for re-
stricted cases of maximum network flow problems have also
been developed. For example, for planar directed graphs,
Johnson designed an O(log3 |V |) algorithm using PRAM
with O(|V |4) processors [12]. PRAM model [11], however,
cannot be considered as a physically realizable model be-
cause as the number of processors and the size of the global
memory scale up, it quickly becomes impossible to ignore
the impact of the interconnection.

Practical implementations of parallel algorithms have
also been studied. Anderson and Setubal [1] augmented
the push-relabel algorithm with a global relabeling oper-
ation, which, applied periodically, updates the distance la-
bels to be the exact distance to the sink. Experimental re-
sults demonstrate good speed-ups on parallel computers.
Bader etc. [2] designed a parallel algorithm using gap re-
labeling heuristic with considerations of the cache perfor-
mance, also demonstrating good performance. These par-
allel implementations share the common feature of using
locks to protect every push and relabel operation in its en-
tirety, which limits the parallelism of implementation and
will lead to contention and performance degradation when
the number of processors scales up.

Our algorithm differs from the PRAM based study in that
our algorithm is readily implementable on modern com-
puter architectures (Implementing a PRAM algorithm re-
quiring O(|V |) processors would be very challenging when
the input graph has a large number of vertices, let alone the
cost of the interconnect which PRAM ignores). Compared
with existing parallel algorithms that are practically imple-
mentable, our novelty is in the removal of lock usages, thus

greatly exposing parallelism. (For example, existing meth-
ods need to lock the two vertices of an edge during a push,
which prohibits any other operations to be applied to the
vertices, even if they are applicable.)

3 The Target Multi-Processor Platform

The target multi-processor platform consists of multiple
processor that access a shared memory. We assume that
the architecture supports sequential consistency and atomic
‘read-modify-write’ instructions, as most modern parallel
architectures do.

A system provides sequential consistency if every node
(processor cores in a multi-core architecture) of the system
sees the memory accesses in the same order, although the
order may be different from the order as defined by real time
(as observed by hypothetical external observer or global
clock) of issuing the operations [14].

Atomic ‘read-modify-write’ instructions allows the ar-
chitecture to sequentialize such instructions automatically.
For example, suppose x← x + d1 and x← x + d2 are ex-
ecuted by two processors simultaneously, the architecture
will atomically complete one instruction after another, thus
the final value of x will be the accumulation of d1 and d2.

4 The Lock-free Multi-threaded Algorithm

Before presenting the algorithm and its programming
implementation, we first briefly re-state some notations for
network flow problems.

Given a direct graph G(V,E), function f is called a flow
if it satisfies the three constraints above. Given G(V,E)
and flow f , the residual capacity cf (u, v) is given by
cuv−f(u, v), and the residual network of G induced by f is
Gf (V,Ef), where Ef = {(u, v)|u ∈ V, v ∈ V, cf (u, v) >
0}. Thus (u, v) ∈ Ef ⇔ cf (u, v) > 0.

For each node u ∈ G, e(u) is defined as e(u) =∑
w∈V f(w, u), which is the net flow into node u. Con-

straint 3 in the problem statement requires e(u) = 0 for
u ∈ V − {s, t}. But the intermediate result before an algo-
rithm terminates may have non-zero e(u)’s. We say vertex
u ∈ V −{s, t} is overflowing if e(u) > 0. An integer valued
height function h(u) is also defined for every node u ∈ V .
We say u is higher than v if h(u) > h(v).

The algorithm is listed below:

1. Initialize h(u), e(u), and f(u, v)
2. While there exist applicable push or lift operations

execute the applicable operations asynchronously

where the operations of initialize, push, and lift are defined
as follows:

2

• Initialize h(u), e(u), and f(u, v):

h(s)← |V |
for each u ∈ V − {s}

h(u)← 0
for each (u, v) ∈ E

f(u, v)← 0
f(v, u)← 0

for each (s, u) ∈ E
f(s, u)← csu

f(u, s)← −f(s, u)
e(u)← csu

• Push(u, v̂): applies if u is overflowing, and ∃v ∈ V
s.t. (u, v) ∈ Ef and h(u) > h(v),

v̂ ← argminv[h(v) | cf (u, v) > 0 and h(u) > h(v)]
d← min(e(u), cf (u, v̂))
f(u, v̂)← f(u, v̂) + d
f(v̂, u)← f(v̂, u)− d
e(u)← e(u)− d
e(v̂)← e(v̂) + d

• Lift(u): applies if u is overflowing, and h(u) ≤ h(v)
for all (u, v) ∈ Ef ,

h(u) ← min{h(v)|cf (u, v) > 0}+ 1

The push operation in this algorithm pushes to the lowest
neighbor, which is the major modification to the original
push relabel algorithm in [9] (which pushes to a neighbor
whose height is lower by 1). This new choice of destination
for pushes is essential for the correctness of the lock-free
algorithm, as will be shown in the next two sections.

