
Behaviour Analysis and Safety Conditions:a Case Study in CMLHanne Riis Nielson Torben Amtoft Flemming NielsonComputer Science Department, Aarhus University, Denmarke-mail: fhrn,tamtoft,fng@daimi.aau.dkAbstract. We describe a case study where novel program analysis tech-nology has been used to pinpoint a subtle bug in a formally developedcontrol program for an embedded system. The main technology amountsto �rst de�ning a process algebra (called behaviours) suited to the pro-gramming language used (in our case CML) and secondly to devise anannotated type and e�ect system for extracting behaviours from pro-grams in a such a manner that an automatic inference algorithm can bedeveloped. The case study is a control program developed for the \Karls-ruhe Production Cell" and our analysis of the behaviours shows that oneof the safety conditions fails to hold.Keywords. Embedded systems, formal program development, programanalysis.1 IntroductionThere are several approaches for how to close the gap between the speci�cation ofa system and its actual realisation as a program in some programming language.Di�erent procedures for systematic design have been developed with the goal ofreducing the likelihood of introducing errors, and concise notations have beenintroduced for documenting and reasoning about systems.Unfortunately, a system may have been developed using formal methods butstill have bugs. Advanced proof techniques may have been used to show that thespeci�cation ful�ls certain safety and liveness properties, but there is always therisk that the formalisation does not fully correspond to the informal description(or even a formal description in another framework) and that the code writtendoes not fully correspond to the speci�cation. Clearly the risk of such unfortunatescenarios gets smaller the more care is taken in the development of the systembut we believe that it is not feasible to completely eliminate the risk. Indeedthere always is the risk of human mistake (like using a previous incorrect versionof the system instead of the current correct version) and of malicious behaviour(a subcontractor cutting corners to increase pro�t).While formal methods clearly are very useful for increasing our con�dence in thesystem, it would seem that more is needed. In this paper we demonstrate that



technology from program analysis can be invaluable in spotting some of the sub-tle bugs that may have survived the careful use of formal methods. Traditionally,program analysis has been used in optimising compilers but due to their ability toanalyse programs automatically and systematically we claim that they also havean important role to play in program validation. Although the kind of propertiesof interest in program validation may di�er from those of interest in optimisingcompilers, we demonstrate in this paper that recent developments have pavedthe way for adapting program analysis to the new application domain.Background. In [7, 8] we present an annotated type system for extracting thecommunication topology of programs written in a subset of CML [9]. We in-troduce a formalism of behaviours, a process algebra like CCS or CSP buttailored to the characteristics of CML. The traditional type system for CMLis then extended such that it determines behaviours of expressions as well astheir types. Both CML and the behaviours are equipped with a small-step op-erational semantics and a key theoretical result is a subject reduction resultensuring that whenever the CML program engages in a communication, thenalso the behaviour will be able to do so. This means that safety results obtainedby analysing the behaviour also apply to the original CML program.In [1] we develop an algorithm for type and behaviour reconstruction. The de-velopment is su�ciently general that (1) the behaviours contain causality in-formation, (2) ML-like polymorphism is supported, and (3) the algorithm issound as well as complete with respect to the annotated type system. Theseproperties are crucial for the application described in the present paper. Thecausality of the various operations is often an integral part of safety conditionsfor systems; without causal behaviours one can only validate rather few prop-erties of interest. Polymorphism is important when analysing generic programs;without polymorphism (or perhaps polyvariance) one will need to merge infor-mation from di�erent function calls and this may make it impossible to validatemany interesting properties. The soundness result ensures that the behavioursobtained by the algorithm are correct with respect to the semantics of the pro-gram and the completeness result ensures that the behaviours are as precise asis possible according to the annotated type system; it should be obvious thatthese are crucial properties as well.Having established the theoretical foundations [1] we have implemented a proto-type for extracting behaviours from programs [2]. The present version is able todeal with a fairly large subset of CML and provides the basis for the experimentsreported here.Accomplishments. We study a CML program for the well-known \ProductionCell" [4] developed by FZI in Karlsruhe as a benchmark for the developmentof veri�ed software for embedded systems. The CML program used has beendeveloped using systematic design methods: its functionality has been speci�edin CSP and many of its safety conditions have been formally veri�ed [10]. Fur-



