
A Structured Approach for Developing

Concurrent Programs in Java

Masaaki Mizuno

Department of Computing and Information Sciences

Kansas State University, Manhattan, KS 66506

masaaki@cis.ksu.edu

Keywords: Concurrency, Global invariant, Java multi-threaded programming

1 Introduction

In recent years, concurrent programming has become the norm rather than the exception in many

applications. In particular, popularity of the Java programming language has accelerated this

trend. Most textbooks on Operating Systems and concurrent programming teach concurrent

programming by demonstrating solutions for some well-known problems, such as the producer/-

consumer, readers/writers, and dining philosophers problems.

A more systematic and formal approach to develop concurrent programs is presented in [1, 2].

In this approach, for a given problem, we first specify a global invariant that implies the safety

property1. Then, we develop a so-called coarse-grained solution using the two synchronization

constructs: < await B → S > and < S >. Using Programming Logic, the global invariant is

formally verified in the coarse-grained solution. Finally, the coarse-grained solution is mechanically

translated to a fine-grained semaphore or monitor program that maintains the global invariant.

This approach has many advantages. First, this is a formal approach that enables verification

of programs being developed. Second, the most important activity in the programming process

lies at a high level; namely, specifying global invariants. Once an appropriate global invariant is

specified, much of the rest of the process is mechanical. Furthermore, global invariants and coarse-

grained solutions are platform (synchronization primitive) independent. Thus, if the platform is

switched from a semaphore-based to a monitor-based system, we only need to translate the existing

coarse-grained solution to a monitor-based fine-grained program.

The Java programming language encourages the use of multiple threads. Therefore, as Java’s

popularity grows, concurrent programming using Java synchronization primitives will become more

important. Java provides monitor-like synchronization primitives. However, these primitives have

limitations. Each Java monitor object can only have one condition variable, which is associated

with the object itself; all waits and signals (called notify in Java) refer to it. The translation

1The safety property asserts that the program never enters a bad state.

1

to monitor programs presented in [1, 2] assumes multiple condition variables. Even though it

is possible to map all condition variables in a translated fine-grained solution into the unique

condition variable of a Java monitor, it yields an inefficient program.

Hartley gives an exercise problem to develop a ConditionVariable class and provides enough

hints for it [4]. With this class, we can still use the formal method. However, it yields inefficiency.

A more preferable approach is to develop a direct translation from coarse-grained solutions to

efficient fine-grained programs in Java synchronization primitives. This paper presents such a

translation that preserves global invariants. The translation uses specific notification locks [3] (also

called notification objects [4]) and is classified in a design pattern called the specific notification

pattern [3, 5].

The rest of the paper is organized as follows: Section 2 overviews the formal method to develop

concurrent programs presented in [1, 2]. Section 3 reviews Java synchronization primitives. Section

4 presents our translation from coarse-grained solutions to fine-grained Java programs. The section

also gives correctness argument, an example of the translation, and a remark about performance

of translated programs.

2 Formal Approach for Developing Concurrent Programs

This section reviews a formal method to develop concurrent programs presented in [1, 2].

2.1 Global invariant

In a concurrent program, since there are many possible execution sequences of program statements,

the key to developing a proof of such a program is to specify a global invariant that implies the

safety property and holds at every critical assertion [1, 2] in the program.

For example, consider the readers/writers problem as follows: Reader processes and writer

processes access a shared buffer. At any point in time, the buffer can be accessed by either multiple

readers or at most one writer.

A simple way to specify this synchronization problem is to count the number of each kind of

processes trying to access the buffer, and then to constrain the values of the counters. Let nr and

nw be non-negative integers that respectively count the numbers of readers and writers accessing

the buffer. Then, a global invariant RW that implies the safety property is:

RW : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

2.2 Coarse-grained solution

Let B be a boolean expression (called a guard) and S be a sequence of statements. The following

two types of synchronization constructs are used in a coarse-grained solution2:

2Some synchronization problems assume a more general form of coarse grained solutions; 〈 await B1; S1;
awaitB2; S2; · · · ; Sn−1; awaitBn; 〉. However, many problems can be solved in the form of coarse-grained solutions
presented here.

2

1. 〈S〉: S is executed atomically.