The algorithm can be easily multi-threaded by assigning
each thread Ti a distinct subset of of the vertices Vi (s.t.
Vi ∩ Vj = ∅ if i 6= j, and ∪i{Vi} = V). The initializa-
tion step is performed by the main thread before spawning
all the multiple threads. After the initialization step, each
thread Ti checks whether any push or lift operations can be
applied to any of the vertices in Vi, and executes the appli-
cable operations if there exist any.

When implementing the algorithm on a real computer,
it is reasonable to have the same number of threads as the
processor cores. Thread assignment can be either static or
dynamic. Additionally, it is desirable to have balanced load
across the threads, letting each thread execute (close-to) the
same number of operations. Load balance is determined
by the assignment of vertices to the threads (and of course
also by the topology of the input graph). As the concentra-
tion (and the novelty) of this paper is the lock-free property
of the presented algorithm, we leave the optimal vertex as-
signment problem for future studies as itself is another open
research problem.

Variables Written by thread(s) Read by thread(s)
u, and

h(u) u
w s.t. (w, u) ∈ Ef

e(u)
u, or

u
w s.t. (w, u) ∈ Ef

cf (u, v) u or v u and v

e′, v̂, ĥ, h′, d per thread private variables

Table 1. Variable access characteristics

Without loss of generality, we assume that for each ver-
tex u ∈ V there is one thread responsible for executing
push(u, v̂) and lift(u). In the following analysis, we will
use u to denote both vertex u and the thread responsible for
vertex u, which can be easily clarified given the context.

The algorithm leads to the following lock-free program-
ming implementation where e′, v̂, ĥ, and h′ are per-thread
private variables and h(u), e(u), and cf (u, v) (u ∈ V ,
(u, v) ∈ Ef) are shared among all threads. The sharing
characteristics of the variables are listed in Table 1. For
programming convenience, the implementation maintains
cf (u, v) rather than f(u, v). The constraint f(u, v) ≤ cuv

in the problem statement translates to cf (u, v) ≥ 0. Upon
termination of the algorithm, the flow f(u, v) along each
edge (u, v) ∈ E can be derived easily from cf (u, v) since
cf (u, v) = cuv − f(u, v).

Initially, only the master thread is running.

1. The master thread initializes h(u), e(u), and cf (u, v)
h(s)← |V |
for each u ∈ V − {s}

h(u)← 0
for each (u, v) ∈ E

cf (u, v)← cuv

cf (v, u)← cvu

for each (s, u) ∈ E
cf (s, u)← 0
cf (u, s)← cus + csu

e(u)← csu

2. The master thread creates one thread for each vertex
u ∈ V − {s, t}, and then terminates itself.

3. Each of the newly created thread u executes lines 4-22:
4. while e(u) > 0
5. do
6. e′ = e(u)
7. v̂ ← null

8. ĥ←∞
9. for each (u, v) ∈ Ef /* i.e. cf (u, v) > 0 */
10. h′ ← h(v)
11. if h′ < h(v̂), then
12. v̂ ← v

13. ĥ← h′

14. end for /* v̂ is u’s lowest neighbor in Ef */

3

15. if h(u) > ĥ, then /* push(u, v̂) is applicable */
16. d← min(e′, cf (u, v̂))
17. cf (u, v̂)← cf (u, v̂)− d
18. cf (v̂, u)← cf (v̂, u) + d
19. e(u)← e(u)− d
20. e(v̂)← e(v̂) + d
21. else /* lift(u) is applicable */
22. h(u)← ĥ + 1

The sequential consistency property of the architecture
guarantees that each thread executes its own lines 4-22
in the order specified above. Updates to shared variables
cf (u, v̂), cf (v̂, u), e(u), and e(v̂) (lines 17-20), due to the
support of atomic ‘read-modify-write’ instructions, are ex-
ecuted atomically by the architecture. Other than the two
execution characteristics provided by the architecture, we
do not impose any order in which executions from multi-
ple threads can or should be interleaved, as it will be left
for the sequential consistency property of the architecture
to decide.