thermore, it has been combined with the FZI simulator to a working prototypethat has subsequently been tested.None the less, our program analysis reveals that the program does not ful�lall of its safety conditions. Our experiments show that the program makes cer-tain assumptions about the initial con�guration of the system { a bug that hasescaped the formal veri�cation. Furthermore, it turns out that the simulatormakes similar assumptions about the initial con�guration so that this particularbug will never turn up during testing. We should stress that we do not meanto criticise neither the formal development nor the veri�cation methods nor theprogrammers. We merely see it as an illustration of a typical problem in thedevelopment of complex software systems as was alluded to above.We believe that the results of our case study presents convincing arguments foralso using novel program analysis techniques when validating safety conditionsof embedded systems. Although we have been able to validate many of the safetyconditions of interest, and to �nd one that does not hold, there is room for ex-tending our techniques because some of the safety conditions require informationnot presently included in the behaviours.Overview. In Section 2 we give a brief introduction to the basic primitives ofCML and we present a fragment of the program used in the case study. Thenin Section 3 we introduce the behaviours and sketch some of the central rulesfor how to obtain behaviours from a CML program. In Section 4 we examinethree of the safety conditions of the Production Cell and in Section 5 we discusssome further enhancements of our techniques. Finally, Section 6 contains theconcluding remarks.2 The case studyThe Production Cell is designed to process metal blanks in a press [4]; its variouscomponents are shown from above on Figure 1 which is a picture from the FZIsimulator. The work pieces (metal blanks) enter the system on the feed belt (thebottom one on Figure 1) and are then transfered one at a time to a rotatingtable; the table is then lifted and rotated such that one of the two robot armscan take the work piece and place it in the press. After processing the workpiece, the other robot arm will take it out of the press and deliver it to a depositbelt (the top one on Figure 1). For testing purposes a crane has been added tomove the work pieces from the deposit belt back to the feed belt.We shall concentrate on just one of these entities, namely the rotating table.The table can be in one of two vertical positions and it can be rotated clockwiseas well as counterclockwise. The following safety conditions have been suppliedfor the table:1: The table must not be moved downward if it is in its lower position, and itmust not be moved upward if it is in its upper position.



Fig. 1. The Karlsruhe Production Cell.2: The table must not be rotated clockwise if it is in the position required fortransferring work pieces to the robot, and it must not be rotated counter-clockwise if it is in the position to receive work pieces from the feed belt.3: There can only be one work piece at the table at any time.The program. CML [9] is an extension of the higher-order functional languageSML [5] with constructs for communication. Processes and channels can be cre-ated dynamically using the constructs spawn and channel; the constructs sendand accept are available for synchronous communication. Functions as well aschannels are �rst class values and so are events: an event is a potential com-munication created by one of the constructs transmit and receive. There isalso an explicit synchronisation operation sync so the construct send(ch,v) isequivalent to sync(transmit(ch,v)) and similarly accept(ch) is equivalent tosync(receive(ch)). Events can be manipulated using the construct wrap; thiscorresponds to a kind of speculative post-processing of an event in that it willonly take e�ect if and when the event is synchronised. Finally, we shall mentionthe construct choose which can be used to choose one of several events.The CML program for the Production Cell consists of 7 processes. They com-municate with the simulator using 63 channels and they communicate internallyusing 16 channels. The part of the program controlling the movements of thetable is shown in Figure 2. It uses the following channels for communicating withthe simulator:



