
Advanced Operating Systems
Dr. Gurdip Singh

Sequential Program/Systems

• A system is sequential if no more than one
control point can be serviced at a time.

• A program is sequential if no more than one
control point can be enabled at a time.

Concurrent program/system
• A program is concurrent if multiple control

points can be enabled at the same time.

• A system is concurrent if multiple control
points can be serviced at the same time.

• Since multiple control points can be
enabled/serviced at one time, the underlying
scheduling system (called the scheduler or
dispatcher) may select different schedules
each time it runs the parallel program. Thus,
concurrent software is non-deterministic.

Why concurrent programming

• Exploiting parallelism in an application

– Matrix multiplication

• Availability of concurrent platforms

– Multiple cores on one chip

– Fast networks

• Inherently concurrent applications

– Real-time control

Example system
• Consider a control system:

1. Brake Sensor: When it detects a brake action, it must
actuate the brakes within 20ms. The execution time is 5ms.

2. AC Button: It must start the AC within 4s after it detects
the button press. The execution time is 500ms.

3. Cruise Control button. It must activate the cruise control
within 2s . The execution time is 100ms.

Control-Loop System
main() {

 ….initialize….

 while (1)

{

 if (flagBrake) {activateBrakes(); flagBrake = false;}

 if (flagAC) {activateAC(); flagAC = false;}

 if (flagCruise) {activateCruise(); flagCruise = false;}

 }

}

Each interrupt handler simply

sets the corresponding flag

Control-Loop System

• Pros:

– It’s a simple sequential code

– Debugging is easy; Developed systems are reliable.

• Cons:

– It is difficult to satisfy real-time requirements.

• For example, what will happen if a brake action is detected while
the control loop is executing ActivateCruise(), which takes the
maximum of 100ms？

Event-Triggered System
• The system assigns a thread to each task

• For each sensor interrupt, the system dispatches the thread assigned to
the corresponding task

– Brake controller: create a thread that executes BrakeFunction()

• The thread priorities should be (1) the Brake control task (highest), (2) the
Cruise control task, and (3) the AC control task (lowest)

BrakeFunction() {

 init();

 while (…) {

 :

 activateBrake();

 :

 }}

AC_Control() {

 init();

 while (…) {

 :

 activateAC();

 :

 }}

Cruise_Control() {

 init();

 while (…) {

 :

 activateCruise();

 :

 }}

Concurrent Programs
• Advantages:

– can increase CPU utilization

– can provide fair service to many clients

– can improve response time

– allow programmers to focus only on sequential execution of
each thread

• Disadvantages:

– synchronization code is required to coordinate the execution of
the multiple threads

– Scheduling

Operating System

• Process/thread creation

• Program execution: Scheduling

• Access to I/O devices

• Memory management

• Accounting

 :

• All the runnable software on a computer, including the OS, is organized
into a number of sequential processes (or processes in short)

• Process: a unit of work scheduled by OS, consisting of
1. program's data and stack (and the memory areas)

2. program counter, stack pointer, and other CPU registers

3. all other information necessary to run the program:
process id, priority, accounting information,
memory information, open files, process state, etc.

4. executable code (and the memory area)

Processes

stored in process control blocks (PCBs)

Process States
• New – process is being created.

• Running – instructions are being executed.

• Waiting – blocked waiting for an external event to occur; e.g., message arrival.

• Ready – ready to run on a processor.

• Terminated – finished, awaiting garbage collection.

New

Ready

Running

Waiting

Terminated

Multiprogramming

• In a multiprogramming system, the CPU switches from program to
program, giving the users the illusion of parallelism (pseudo parallelism)

Implementing Processes
• When a context switch occurs between processes P0 and P1, the

current state of running process P0 is saved in the PCB for P0, and the
state of ready process P1 is restored from the PCB for P1.

Process Scheduling
• In a general operating system, a context switch occurs after each time

quantum has expired; e.g., every 20 msec.

• Non-preemptive scheduling

Task Period Deadline Run-Time

 Ti Di Ci

 A 2 2 1

 B 5 5 1

Example

A

B

2 0 4 5 10 15

(thanks to M. Neilsen)

Task Period Deadline Run-Time

 Ti Di Ci

 A 2 2 1

 B 5 5 2

Example

A

B

2 0 4 5 10 15

Process Scheduler

• The process scheduler determines which process to schedule (switch to)
next.

• Types of schedulers:

– preemptive

– non-preemptive

• Scheduling Criteria:
– CPU Utilization

– Throughput - completions/time period

– Turnaround time - total execution time

– Waiting time - time spent in ready queue

– Response time - time until first response

– No missed deadlines - in a hard real-time system this is the most
important criteria!

Task Period Deadline Run-Time

 τi Ti Di Ci

 A 2 2 1

 B 5 5 2

Example

A

B

2 0 4 5 10 15

(High Priority)

(Low Priority)