Shared variable updates in push(u, v) are all in the form
of x ← x + δ so they can be executed correctly by the
architecture without any lock protection. Note that h(u) is
updated by and only by thread u during a lift(u) operation.
Thus even though h(u) is shared (multiple threads may read
its value), h(u) does not need lock protection because only
the single thread u needs to update it. When another thread
reads h(u) while it is being updated by thread u, the reader
thread will get the value of h(u) either before or after the
update. Our algorithm does not require a strict order as to
what value must be obtained by the reader thread.

Now we have shown that the algorithm indeed can be im-
plemented without using any locks. Next we will prove that
despite the seemingly uncontrolled and unpredictable exe-
cution order, the algorithm still solves the maximum flow
problem. In fact, letting the threads advance without lock-
based synchronization is the essence of our lock-free multi-
threaded algorithm. We shall first prove that the algorithm
finds the maximum flow, if it terminates. We shall next
prove that the algorithm indeed terminates.

5 Correctness Proof

For notational convenience, we use both f(u, v) and
cf (u, v) for discussions in this section, although the actual
programming implementation only uses cf (u, v).

We start with the following observations on the algo-
rithm.

Lemma 1. During the execution of the algorithm, for any
u ∈ V , h(u) never decreases during the execution of the
algorithm.

Lemma 2. During the execution of the algorithm, for any
overflowing vertex, either a lift or a push operation can be
applied.

The proof of Lemmas 1 and 2 is the same as that in [9].
Our next observation is that even though the execution

at multiple threads can be interleaved arbitrarily, it actually
reduces to only two equivalent scenarios. This reduction al-
lows us to continue the proof by referring to the operations,
instead of to its programming implementation line by line.

We define the ‘consequence’ of a push(u, v̂) to be the
values of e(u), e(v̂), cf (u, v̂), and cf (v̂, u) after the push,
the ‘consequence’ of a lift(u) to be the value of h(u) after
the lift. We also define the ‘trace’ of the interleaved exe-
cution of multiple threads to be the order in which instruc-
tions from the threads are executed in real time. We say two
traces are equivalent if they have the same consequences.

The trace of a single push operation can be split into two
stages: lines 6-16 and lines 17-20. Lines 6-16 test whether a
push is applicable, and if applicable, how much flow needs
to be pushed to which neighbor. We call this the ‘prepa-
ration’ stage of the push. Lines 17-20 updates the shared
variables accordingly, which we call the fulfillment stage of
the push. Similarly, the trace of a single lift operation can
also be split into two stages: lines 6-15, and line 22. Lines
6-15 test whether a lift is applicable, and if applicable, what
should be the new height of the vertex. This is the ‘prepa-
ration’ stage of the lift. Line 22 updates the vertex height,
which is defined as the ‘fulfillment’ stage of the lift.

Now we present the following pre-defined traces, each
involving two push and/or lift operations:

1. the stage-clean trace where multiple operations do not
have any overlapping in their executions. In the exam-
ple of two operations, it can be illustrated as follows:
P1→ F1→ P2→ F2. The P1 notation denotes the
preparation stage of operation 1. F1 denotes the ful-
fillment stage of operation 1. P2 and F2 are defined
similarly for operation 2. The → notation represents
precedence in real time order.

2. the stage-stepping trace where all the operations exe-
cute their preparation stages before any one proceeds
with its fulfillment stage. In the example of three op-
erations, we may have the following stage-stepping
traces: P1 → P2 → P3 → F1 → F2 → F3 or
P1→ P2→ P3→ F1→ F3→ F2 (and four more
possibilities depending on which operation finishes its
fulfillment stage earlier).

With the above notational preparation, we have the fol-
lowing lemma:

Lemma 3. Any trace of two push and/or lift operations is
equivalent to either a stage-clean trace or a stage-stepping
trace.

4

The proof of Lemma 3 is straightforward. We simply
need to enumerate all the possible pairs of operations that
might be interleaved and derive an equivalent trace (either
stage-clean or stage-stepping) for each such pair. The de-
tailed proof is omitted here.