(* actuator channels *)val table_left = channel(): unit chan;val table_stop_h = channel(): unit chan;val table_right = channel(): unit chan;val table_upward = channel(): unit chan;val table_stop_v = channel(): unit chan;val table_downward = channel(): unit chan;(* sensor channels *)val table_is_bottom = channel(): unit chan;val table_is_not_bottom = channel(): unit chan;val table_is_top = channel(): unit chan;val table_is_not_top = channel(): unit chan;val table_angle = channel(): int chan;val new_table_angle = channel(): unit chan;Internally, the table synchronises its movements with the feed belt and the robotand for this it uses the following channels:val belt1_transmit_ready = channel(): unit chan;val belt1_transmit_done = channel(): unit chan;val table_transmit_ready = channel(): unit chan;val table_transmit_done = channel(): unit chan;We shall not explain the program in detail here; some of the points will naturallybe dealt with when we come to discussing aspects of its behaviour.3 BehavioursThe safety requirements imposed on the Production Cell are to a large extentconcerned with the order in which the communications are performed. This is ex-actly the kind of information that is available in the behaviours. The behavioursare terms of a process calculus designed to match the structure of CML. Thebasic behaviours are:{ � is the behaviour of a program that does not create any channels or processesand that is not involved in any communication;{ t chan r is the behaviour of a program that creates a channel that can beused to communicate values of type t and where the channel belongs to theregion r (a region is an indication of where in the program the channel hasbeen created);{ fork b is the behaviour for a program that spawns a new process that willbehave as described by the behaviour b;{ r!t is the behaviour of a program that sends a value of type t on one of thechannels created in the region r; and



fun table () =letfun clockwise (a) = (*rotate clockwise until degree a*)let val x = accept(table_angle)in (send(table_right,());while (accept(new_table_angle); accept(table_angle)) < ado ();send(table_stop_h,()) )end;fun counterclockwise (a) = (*rotate counterclockwise until degree a*)let val x = accept(table_angle)in (send(table_left,());while (accept(new_table_angle); accept(table_angle)) > ado ();send(table_stop_h,()) )end;fun main () =(accept(belt1_transmit_ready); accept(belt1_transmit_done);clockwise(50);send(table_upward,());accept(table_is_top);send(table_stop_v,());send(table_transmit_ready,()); send(table_transmit_done,());send(table_downward,());accept(table_is_bottom);send(table_stop_v,());counterclockwise(0);main())in spawn(fn () => main())end; Fig. 2. CML program for the table.{ r?t is the behaviour of a program that receives a value of type t on one ofthe channels created in the region r.The basic behaviours can then be combined using sequencing (expressed by `;')and choice (expressed by `+') and they can be recursively de�ned.As an example consider the following behaviours:Bc = {table_angle}?int;{table_right}!unit;B1;{table_stop_h}!unitB1 = {new_table_angle}?unit;{table_angle}?int;(� + B1)The behaviour Bc expresses that �rst there will be a communication on the chan-nel table angle (obtaining the current angle of the table) and next there will



be a communication on the channel table right (starting a clockwise rotationof the table). Then the behaviour of B1 will be executed and �nally there willbe a communication on the channel table stop h (stopping the rotation). Thebehaviour B1 is recursive: �rst there will be a communication over the chan-nel new table angle (indicating that the angle has changed) and subsequentlythere is a communication on the channel table angle (to obtain the new angle).After that the program may exit (the angle has the required value) or it mayrepeat the behaviour of B1 (still waiting for the angle to get the required value).It turns out that Bc is the behaviour corresponding to the body of the functionclockwise of Figure 2. Comparing the code for the function with the behaviourabove shows that we have recorded which communications take place and inwhich order, but we have ignored all values and tests. So while the behaviourretains the overall control structure of the code, it loses those details of teststhat determine which branch is taken in conditionals (as e.g. that the clockwiserotation of the table is stopped at the angle given as argument to the function).Construction of behaviours. The behaviours are extracted from the CML pro-gram by an extension of the standard polymorphic type system. The idea is thateach of the concurrency primitives when supplied with the appropriate param-eters gives rise to one of the basic behaviours, and the composite expressionswill tell how these behaviours are combined into larger behaviours. A functionmay require some arguments in order to exhibit its behaviour and an event mayneed to be synchronised in order to exhibit its behaviour, and to capture thiswe shall annotate the types with behaviour information. So a function may havethe type t1 !b t2 meaning that it takes an argument of type t1, gives a resultof type t2 and in doing so it will perform communications as described by thebehaviour b. Similarly, an event may have the type t event b meaning that whensynchronised it will give rise to a value of type t and in doing so it will performcommunications as described by b. The following speci�es the annotated typesof some of the primitive operations:send: (t chan r)� t!r!t unitaccept: (t chan r)!r?t ttransmit: (t chan r)� t!� unit event (r!t)receive: (t chan r)!� t event (r?t)sync: (t event b)!b twrap: (t1 event b1)� (t1 !b t2)!� t2 event (b1; b)choose: (t event b) list!� t event bThe construction of the behaviours can be formulated as an annotated typesystem and below we illustrate the basic idea; for the details we refer to [7, 1].A type environment tenv gives the annotated type of a variable and just men-tioning a variable x (in a call-by-value language like CML) does not give rise toany interesting behaviour so we write this astenv ` x : t & � if tenv(x) = t