2. 〈await B → S〉: If B is true, S is executed atomically. If B is false, the executing process

is delayed until a later time when B is true; at which point, S is executed atomically. No

interleaving occurs between the final evaluation of B and the execution of S.

The following code presents a coarse-grained solution for the readers/writers problem.

Reader Processes Writer Processes

a1 〈await nw = 0 → nr := nr + 1〉 b1 〈await nw = 0 andnr = 0 → nw := nw + 1〉

a2 Read from the buffer b2 Write to the buffer

a3 〈nr := nr − 1〉 b3 〈nw := nw − 1〉

Once the above coarse grained solution is obtained, we can construct a fine-grained semaphore

or monitor program by applying the translation presented in [1, 2].

3 Java Synchronization Primitives

This section reviews the Java synchronization primitives.

3.1 Preliminaries

Each Java object has a lock to form a critical section. If obj is a reference to some object, obj can

be used to protect a critical section as follows:

e1 synchronized (obj) { critical section }

If all critical sections are in methods in the same object, we can use “this” for a synchronization

object.

If the entire body of a method is a synchronized block on “this,” we have the following rule:

f1 type method name (· · ·) {

f2 synchronized (this) {

f3 body of the method

f4 }

f5 }

may be written as:

g1 synchronized type method name (· · ·) {

g2 body of method name

g3 }

Thus, the monitor concept may be implemented in Java by adding synchronized for all methods

in which only one thread should be executing at a time.

3

Unfortunately, each Java monitor has just one condition variable, which is associated with the

object itself; all wait, notify, and notifyAll operations refer to it. The translation from coarse-

grained solutions to fine-grained monitor programs presented in [1, 2] assumes multiple condition

variables. It is still possible to associate all the 〈await Bi → Si〉 statements with the unique

condition variable of “this” object. However, a signal on any condition variable must be translated

to notifyAll(), and the resulting code will be inefficient.

3.2 Specific notification locks

Cargill devised a design pattern called a specific notification which uses objects somewhat like

condition variables [3, 5]. Such objects are called specific notification locks [3] or notification

objects [4].

Using a specific notification lock obj, two methods within the same object, say method1 and

method2, can synchronize with each other as follows, where condition() is assumed to be a syn-

chronized method [4]:

in method1 in method2

h1 synchronized (obj) { h7 synchronized (obj) {

h2 if (! condition()) h8 if (condition()) obj.notify()

h3 try { obj.wait(); h9 · · ·

h4 } catch(InterruptedException e) { } h10 }

h5 some statement

h6 }

Do specific notification locks work exactly the same way as condition variables? In the above

example, the if statement on line h2 and the following statement on line h5 are executed atomically

only with respect to statements in synchronized blocks on obj, but not with respect to statements

outside synchronized blocks on obj. Therefore, even though condition() is checked on line h8 before

a thread waiting on obj is woken up by obj.notify(), the condition may no longer hold by the time

the woken thread executes statement h5. This is true even if the if construct on line h2 is replaced

by a while construct. If we make method1 and method2 synchronized methods, deadlock will

result. This is because obj.wait() releases only a lock on obj but does not release a lock on this.

In a general monitor environment, if method1 and method2 are both monitor functions and obj

is a condition variable, then statements h2 and h5 are executed atomically. Therefore, if the if

construct on line h2 is replaced by a while construct, the condition checked at h2 holds at the

beginning of h53.

3If the monitor employs the Signal and Wait (SW) or the Signal and Urgent Wait (SU) discipline, because of the
check on line h8, the condition holds at h5 even with the if construct on line h2 [1].

4

4 Translation from Coarse-Grained Solution to Java Pro-

gram

Hartley gives an exercise problem to develop a ConditionVariable class, which may be used in

synchronized methods [4]. Using the class, the existing translation can be used to obtain Java

programs from coarse-grained solutions. However, the implementation of ConditionVariable is

inefficient because a signal operation is implemented by notifyAll(). Our approach is to develop a

direct translation from coarse-grained solutions to efficient Java monitor programs. The translation

is an application of specific notification locks.

4.1 Translation

In a coarse-grained solution, there are two types of synchronization constructs: 〈awaitBi → Si〉

and 〈Sj〉. For each appearance of such constructs in a coarse-grained solution, we define an

independent method in a Java class.