It is easy to show that traces with more operations can
also be reduced similarly as stated in the next lemma.

Lemma 4. For any trace of three or more push and/or lift
operations, there exists an equivalent trace consisting of a
sequence of non-overlapping traces, each of which is either
stage-clean or stage-stepping.

The proof is similar to that for Lemma 3. We need to
examine various scenarios that the operations might be in-
terleaved. The detailed proof is omitted here.

With Lemmas 3 and Lemma 4, we can greatly sim-
plify our discussion by confining to stage-clean and stage-
stepping traces rather than arbitrarily interleaved opera-
tions. We have the next important property of the algorithm.

Lemma 5. If the algorithm terminates, then h(u) ≤ h(v)+
1 for any edge (u, v) ∈ Ef .

Proof: We show that throughout the execution of the algo-
rithm, (u, v) ∈ Ef implies h(u) ≤ h(v) + 1 except for one
occasion where h(u) > h(v) + 1 may occur. However, we
show this specific occasion is transient in that (u, v) will be
removed from Ef by a push(u, v) operation, thus removing
the requirement on h(u) and h(v). Therefore, if the algo-
rithm terminates (i.e. when no push or lift can be applied),
we must have h(u) ≤ h(v) + 1 for any (u, v) ∈ Ef .

The proof is by induction on the push and lift operations,
with consideration in the interleaved execution of the oper-
ations.

Initially, all the nodes have height of 0 except s. The
only edges (u, v) that satisfy h(u) > h(v) + 1 are those for
which u = s, and those edges are saturated in the initial-
ization step so they are not in the residual network Ef . So
we have h(u) ≤ h(v) + 1 for (u, v) ∈ Ef right after the
initialization.

Now consider the execution of push and lift operations.
We have the following scenarios:

1. A lift(a) operation is executed in its entirety with-
out being interleaved with any other operations. For
the residual edge (a, b) that leaves a, the lift operation
guarantees h(a) ≤ h(b) + 1 afterward. For the resid-
ual edge (c, a) that enters a, h(c) ≤ h(a) + 1 before
the lift implies h(c) ≤ h(a) + 1 afterward since h(a)
never decreases according to Lemma 1.

2. A push(a, b) operation is executed in its entirety with-
out being interleaved with any other operations. This
operation may add (b, a) to Ef or may remove (a, b)

from Ef . In the former case, we have h(a) > h(b)
(otherwise push(a, b) cannot be applied). Thus we
have h(b) ≤ h(a) + 1 for the new residual edge (b, a).
In the latter case, the removal of (a, b) from Ef re-
moves the requirement that h(a) ≤ h(b) + 1.

3. The executions of lift(a) and lift(b) are interleaved.
As indicated in Lemma 3, a trace of two lift operations
is equivalent to either a stage-clean or a stage-stepping
trace. A stage-clean trace reduces to scenario 1 dis-
cussed above. For a stage-stepping trace, we may have
the following four sub-scenarios:

(a) Initially, (a, b) ∈ Ef and (b, a) ∈ Ef . In this
case, we must have h(a) = h(b) because other-
wise we either have h(a) > h(b) or h(b) > h(a),
then either push(a, b) or push(b, a) can be ap-
plied, which contradicts the assumption of the sce-
nario. For lift(a) to be applicable, we must have
h(c) ≥ h(a) for all (a, c) ∈ Ef , then h(a) = h(b)
implies h(b) = min{h(c)|(a, c) ∈ Ef} because
(a, b) ∈ Ef . So min{h(c)|(a, c) ∈ Ef} + 1 =
h(b) + 1 = h(a) + 1 and consequently lift(a)
will update h(a) ← h(a) + 1. Similarly, lift(b)
will update h(b) ← h(b) + 1. So after the two
lift operations, we still have h(a) = h(b). Thus
h(a) ≤ h(b) + 1 is maintained for residual edge
(a, b) and h(b) ≤ h(a) + 1 is maintained for resid-
ual edge (b, a).