We have a similar axiom for constants: mentioning a constant (like a numeral orone of the primitive operators above) does not involve any computation so wehave tenv ` c : tc & �where tc is (an instance of) the type of c.For ordinary function abstraction we taketenv[x 7! t1] ` e : t2 & btenv ` fn x => e : t1 !b t2 & �So we guess a type t1 for the formal parameter x and analyse the body ofthe abstraction to determine its type t2 and its behaviour b. We record thebehaviour as part of the overall type of the abstraction and note that as far ascommunication goes nothing interesting has happened so the overall behaviourwill again be �. The case of recursive function de�nition is fairly similartenv[f 7! t1 !b t2;x 7! t1] ` e : t2 & btenv ` fun f x => e : t1 !b t2 & �and here we will typically rely on b being a recursive behaviour that can beunfolded as demanded by the unfolding of the recursive function call.Turning to the rule for function application we havetenv ` e1 : t1 !b t2 & b1; tenv ` e2 : t1 & b2tenv ` e1 e2 : t2 & (b1; b2; b)The idea is that we �rst determine the annotated type and the behaviour ofthe operator and the operand. CML has a call-by-value parameter mechanismso operationally we will �rst observe the communications originating from theoperator, then those from the operand and �nally those from the called function.Hence the application will have the behaviour b1; b2; b { note that the causalityof the communications are recorded.In order for this approach to work we have to be able to enlarge the behaviours.As an example, all the elements in the argument list to the choose primitivemust have the same behaviour and to achieve this we shall need a subsumptionrule like tenv ` e : t & btenv ` e : t & b0 if b v b0Here b v b0 is some ordering on behaviours that for example will express that +is an upper bound operator so b1 can be enlarged to b1 + b2. The ordering willalso express that � is a left and right identity for sequencing (�; b = b = b; �) andthis allows us to get rid of a lot of uninteresting occurrences of �.The full type system employs a general subtyping rule and also has rules fordealing with ML-like polymorphism; we shall spare the reader for these detailsas they do not seem so important for the current discussion. Instead we refer



