
Java Concurrency Utilities

•Why use them?

•Reduced programming effort

•Increased performance

•Increased reliability

•Improved maintainability

•Increased productivity

•Synchronizing Mechanisms

•Task scheduling framework

•Concurrent collections

•Atomic variables

•Synchronizers

•Locks

•Nanosecond-granularity timing

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/

Java Concurrency:

Task Scheduling

 Executor

 An object that executes submitted Runnable tasks

 Void execute(Runnable command)

 Throws RejectedExecutionException and NullPointerException

 Executor executor = anExecutor

 executor.execute(new RunnableTask1());

 executor.execute(new RunnableTask2());

 Single background thread

 Thread pool

 Saturation policy

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Executor.html

Java Concurrency: Semaphores

 Semaphores

 Acquiring and releasing resources

 Acquire(), tryAcquire(), acquireUninterruptibly(),

release(), availablePermits(),

availablePermits(),drainPermits(),

getQueuedThreads(), getQueueLength()

hasQueuedThreads(), isFair(), reducePermits()

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Semaphore.html

Java Concurrency: Barriers

 Barriers

 Many-times used as a cyclical barrier

 All threads wait until all threads have “checked in” and then all threads

are released

 await(), await(long timeout, TimeUnit unit),

getNumberWaiting(), getParties(), isBroken(), reset()

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html

Java Concurrency: Latches

 CountDownLatch
 Blocks until current count ==0,

 Then releases all waiting threads

 Many-times used as a cyclical

 await()

 await(long timeout, TimeUnit unit)

 countdown()

 getCount()

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html

Java Concurrency: Exchangers

 Synchronization point for two threads to exchange

objects

 Example: neighboring nodes in a network or neighboring

regions of a simulation space

 Exchange(V,x)

 Exchange(V x, long timeout, TimeUnit unit)

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Exchanger.html

Java Concurrency: Locks

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

•Locking and waiting for specific conditions

•Condition

•Lock

•ReadWriteLock

•AbstractQueuedSynchronizer

•LockSupport

Java Concurrency: Queues

 Collection to hold elements prior to processing

 Implementing classes

 AbstractQueue, ArrayBlockingQueue, ConcurrentLinkedQueue,

DelayQueue, LinkedBlockingQueue, LinkedList,

PriorityBlockingQueue, PriorityQueue

 Methods

 element(), offer(E o), peak(), poll(), remove()

 Methods inherited from java.util.Collection

 Add, addAll, clear, contains, containsAll, equals, hashCode,

isEmpty, iterator, remove, removeAll, retainAll, size, toArray

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Queue.html

Java Concurrency: BlockingQueue

 Wait for the queue to be non-empty

 wait for spaced when storing an element

 Implementing Classes

 ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue,

PriorityBlocking Queue, SynchronousQueue

 Methods

 add(E o), drainTo(Collection<? Super E> c), offer(E o),

poll(long timeout, TimeUnit unit), put(E o),

remainingCapacity(), take()

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

Java Concurrency: Atomic Variables

 Support for lock-free thread-safe programming on

single variables – extend volatile

 boolean compareAndSet(expectedValue, updateValue)

 AtomicBoolean, AtomicInteger, AtomicIntegerArray,

AtomicIntegerFieldUpdater, AtomicLong,

AtomicLongArray, AtomicLongFieldUpdater,

AtomicMarkableReference, AtomicReference,

AtomicReferenceArray,

AtomicReferenceFieldUpdater,

AtomicStampedReference

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/atomic/package-summary.html#package_description