(b) Initially, (a, b) ∈ Ef but (b, a) /∈ Ef . In this
case, an applicable lift(a) implies h(a) ≤ h(b)
before the lift because otherwise we need to ap-
ply push(a, b) instead. lift(a) updates h(a) ←
min{h(c)|(a, c) ∈ Ef} + 1. Since (a, b) ∈ Ef ,
h(b) will be polled to compute the min, so the lifted
h(a) will be lower than h(b) + 1. As h(b) is further
increased by lift(b), we must have h(a) ≤ h(b)+1
after the two lift operations.

(c) Initially, (b, a) ∈ Ef but (a, b) /∈ Ef . This is sym-
metric to sub-scenario (c). Similarly, we will have
h(b) ≤ h(a) + 1 after the two lift operations.

(d) Initially, (a, b) /∈ Ef and (b, a) /∈ Ef . Due to the
lack of residual edges between a and b, this is a triv-
ial sub-scenario because the update of h(a) and h(b)
are not constrained by each other.

4. The execution of push(a, b) is interleaved with
push(b, c). It can be shown easily (as a special case
of Lemma 3) that this particular trace is equivalent to
a stage-clean trace where push(a, b) is executed in its
entirety before (or after) push(b, c) is executed in its
entirety. Then this scenario reduces to scenario 2 and
the same analysis applies. We have h(u) ≤ h(b) + 1
for (a, b) ∈ Ef before and after the two operations.

5

5. The executions of push(a, b) and lift(b) are inter-
leaved. According to Lemma 3, this trace is equiva-
lent to either a step-clean or a stage-stepping trace. If
it is stage-clean, then this reduces to scenarios 1 and 2
discussed above.

If this is equivalent to a stage-stepping trace, we have
the following two sub-scenarios to consider. Note we
must have (a, b) ∈ Ef for push(a, b) to be applicable.

(a) (b, a) ∈ Ef before the fulfillment stage of
push(a, b). In this sub-scenario, push(a, b) may re-
move (a, b) from Ef and hence remove the require-
ment that h(a) ≤ h(b) + 1. If push(a, b) does not
remove (a, b) from Ef , then h(a) ≤ h(b) + 1 be-
fore the push (induction assumption) implies h(a) ≤
h(b) + 1 thereafter. The operation lift(b) increases
h(b) to min{h(w)|(b, w) ∈ Ef + 1}, which implies
h(b) ≤ h(a) + 1 after the lift since (b, a) ∈ Ef .

(b) (b, a) /∈ Ef before the fulfillment stage of
push(a, b). push(a, b) will add (b, a) into Ef . This
is the specific scenario where h(a) may become
larger than h(b)+1 for residual edge (a, b), as men-
tioned in the beginning of the proof. We have the
following two cases to consider:

i. (b, a) ∈ E. In this case, we must also have
f(b, a) = cba before the push. Otherwise f(b, a) ≤
cba then we can still push some flow from b to a,
which means (b, a) ∈ Ef - but this contradicts the
assumption that (b, a) /∈ Ef . Let d denote the
amount of flow push(a, b) sends from a to b.
push(a, b) may remove (a, b) from Ef . The re-
moval of (a, b) from Ef removes the requirement
that h(a) ≤ h(b) + 1.
(b, a) will be added into Ef by the fulfillment stage
of push(a, b). Note that lift(b) calculates the new
height of h(b) during its preparation stage, during
which (b, a) /∈ Ef . So h(a) will not be polled by
the preparation stage of lift(b) (i.e. h(a) will not
be included when computing min{h(w)|(b, w) ∈
Ef} + 1 for lift(b)). Consequently, we may have
h(b) > h(a) + 1 after lift(b) updates h(b). In the
mean time, we have (b, a) ∈ Ef by the end of this
trace. The combination of h(b) > h(a) + 1 and
(b, a) ∈ Ef violates the requirement that h(u) ≤
h(v) + 1 for (u, v) ∈ Ef .
This violation is only transient. We have e(b) > 0,
(b, a) ∈ Ef , and h(b) > h(a) + 1 after the trace.
h(b) > h(a) + 1 implies a was lower than all of
b’s neighbors in Ef before the trace (otherwise h(b)
would be increased to lower than h(a) + 1). a be-
ing b’s lowest neighbor means push(b, a) is now
applicable. Next we will examine how much flow
push(b, a) will send.