B = fork(B0)B0 = {belt1_transmit_ready}?unit;{belt1_transmit_done}?unit;{table_angle}?int;{table_right}!unit;B1;{table_stop_h}!unit;{table_upward}!unit;{table_is_top}?unit;{table_stop_v}!unit;{table_transmit_ready}!unit;{table_transmit_done}!unit;{table_downward}!unit;{table_is_bottom}?unit;{table_stop_v}!unit;{table_angle}?int;{table_left}!unit;B1;{table_stop_h}!unit;B0B1 = {new_table_angle}?unit;{table_angle}?int;(� + B1)Fig. 3. Behaviour for the table.to the development in [1] for the many �ne details concerning the ordering v,subtyping, polymorphism, constraint simpli�cation, semantic soundness of theinference system, and syntactic soundness and completeness of the inferencealgorithm.The type and behaviour reconstruction algorithm has been implemented inMoscow ML and is available on the web1. It has been used to analyse the CMLprogram implementing the Production Cell. For the part of the program corre-sponding to Figure 2 the algorithm will determine the type unit!B thread idwhere B is the behaviour of Figure 3.Correctness issues. The language CML as well as the language of behavioursare equipped with a small-step operational semantics. This forms the basis fora correctness proof that essentially says that whenever the CML program per-forms a sequence of steps then also the associated behaviour can perform similarsteps. To be more speci�c: when the semantics of the CML program performs astep corresponding to sending a value v of type t on some channel ch in someregion r then the semantics of the behaviour can take a step that will executethe basic behaviour r!t, and similarly for the other primitive actions. Thus thebehaviours give a safe approximation of the communications performed by theCML program.The behaviour may be able to perform more actions than are possible by theCML program, for example because it will always be able to take both branchesof a conditional. However, in the case where the behaviour only can performone action then the CML will eventually have to perform a matching action {unless it is deadlocked or is looping. To illustrate this, consider a behaviour thatcontains the sequenceftable is not topg?unit; ftable upwardg?unit1 http://www.daimi.aau.dk/~bra8130/TBAcml/TBA CML.html



and assume the behaviour of the process of interest only has those two occur-rences of communications on the channels table is not top and table upward.Then the correctness result will tell us two things. First, if the CML programengages in a communication on table upward then it will already have commu-nicated on table is not top. Second, after having engaged in a communica-tion on table is not top then it will eventually perform a communication ontable upward { unless it enters a looping computation or a deadlock betweenthe two communications.4 Safety conditionsMost safety conditions of the Production Cell [4] are concerned about the inter-play between communications of only a few channels. Much of this informationis directly available in the behaviours and we can easily attempt validating thethree conditions mentioned in Section 2 based on the behaviours given in Fig-ure 3. However, it is convenient to be able to ignore those channels that arenot relevant for validating the condition at hand, i.e. to abstract away fromcommunications on those channels.As an example, suppose that we want to validate the following safety condition:The engine starting the vertical movement of the table is always turnedo� before it is turned on (assuming that it is initially turned o�).We shall rely on some assumptions about the environment: The engine can onlybe turned on using one of the two channels table upward and table downwardand it can only be turned o� using the channel table stop v. We shall thereforereplace all communications mentioned in Figure 3 that do not involve any ofthese three channels with ellipses and then we shall apply some straightforwardsimpli�cations in order to obtain:B0 = � � � ;{table_upward}!unit; � � � ;{table_stop_v}!unit;� � � ;{table_downward}!unit; � � � ;{table_stop_v}!unit;� � � ;B0This simpli�ed behaviour clearly shows that the engine is turned on and o� inthe manner described by the safety condition.Just as our prototype is responsible for producing the behaviour of Figure 3 itcan also be used to produce the above simpli�ed behaviours. The theoreticalfoundations for the simpli�ed behaviours are established in [1].We shall now go through the three safety conditions of the rotating table men-tioned in Section 2 and discuss to what extent they can be validated using thebehaviours. Based on the informal description of the condition and some overallassumptions about the environment we shall decide which channels are of rele-vance for the condition and extract that part of the behaviour. It turns out that



this will be a fairly simple behaviour so we can immediately judge whether ornot the safety condition is ful�lled; clearly a more formal approach is possibleas well.Condition 1.The table must not be moved downward if it is in its lower position, andit must not be moved upward if it is in its upper position.Validation of this condition relies on some assumptions about the environment:The vertical movement of the table can only be initiated by communicatingon the two channels table upward and table downward. Information aboutthe vertical position of the table can only be obtained from the four channelstable is bottom, table is not bottom, table is top and table is not top.We therefore select these six channels and obtain the following simpli�ed be-haviour from Figure 3:B0 = � � � ;{table_upward}!unit;{table_is_top}?unit;� � � ;{table_downward}!unit;{table_is_bottom}?unit;� � � ;B0Thus we see that all communications on table downward are preceeded by acommunication on table is top. By unfolding the behaviour is is also easy tosee that, except for the initial case, all communications on table upward arepreceeded by a communication on table is bottom.However, this is not the case for the initial communication on table upward.The behaviour will never allow a communication on any of the four channelsgiving information about the vertical position of the table before the initialcommunication on the channel table upward. It follows that the CML programwill never be able to do that either. Hence the analysis has shown that the CMLprogram does not ful�l Condition 1!Condition 2.The table must not be rotated clockwise if it is in the position required fortransferring work pieces to the robot, and it must not be rotated coun-terclockwise if it is in the position to receive work pieces from the feedbelt.Again we have to rely on some assumptions about the environment. The rotationof the table can only be initiated by communication on one of the two channelstable right and table left and it is stopped by communication on the channeltable stop h. The horizontal position of the table can be obtained from thechannel table angle.