1. For each 〈awaitBi → Si〉, define one public (non-synchronized) method and one private

synchronized method, and declare one private specific notification lock (instance variable) of

class Object. Let methodi, checkBSi, and oi be the public method, the private synchronized

method, and the specific notification lock, respectively.

We have the following declaration for oi:

j1 private Object oi = new Object();

Public method methodi is defined as:

k1 public void methodi() {

k2 synchronized (oi) {

k3 while (! checkBSi())

k4 try {

k5 oi.wait();

k6 } catch (InterruptedException e){}

k7 }

k8 }

Private synchronized method checkBSi is defined as:

m1 private synchronized boolean checkBSi() {

m2 if (Bi) {

m3 Si; return true;

m4 } else return false;

m5 }

5

2. For each 〈Sj〉, define a public (non-synchronized) method, say methodj , as follows:

n1 public void methodj() {

n2 synchronized (this) {

n3 Sj ;

n4 }

n5 }

3. In each public method methodi and methodj , if execution of any statement may potentially

change some guard Bk from false to true, add either of the following two statements at the

end of the method (outside any synchronized block).

p1 synchronized (ok) {ok.notifyAll();}

p2 synchronized (ok) {ok.notify();},

where ok is a specific notification lock associated with 〈await Bk → Sk〉. If more than one

thread may leave the construct 〈await Bk → Sk〉 when Bk becomes true, notifyAll should

be issued; otherwise, notify should be issued.

Note that in the case of methodi, synchronized method checkBSi, not methodi, may change

Bk. However, a notify statement should be placed in methodi, not in checkBSi. This is because

checkBSi is a synchronized method and executed within a synchronized block on oi. Therefore,

if another synchronized block on ok is placed in checkBSi, it may result in deadlock.

4.2 Correctness

We argue the correctness of a translated program with respect to preservation of a global invariant

and deadlock freedom.

Preservation of Global Invariant:

Let GI be a global invariant in the coarse-grained solution. First, note that in a translated program,

assignment statements may be found only in Si and Sj and they are executed inside synchornized

blocks on this (lines m3 and n3).

[1] Translation of 〈await Bi → Si〉: When a thread enters methodi, it immediately executes

checkBSi. Since checkBSi is a synchronized method on this, it is executed atomically with

respect to any assignment statement. If Bi does not hold when the thread enters checkBSi,

checkBSi returns false so that the thread waits on oi.wait() and does not leave methodi. On

the other hand, if Bi holds, the thread executes Si and checkBSi returns true to leave the while

statement (line k3) and methodi. Since {GI ∧ Bi}Si{GI} holds in the coarse-grained solution, it

is clear that if GI holds before methodi, it holds after methodi.

[2] Translation of 〈Sj〉: {GI}Sj{GI} holds in the coarse-grained solution, and Sj is executed

atomically with respect to any assignment statement in the translated program; therefore, if GI

holds before methodj , it holds after methodj .

6

From [1] and [2], GI is a monitor invariant of the translated program.

Deadlock Freedom:

[1] In methodi, checkBSi is called inside a synchronized block on oi. This guarantees atomic

execution of the statements checkBSi (line k3) and oi.wait() (line k5) with respect to execution of

oi.notifyAll() (line p1) (or oi.notify() (line p2)). Therefore, it is not possible to have a situation

in which after one thread executes checkBSi (which returns false) but before it executes oi.wait(),

another thread executes oi.notify() (or oi.notifyAll()). Note that if such a situation occurs, the

notification signal (oi.notify()) would be lost and a deadlock might result.

[2] In methodi and methodj , (a) execution of a synchronized block (on oi (lines k2-k7) and on this

(lines n2-n4), respectively) and (b) possible execution of ok.notifyAll() (line p1) or ok.notify()

(line p2) are not atomic. Therefore, after a thread, say Ti, executes lines k2-k7 (or lines n2-n4) but

before it executes line p1 (or p2), another thread, say Tj, may execute ok.wait() or ok.notify().

However, such an interleaving execution will not cause any problem.

[3] The nesting level of synchronized blocks is at most two (this occurs when the body of checkBSi

is executed). The order of nesting is always a synchronized block on a specific notification lock

being outside and a synchronized block on this being inside. Furthermore, oi.wait() is executed

within a sole synchronized block on oi. Therefore, deadlock will never occur due to nested

synchronized blocks.