Let d′ denote the amount of flow that push(b, a)
will send from b to a. According to the algo-
rithm, d′ = min{cf (b, a), e(b)}. f(b, a) = cba

before push(a, b) implies cf (b, a) = d thereafter.
In the mean time, e(b) will be increased by d since
push(a, b) just sent d amount of flow to vertex b.
Note that e(b) > 0 before push(a, b) (otherwise
lift(b) will not be applicable), so we have e(b) >
d and consequently d′ = min{cf (b, a), e(b)} =
min{d, e(b)} = d.
d′ = d means we will have f(b, a) = cba upon com-
pletion of push(b, a), which removes (b, a) from
Ef and hence removes the requirement that h(b) ≤
h(a) + 1. In summary, if the algorithm terminates,
then push(b, a) must have already completed, we
will have h(u) ≤ h(v) + 1 for (u, v) ∈ Ef .

ii. (b, a) /∈ E. We must have f(a, b) = 0 because
otherwise f(a, b) > 0 leads to cf (b, a) = cvu −
f(b, a) = 0+f(b, a) > 0, which means (b, a) ∈ Ef

and contradicts the assumption that (b, a) /∈ Ef .
Similar to the previous (b, a) ∈ E case, we may
have h(b) > h(a) + 1 when the trace finishes. Be-
cause push(a, b) will add (b, a) into Ef , we will
violate the requirement that h(u) ≤ h(v) + 1 for
(u, v) ∈ Ef . Again, similarly to the previous case,
this violation is only transient. A push(b, a) op-
eration becomes immediately applicable when the
trace completes. And because f(a, b) = 0 before
push(a, b), the same amount of flow sent to b by
push(a, b) will be returned to a by push(b, a), thus
removing (b, a) from Ef and hence the requirement
that h(b) ≤ h(a) + 1. If the algorithm terminates,
then push(b, a) must have already been executed,
then we will have h(u) ≤ h(v)+1 for (u, v) ∈ Ef .

6. The execution of push(a, b) and lift(a) are inter-
leaved. This can never happen because according to
Lemma 2 either a lift or a push can be applied to an
overflowing vertex, but not both.

7. The execution of push(a, b) and push(b, a) are inter-
leaved. This cannot happen either. push(a, b) is ap-
plied when h(a) > h(b). push(b, a) is applied when
h(b) > h(a). The two conditions conflict.

8. The execution of more than two operations are inter-
leaved. Because the discussion is similar to the above
and the conclusion is the same, details are omitted
here.

The next lemma gives an important property of the algo-
rithm.

Lemma 6. If the algorithm terminates, then there is no path
from s to t in the residual graph Gf when the algorithm

6

terminates. Here f is the flow function calculated by the
algorithm.

Proof: Assume for the sake of contradiction that there is a
path from s to t in Gf when the algorithm terminates. With-
out loss of generality, suppose this is a simple path consist-
ing of s→ u1 → ...→ uk → t where k ≤ |V | − 2.

Each edge along the path is in Ef , then according to
Lemma 5, we have h(s) ≤ h(u1) + 1, h(u1) ≤ h(u2) + 1,
... h(uk) ≤ h(t)+1. Combining these inequalities together,
we have h(s) ≤ h(t)+ |V |−1. But this contradicts the fact
that h(s) = |V | and h(t) = 0 are never changed throughout
the algorithm.

The next theorem shows that if the algorithm terminates,
it finds the maximum flow.

Theorem 1. Given graph G, if the algorithm terminates,
then the calculated function f is a maximum flow for G.

Proof: if the algorithm terminates, then we must have
e(u) = 0 for u ∈ V − {s, t} because otherwise accord-
ing to Lemma 2, either a push or a lift is applicable at u,
then the algorithm has not terminated yet. e(u) = 0 for
u ∈ V − {s, t} makes the calculated f a feasible solution
to the maximum flow problem as all three constraints have
been satisfied.

Lemma 6 says that there is no path from s to t in Gf .
According to the maximum-flow minimum-cut theorem [3],
f must be a maximum flow in G.

6 Complexity Bound of the Algorithm

In this section, we show that the algorithm indeed termi-
nates: it executes at most O(|V |2|E|) push/lift operations
for a given graph G(V,E). Note that the complexity is an-
alyzed in the number of push and lift operations rather than
in the execution time. This is because the algorithm is ex-
ecuted by multiple threads simultaneously. The time com-
plexity depends on multiple factors including the number of
threads and the assignment of vertices to the threads. The
total number operations is therefore a more concrete mea-
sure of the complexity of the algorithm.

