Information Flow Analysis in Logical Form

Torben Amtoft & Anindya Banerjee
Kansas State University

SAS in Verona, August 26, 2004
Information Flow Analysis (a reminder)

Confidentiality the attacker cannot learn about initial value of high variable h from final value of low variable l

<table>
<thead>
<tr>
<th>Statement</th>
<th>Secure/Insecure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h := l$</td>
<td>secure</td>
</tr>
<tr>
<td>$l := 7$</td>
<td>secure</td>
</tr>
<tr>
<td>$l := h$</td>
<td>insecure (direct flow)</td>
</tr>
<tr>
<td>if h then $l := 7$ else $l := 8$</td>
<td>insecure (indirect flow)</td>
</tr>
<tr>
<td>$l := h; l := 7$</td>
<td>secure (though insecure parts)</td>
</tr>
</tbody>
</table>
Information Flow Analysis (a reminder)

Confidentiality: the attacker cannot learn about initial value of high variable h from final value of low variable l

<table>
<thead>
<tr>
<th>Expression</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h := l$</td>
<td>secure</td>
</tr>
<tr>
<td>$l := 7$</td>
<td>secure</td>
</tr>
<tr>
<td>$l := h$</td>
<td>insecure (direct flow)</td>
</tr>
<tr>
<td>if h then $l := 7$ else $l := 8$</td>
<td>insecure (indirect flow)</td>
</tr>
<tr>
<td>$l := h; l := 7$</td>
<td>secure (though insecure parts)</td>
</tr>
</tbody>
</table>

Equivalent: the final value of a low variable is independent of the initial value of a high variable
Information Flow Analysis (a reminder)

Confidentiality: the attacker cannot learn about initial value of high variable \(h \) from final value of low variable \(l \)

\[
\begin{align*}
\text{h := l} & \quad \text{secure} \\
\text{l := 7} & \quad \text{secure} \\
\text{l := h} & \quad \text{insecure (direct flow)} \\
\text{if h then l := 7 else l := 8} & \quad \text{insecure (indirect flow)} \\
\text{l := h; l := 7} & \quad \text{secure (though insecure parts)}
\end{align*}
\]

Equivalent: the final value of a low variable is independent of the initial value of a high variable

Integrity: the final value of a licensed variable is independent of the initial value of a hacked variable
Contributions

- captures notion of variable independence in logical form
- allows efficient computation of invariants (using “strongest postcondition” function)
- shows our logical form subsumes classical type-based approach
- allows modular reasoning (frame rule)
- facilitates the generation of “counterexamples”
Traces

Language: Simple imperative with while

A trace \(t \in \text{Trc} \)

- associates to each variable its initial and its current value.
 Example: \(t_1 \) may be given as \([x \mapsto (0, 3), y \mapsto (5, 2)]\).
- is thus isomorphic to a pair of stores
 (records only endpoints of path)

The semantics models commands as mappings from sets of traces to sets of traces:

\[
[] : \mathcal{P}(\text{Trc}) \rightarrow \mathcal{P}(\text{Trc})
\]

Example: \([x := x + 1] \) maps \(\{t_1\} \) to \(\{[x \mapsto (0, 4), y \mapsto (5, 2)]\} \)
Trace Semantics

The semantics maps each input trace to one or zero output traces.

Example: $[[\text{while } x > 7 \text{ do } x := x + 1]]$ maps $\{[x \mapsto (6, 6), [x \mapsto (8, 8)]\}$ to $\{[x \mapsto (6, 6)]\}$

Semantics $(T \in P(Trc))$

\[
\begin{align*}
\llbracket x := E \rrbracket &= \lambda T. \{ t' | \exists t \in T : t' = t[x \mapsto \llbracket E \rrbracket(t)] \} \\
\llbracket C_1 ; C_2 \rrbracket &= \lambda T. \llbracket C_2 \rrbracket(\llbracket C_1 \rrbracket(T)) \\
\llbracket \text{if } E \text{ then } C_1 \text{ else } C_2 \rrbracket &= \lambda T. \llbracket C_1 \rrbracket(E-\text{true}(T)) \cup \llbracket C_2 \rrbracket(E-\text{false}(T)) \\
\llbracket \text{while } E \text{ do } C_0 \rrbracket &= \text{lfp}(\mathcal{F}) \text{ where } \mathcal{F}(f) = \lambda T.\ldots.
\end{align*}
\]
Motivation

\[
T_0^\# \models T_0 \\
\left[C \right] \downarrow \\
T
\]
Motivation

abstract

$T_0^\#$

\models

concrete

T_0

$R^\#(C)$

\models

$\llbracket C \rrbracket$

$T^\#$

\models

T

Torben Amtoft & Anindya Banerjee
Kansas State University

Information Flow Analysis in Logical Form
Independences

- \([y \not\# w]\) denotes that the **current** value of \(y\) must be independent of the **initial** value of \(w\)
- \(T\) ranges over set of **independences**

\[T \# \models T \] holds iff for all \([y \not\# w] \in T\#\), \(t_1, t_2 \in T\):

- if \(t_1\) and \(t_2\) agree on the **initial** value of all variables except \(w\)
- then \(t_1\) and \(t_2\) agree on the **final** value of \(y\).
Indepenences

- \([y \not\equiv w]\) denotes that the current value of \(y\) must be independent of the initial value of \(w\).
- \(T\#\) ranges over set of independences.