4.3 Example

The following Java code is obtained by applying the above translation to the readers/writers

coarse-grained solution described in Section 2:

class RWMonitor {

q1 private int nr = 0;

q2 private int nw = 0;

q3 private Object or = new Object();

q4 private Object ow = new Object();

q5 public void startRead() {

q6 synchronized (or) {

a7 while (!checkRead())

q8 try {or.wait();

q9 } catch(InterruptedException e){}

q10 }

q11 }

q12 private synchronized boolean checkRead() {

q13 if (nw == 0) {

q14 nr := nr + 1; return true;

q15 } else return false;

q16 }

7

q17 public void finishRead() {

q18 synchronized (this) {

q18 nr := nr − 1;

q20 }

q21 synchronized (ow) {ow.notify(); }

q22 }

q23 public void startWrite() {

q24 synchronized (ow) {

q25 while (!checkWrite())

q26 try {ow.wait();

q27 } catch(InterruptedException e){}

q28 }

q29 }

q30 private synchronized boolean checkWrite() {

q31 if ((nw == 0)&& (nr == 0)) {

q32 nw := nw + 1; return true;

q33 } else return false;

q34 }

q35 public void finishWrite() {

q36 synchronized (this) {

q37 nw := nw − 1;

q38 }

q39 synchronized (or) {or.notifyAll(); }

q40 synchronized (ow) {ow.notify(); }

q41 }

}

Since finishRead() decrements variable nr, the writers’ condition to proceed ((nw == 0)&& (nr ==

0)) may become true. Therefore, ow.notify() is added on line q21 in finishRead(). Similarly, the

decrement of nw in function checkWrite() may change both the readers’ condition ((nw == 0))

and the writers’ codition to true. Therefore, or.notifyAll() (on line q39) and ow.notify() (on line

q40) are added in finishWrite(). Note that since multiple readers may become active, notifyAll()

is called on or. On the other hand, at most one writer can become active; therefore, notify() is

called on ow.

4.4 Performance

Given a coarse-grained solution, at least three approaches exist to obtain Java programs:

[1] apply the translation to a monitor program presented in [1, 2],

[1-a] using only one condition variable (all the threads sleep on the condition variable

8

associated with “this”),

[1-b] using Hartley’s condition variable class, and

[2] apply the translation presented in this section.

We have the following comparison:

1. When only one process needs to be awaken, programs obtained by [1-a] and [1-b] always issue

notifyAll, whereas a program obtained by [2] uses notify.

2. When one condition may become true, a program obtained by [1-a] wakes up all waiting

threads, whereas programs obtained by [1-b] and [2] wake up only threads waiting on the

condition.

From the above comparison, it is expected that programs obtained by [2] will outperform programs

obtained by [1-a] and [1-b] in many applications.

5 Conclusion

A formal and systematic method to develop concurrent programs is presented in [1, 2]. In the

method, we first specify a global invariant. Then, we develop a coarse-grained solution in which

the global invariant holds at every critical assertion. Finally, we translate the coarse-grained

solution to a fine-grained program.

Since Java synchronization primitives do not allow multiple condition variables within a moni-

tor, the above translation cannot be used to produce efficient Java programs. This paper presented

a translation from a coarse-grained solution to a fine-grained Java program. The translation uses

specific notification locks. With the translation, we can use the formal method to develop efficient

Java concurrent programs.

Acknowledgment

I would like to thank the anonymous referees and the communicating editor, Professor G.R. An-

drews, for their valuable and constructive comments.

References

[1] G.R. Andrews. Concurrent Programming, Principles and Practice. Benjamin/Cummings Pub-

lishing Co., 1991.

[2] A.J. Bernstein and P.M. Lewis. Concurrency in Programming and Database Systems. Jones

and Bartlett, 1993.

[3] T. Cargill. Specific notification for java thread synchronization. In International Confer-

ence on Pattern Languages of Programming, 1996. http://www.sni.net/ cargill/jgf/9809-

/SpecificNotification.html.

9

[4] S.J. Hartley. Concurrent Programming - The Java Programming Language. Oxford University

Press, 1998.

[5] D. Lea. Concurrent Programming in Java, Design Principles and Patterns. Addison Wesley

Publishing Co., 1997.

10