We first set a bound on the height of the vertices, which
is then used to bound the number of lift and push operations.

Lemma 7. During the execution of the algorithm, for any
vertex u s.t. e(u) > 0, there exists a path from u to s in the
residual graph Gf .

Proof: Assume for the sake of contradiction that there ex-
ists a vertex u such that e(u) > 0 but there is no path from
u to s in Gf . Let U = {v : there exists a simple path from
u to v in Gf} and U = V − U .

Consider an edge (v, w) where v ∈ U and w ∈ U .
We must have f(v, w) ≤ 0 because otherwise cf (v, w) =

cvw − f(v, w) > 0 implies (v, w) ∈ Ef , then w can be
reached by u, contradicting the selection of w.

It is fairly easy to show that
∑

v∈U e(v) =∑
x∈U,y∈U f(x, y). Since every such f(x, y) ≤ 0, we

must have
∑

v∈U e(v) ≤ 0. On the other hand, during
the execution of the algorithm, e(v) never goes negative
for any v ∈ V . So we must have e(v) = 0 for every
v ∈ U , including e(u), but this contradicts the assumption
that e(u) > 0.

Lemma 8. Given graph G, source vertex s, and sink vertex
t, then during the execution of the algorithm, if e(u) > 0,
then there exists a path u1 → u2... → uk in the residual
graph from u to s (u1 = u, uk = s) and h(ui) ≤ h(ui+1)+
1 for i = 1, ..., k − 1.

Proof:
If e(u) > 0, according to Lemma 7, if e(u) > 0, then

there exits a path from u to s in the residual graph. Let the
path be v1 → v2...→ vm where v1 = u and vm = s.

Note that we may not have h(vi) ≤ h(vi+1 + 1) for
i = 1, ..., j−1. Without loss of generality, assume (v, w) is
the first edge along the path that exhibits h(v) > h(w) + 1.

As we have discussed in the proof for Lemma 5, the co-
existence of h(v) > h(w) + 1 and (v, w) ∈ Ef can only
be the result of the interleaved execution of push(v, w) and
lift(v), and the existence of residual edge (v, w) is only
transient. A push(v, w) becomes immediately applicable,
which, upon completion, will remove (v, w) from Ef . Ad-
ditionally, we will still have e(v) > 0 after push(v, w)
because push(v, w) will not deplete all the excessive flow
e(v) at vertex v (refer to the proof of Lemma 5 for details).
The removal of (v, w) from Ef and the fact that we still
have e(v) > 0 after the removal indicates the existence of a
path v, w′, ..., s from v to s whose first edge (v, w′) satisfies
h(v) ≤ h(w′) + 1.

Repeating the process, we are able to construct a path
u1 → u2... → uk in Ef where u1 = u, uk = s, and
h(ui) ≤ h(ui+1) + 1 for i = 1, ..., k − 1.

With Lemma 8, we can show that the height of the ver-
tices are bounded.

Lemma 9. Given graph G(V,E), source vertex s and sink
vertex t, then during the execution of the algorithm, we al-
ways have h(u) ≤ 2|V | − 1 for u ∈ V .

Proof: After initialization, we have h(s) = |V | and h(t) =
0, and these two are never updated by the algorithm.

The height of a vertex u is lifted only when e(u) > 0.
If e(u) > 0, then according to Lemma 8 we have a path
from u to s in the residual path. Let u1 → u2... → uk

denote the path. (So u = u1, uk = s.) Without loss of
generality, this is a simple path so k ≤ |V |. According to
Lemma 8, we have h(u1) ≤ h(u2) + 1, ... h(uk−1) ≤

7

h(uk) + 1. Combine these inequalities together, we have
h(u) = h(u1) ≤ h(uk) + |V | − 1 = h(s) + |V | − 1 =
2|V | − 1.

Now the height of the vertices has been bounded, we can
derive the following lemmas whose proof are similar to that
in [9] and thus omitted here.

Lemma 10. Given graph G(V,E) with source vertex s and
sink vertex t, then during the execution of the algorithm, the
total number of lift operations is less than 2|V |2 − |V |.

Lemma 11. Given graph G(V,E) with source vertex s and
sink vertex t, then during the execution of the algorithm, the
number of saturating pushes is less than (2|V | − 1)|E|.