\(T\# \models T\) holds iff for all \([y \not\equiv w] \in T\#, t_1, t_2 \in T:\)

- if \(t_1\) and \(t_2\) agree on the initial value of all variables except \(w\),
- then \(t_1\) and \(t_2\) agree on the final value of \(y\).

Example: let \(T\) contain the two traces

\([w \mapsto (0, 0), y \mapsto (3, 2), z \mapsto (4, 5)],\)
\([w \mapsto (7, 6), y \mapsto (3, 2), z \mapsto (4, 8)]\)

Then \([y \not\equiv w] \models T\) does hold; \([z \not\equiv w] \models T\) does not hold.
A Hoare-like Logic

Judgements have the form $G \vdash \{ T^\# \} C \{ T_0^\# \}$

G overapproximates indirect information flow. Consider

- $w := x + y$; if $w < z$ then C_1 else C_2
- in branches C_1 and C_2, G contains x, y, z

Sequential composition

\[
G \vdash \{ T_0^\# \} C_1 \{ T_1^\# \} \quad G \vdash \{ T_1^\# \} C_2 \{ T_2^\# \} \\
G \vdash \{ T_0^\# \} C_1; C_2 \{ T_2^\# \}
\]
Recap

\[T_0^\# = T_0 \]

\[R^\#(C) \quad \Rightarrow \quad [C] \]

\[T^\# = T \]
Recap

\[R^\#(C) \]

is

\[\emptyset \vdash \{ T_0^\# \} \ C \ \{ T^\# \} \]
Proof Rules

Assignment

\[G \vdash \{ T_0^{\#} \} x := E \{ T^{\#} \} \]

- if \([y \neq w] \in T^{\#}\) with \(y \neq x\) then \([y \neq w] \in T_0^{\#}\)
- if \([x \neq w] \in T^{\#}\) then \(w \not\in G\) and \(\forall z \in \text{fv}(E) \bullet [z \neq w] \in T_0^{\#}\)

Conditional

\[
\frac{G \vdash \{ T_0^{\#} \} C_1 \{ T^{\#} \} \quad G \vdash \{ T_0^{\#} \} C_2 \{ T^{\#} \}}{G \vdash \{ T_0^{\#} \} \text{ if } E \text{ then } C_1 \text{ else } C_2 \{ T^{\#} \}}
\]

if \(w \not\in G\) implies \(\forall x \in \text{fv}(E) \bullet [x \neq w] \in T_0^{\#}\)
Proof Rules

Assignment

\[G \vdash \{ T_0^{\#} \} x := E \{ T^{\#} \} \]

- if \([y \# w] \in T^{\#}\) with \(y \neq x\) then \([y \# w] \in T_0^{\#}\)
- if \([x \# w] \in T^{\#}\) then \(w \notin G\) and \(\forall z \in \text{fv}(E) \bullet [z \# w] \in T_0^{\#}\)

Conditional

\[
\begin{align*}
G \vdash \{ T_0^{\#} \} & \quad C_1 \quad \{ T^{\#} \} & \quad G \vdash \{ T_0^{\#} \} & \quad C_2 \quad \{ T^{\#} \} \\
G \vdash \{ T_0^{\#} \} & \text{if } E \text{ then } C_1 \text{ else } C_2 \quad \{ T^{\#} \}
\end{align*}
\]

if \(w \notin G\) implies \(\forall x \in \text{fv}(E) \bullet [x \# w] \in T_0^{\#}\)

NB: given rule for subtyping, many equivalent formulations are possible (see paper)
Example Derivation

\[[x \not\# y, z] \text{ abbreviates } [x \not\# y], [x \not\# z]. \]

\[
x := h \\
\text{if } x > 0 \begin{array}{l}
\text{then } l := 7 \\
\text{else } x := 0
\end{array}
\]

\text{(G is now } \{h\})

\[
\text{end of if } \\
\{[l \not\# x], [h \not\# l, x], [x \not\# l, x]\}
\]

\[
\{[l \not\# x], [h \not\# l, x], [x \not\# l, x]\}
\]

\[
\{[l \not\# x], [h \not\# l, x], [x \not\# l, x]\}
\]
Correctness Results

\[G \vdash \{ \cdot \} \ C \{ \cdot \} \]

Lemma 1

\[T_0^\# \models T_0 \]

\[T^\# \models T \]
Correctness Results

Bootstrapping condition:

- for all $t \in T_{\text{init}}$, for all variables x: the current value of x in t equals its initial value
- if $[x \neq w] \in T_{\text{init}}^\#$ then $x \neq w$
Covert Channels

- We are resource-insensitive.

\[
\emptyset \vdash \{\{l \# h\}\}
\]

\[
\text{if } h \neq 0 \text{ then } h := \text{CHEAP} \text{ else } h := \text{EXPENSIVE}
\]

\[
\{\{l \# h\}\}
\]

An observer able to observe use of resources can detect whether \(h \) is 0 or not.