We therefore extract the behaviour involving the four channels mentioned aboveand get:B0 = � � � ;{table_angle}?int;{table_right}!unit;B1;{table_stop_h}!unit;� � � ;{table_angle}?int;{table_left}!unit;B1;{table_stop_h}!unit;B0B1 = � � � ;{table_angle}?int;(� + B1)From this it is easy to see that we have validated the following version of thesafety condition:The table is alternating between being rotated clockwise and counterclock-wise.However there is no information in the behaviours ensuring that the clockwiserotation stops when the angle is 50 (as required for the robot) or that the coun-terclockwise rotation stops when the angle is 0 (as required for the feed belt).More powerful analysis techniques will be needed to capture this kind of infor-mation; we shall return to this in Section 5.Condition 3.There can only be one work piece at the table at any time.This condition is concerned about the synchronisation between the individ-ual processes of the system and hence its validation will depend on proper-ties of the other processes, in particular those for the feed belt and the robot.The table is the passive part in both of these synchronisations. The channelsbelt1 transmit ready and belt1 transmit done are used to synchronise withthe feed belt; between these two communications it is the responsibility of thefeed belt to place a work piece on the table. The channels table transmit readyand table transmit done are used to synchronise with the robot; between thesetwo communications it is the responsibility of the robot to remove a work piecefrom the table.The analysis of the table will therefore need to make some assumptions aboutthe feed belt and the robot. These assumptions will later have to be validated byanalysing the behaviour of the program fragments for the respective processes.The assumptions are:(a) Whenever the feed belt leaves the critical region speci�ed by the two channelsbelt1 transmit ready and belt1 transmit done it will have moved one(and only one) work piece to the table.(b) Whenever the robot leaves the critical region speci�ed by the two channelstable transmit ready and table transmit done it will have emptied thetable.



Under these assumptions we can now validate Condition 3.We shall concentrate on the four channels specifying the critical regions and weobtain the following simpli�ed behaviour for the table:B0 = {belt1_transmit_ready}?unit;{belt1_transmit_done}?unit; � � � ;{table_transmit_ready}!unit;{table_transmit_done}!unit; � � � ;B0Clearly this shows that the two pairs of communications alternate. Also it showsthat the synchronisation with the feed belt happens �rst and by assumption(a) a work piece is placed on the table. The simpli�ed behaviour shows thatsubsequently there will be a synchronisation with the robot and by assumption(b) the work piece will be removed from the table. Hence Condition 3 has beenvalidated with respect to the assumptions.5 Discussion and further workThe results obtained from the analysis depend to a large extent on the pro-gramming style. As an example, an alternative program for the ProductionCell uses the following function instead of the two functions clockwise andcounterclockwise:fun turn_to(a) =let val x = accept(table_angle) inif x < a then(send(table_right,());while (accept(new_table_angle); accept(table_angle)) < ado ();send(table_stop_h,()) )else if x > a then(send(table_left,());while (accept(new_table_angle); accept(table_angle)) > ado ();send(table_stop_h,()) )else ()end;In the setting provided by Condition 2 we now get the following simpli�ed be-haviour for the program:B0 = � � � ;B1; � � � ;B1;B0B1 = {table_angle}?int;(� + {table_left}!unit;B2;{table_stop_h}!unit+ {table_right}!unit;B2;{table_stop_h}!unit)B2 = � � � ;{table_angle}?int;(� + B2)