Lemma 12. Given graph G(V,E) with source vertex s and
sink vertex t, then during the execution of the algorithm, the
number of non-saturating pushes is less than 4|V |2|E|.

And the following theorem is derived immediately from
Lemmas 10, 11, and 12.

Theorem 2. Given graph G(V,E) with source vertex s and
sink vertex t, the algorithm executes O(|V |2|E|) push and
lift operations.

7 Discussion

In this paper, we presented a lock-free multi-threaded al-
gorithm for the maximum network flow problem. The al-
gorithm finds the maximum flow in O(|V |2|E|) time. This
algorithm should not be considered as a conclusion for the
lock-free solution to the target problem. Further improve-
ment should be investigated in the following directions:

The termination of the algorithm has been proved theo-
retically. But it may be difficult to design a practical imple-
mentation to detect the termination without using locks. As
shown in the Theorem 2, the algorithm terminates when no
further push or relabel operations can be applied. However,
the absence of applicable push or relabel operations at an
individual vertex does not imply the termination, because
other vertices may be active. Further more, another vertex
may push flow to this idling vertex, making it active again.
The termination of the algorithm, which becomes true only
when we do not have any applicable push or relabel oper-
ations at any vertices, needs to be detected with the help
of a global barrier. Barriers are implemented using locks,
however. To derive a completely lock-free algorithm, fur-
ther study is needed for the efficient detection of algorithm
termination.

The complexity bound of O(|V |2|E|) needs to be (and
we believe it can be) improved. The O(|V |2|E|) running
time (in terms of the number of operations) is the same
as the original sequential push-relabel algorithms. Previ-
ous studies have shown that the running can be greatly re-
duced by advanced data structures such as dynamic trees,

or by techniques such as global relabeling. It is a challeng-
ing problem to improve the complexity of the algorithm and
still keep it lock-free.

References

[1] R. J. Anderson and a. C. S. Jo˙ On the parallel implementa-
tion of goldberg’s maximum flow algorithm. In SPAA ’92:
Proceedings of the fourth annual ACM symposium on Paral-
lel algorithms and architectures, pages 168–177, New York,
NY, USA, 1992. ACM.

[2] D. Bader and V. Sachdeva. A cache-aware parallel imple-
mentation of the push-relabel network flow algorithm and
experimental evaluation of the gap relabeling heuristic. In
PDCS ’05: Proceedings of the 18th ISCA International
Conference on Parallel and Distributed Computing Systems,
2005.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms, 2nd Edition. MIT Press, 2001.

[4] E. Dinic. Algorithm for solution of a problem of maximum
flow in networks with power estimation. Soviet Mathematics
Doklady, 11:1277–1280, 1970.

[5] J. Edmonds and R. M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. J. ACM,
19(2):248–264, 1972.

[6] L. R. Ford and D. R. Fulkerson. Flows in Networks. Prince-
ton University Press, 1962.

[7] H. N. Gabow. Scaling algorithms for network problems. J.
Comput. Syst. Sci., 31(2):148–168, 1985.

[8] A. V. Goldberg. Recent developments in maximum flow
algorithms (invited lecture). In SWAT ’98: Proceedings of
the 6th Scandinavian Workshop on Algorithm Theory, pages
1–10, London, UK, 1998. Springer-Verlag.

[9] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum flow problem. In STOC ’86: Proceedings of the
eighteenth annual ACM symposium on Theory of computing,
pages 136–146, New York, NY, USA, 1986. ACM.

[10] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost
circulations by successive approximation. Math. Oper. Res.,
15(3):430–466, 1990.

[11] J. JáJá. An introduction to parallel algorithms. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1992.

[12] D. B. Johnson. Parallel algorithms for minimum cuts and
maximum flows in planar networks. J. ACM, 34(4):950–
967, 1987.

[13] A. V. Karzanov. Determining the maximal flow in a network
by the method of preflows. Soviet Mathematics Doklady,
15:434–437, 1974.

[14] L. Lamport. How to make a correct multiprocess program
execute correctly on a multiprocessor. IEEE Transactions
on Computers, 46(7):779–782, 1997.

[15] Y. Shiloach and U. Vishkin. An o(n2 log n) parallel max-
flow algorithm. J. Algorithms, 3(2):128–146, 1982.

8