As expected we cannot validate Condition 2 from this. But even worse, we cannoteven validate that the table is alternating between being rotated clockwise andcounterclockwise; only that it is rotated an even number of times. The reason forthe latter is that the current version of our technology does not incorporate anyinformation about values of variables and the entities communicated and there-fore we cannot prune the behaviour for turn to to take the branch of interestfor a given value of the parameter. We expect that techniques from Control FlowAnalysis [3, 6] will prove useful when further developing the technology.The CML program for the Production Cell is basically a �rst-order program andhence it does not exploit the higher-order constructs of CML. Our technique hasno problems handing higher-order functions nor communication of channels. Toillustrate a simple version of this, consider the following generic functionfun move start doit stop = (send(start,()); doit(); send(stop,()))that takes a channel, a function and yet another channel as arguments. Let usrewrite the program to use this function:fun table () =letfun clockwise (a) =let val x = accept(table_angle);in move table_right(fn () => while (accept(new_table_angle);accept(table_angle)) < a do ())table_stop_hend;fun counterclockwise (a) =let val x = accept(table_angle)in move table_left(fn () => while (accept(new_table_angle);accept(table_angle)) > a do ())table_stop_hend;fun main () =(accept(belt1_transmit_ready); accept(belt1_transmit_done);clockwise(50);move table_upward (fn () => accept(table_is_top)) table_stop_v;send(table_transmit_ready,()); send(table_transmit_done,());move table_downward (fn () => accept(table_is_bottom)) table_stop_v;counterclockwise(0);main())in spawn(fn () => main())end;



The behaviour of this version of the program is exactly as in Table 3; in par-ticular the techniques easily distinguish between the di�erent sets of parameterssupplied to the four calls of the move function.6 ConclusionWe have argued that even the careful use of formal program development tech-niques may in practice produce bugs that go undetected. To increase the avail-able techniques for validating embedded systems we have argued that the useof novel program analysis technology is likely to be indispensable and we havesubstantiated this claim by the development of a prototype.Acknowledgements. We should like to thank H. Rischel for providing us with thesimulator for Production Cell as well as the CML program for controlling theProduction Cell, and also A. P. Ravn for general discussions about the analysis ofembedded systems. This work has been supported in part by the DART projectfunded by the Danish Science Research Council and also builds on theories andtools developed during the LOMAPS project funded by ESPRIT BRA.References1. T. Amtoft, F. Nielson, and H. R. Nielson. Polymorphic subtyping for side e�ects.Book manuscript, DAIMI PB-529, Aarhus Univesity, 1997.2. T. Amtoft, H. R. Nielson, and F. Nielson. Behaviour analysis for validating com-munication patterns. DAIMI PB-527, Aarhus University, 1997.3. K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of control
ow analyses for CML. In Proceedings of ICFP'97, pages 38{51. ACM Press, 1997.4. C. Lewerentz and T. Lindner. Formal Development of Reactive Systems, CaseStudy \Production Cell". SLNCS vol 891, Springer Verlag, 1995.5. R. Milner, M. Tofte, and R. Harper. The de�nition of Standard ML. MIT Press,1990.6. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis: Flowsand E�ects. To appear, 1999.7. H. R. Nielson and F. Nielson. Higher-Order Concurrent Programs with FiniteCommunication Topology. In Proc. POPL '94, 1994.8. H. R. Nielson and F. Nielson. Communication analysis for Concurrent ML. In MLwith Concurrency, Monographs in Computer Science. Springer-Verlag, 1997.9. J.H. Reppy. Concurrent ML: Design, application and semantics. In Proc. Func-tional programming, Concurrency, Simulation and Automated Reasoning, SLNCS693, pages 165{19, 1993.10. H. Rischel and H. Sun. Design and prototyping of real-time systems using CSP andCML. In Proc. 9th Euromicro Workshop on Real-Time Systems, pages 121{127.IEEE Computer Society Press, 1997.