- We are even termination-insensitive:

\[
\emptyset \vdash \{\{l \# h\}\} \text{ while } h \neq 0 \text{ do } h := 7 \{\{l \# h\}\}
\]

Yet an observer able to observe non-termination can detect whether \(h \) is 0 or not.
Existence of Strongest Postcondition

Any command C has a strongest postcondition

- given context G and precondition $T_0^#$
- there exists a set $T^#$ which is the largest with the property

$$G \vdash \{ T_0^# \} C \{ T^# \}$$

- the function $sp(G, C, T_0^#)$ computes that set.

Similarly, we can compute weakest precondition
Computing Strongest Postcondition

\[
sp(G, x := E, T^\#) = \\
\{ [y \# w] \mid y \neq x \wedge [y \# w] \in T^\# \} \\
\cup \{ [x \# w] \mid w \notin G \wedge \forall y \in \text{fv}(E) \bullet [y \# w] \in T^\# \}
\]

\[
sp(G, \text{if } E \text{ then } C_1 \text{ else } C_2, T^\#) = \\
\text{let } G_0 = G \cup \{ w \mid \exists x \in \text{fv}(E) \bullet [x \# w] \notin T^\# \} \\
T^\#_1 = \text{sp}(G_0, C_1, T^\#) \\
T^\#_2 = \text{sp}(G_0, C_2, T^\#) \\
\text{in } T^\#_1 \cap T^\#_2
\]

\[
sp(G, \text{while } E \text{ do } C, T^\#) = \\
\ldots \text{fixed point computation} \ldots
\]
Example of Strongest Postcondition

What you saw earlier, was computed using sp

\[x := h \]
\[\text{if } x > 0 \]
\[\text{then } l := 7 \]
\[\text{else } x := 0 \]
\[\text{end of if} \]

\[\{[l \neq h, x], [h \neq l, x], [x \neq l, h]\} \]
\[\{[l \neq h, x], [h \neq l, x], [x \neq l, x]\} \]
\[(G \text{ is now } \{h\}) \]
\[\{[l \neq x, l], [h \neq l, x], [x \neq l, x]\} \]
\[\{[l \neq h, x], [h \neq l, x], [x \neq l, x]\} \]
\[\{[l \neq x], [h \neq l, x], [x \neq l, x]\} \]
Modularity and Frame Rule

\[T_u^\# \cup T_{in}^\# \]

\[(G, C) \]

\[sp \]

\[T_u^\# \cup T_{out}^\# \]

\[?? \]

\[T^\# \]
Modularity and Frame Rule

\[
T_u^\# \cup \ T_{in}^\# \rightarrow sp \quad (G, C) \quad \rightarrow \quad sp
\]

\[
T_u^\# \cup T_{out}^\# = T^\#
\]

if \(lh(T_u^\#) \cap fv(C) = \emptyset \)
Modularity and Frame Rule

\[
\begin{align*}
[z \not\# w] & \quad [y \not\# w] & \quad [z \not\# w] \cup [y \not\# w] \\
\downarrow & \quad \downarrow & \quad \downarrow \\
sp & \quad x := y + 3 & \quad sp \\
\downarrow & \quad \downarrow & \quad \downarrow \\
[z \not\# w] \cup [x, y \not\# w] & = & [x, y, z \not\# w]
\end{align*}
\]

if \(\text{lhs}(T_u^\not\#) \cap \text{fv}(C) = \emptyset \)
Modularity and Frame Rule

\[T_u^\# \cup T_{in}^\# \subset T_u^\# \cup T_{out}^\# \]

if \(\text{lhs}(T_u^\#) \cap \text{modified}(C) = \emptyset \)
Modularity and Frame Rule

\[
\begin{align*}
[z \not= w] & \quad [y \not= w] & \quad [z \not= w] \cup [y \not= w] \\
\downarrow & \quad \downarrow & \quad \downarrow \\
sp & \quad x := y + z & \quad sp \\
\downarrow & \quad \downarrow & \quad \downarrow \\
[z \not= w] \cup [y \not= w] & \subseteq [x, y, z \not= w] \\
\end{align*}
\]

if \(\text{lhs}(T_u^\#) \cap \text{modified}(C) = \emptyset \)
Smith & Volpano = \([l \# h]\) is an invariant

Their Type System

\[
\Gamma, x : (T, \kappa) \vdash E : (T, \kappa) \\
\Gamma, x : (T, \kappa) \vdash x := E : (\text{com } \kappa)
\]

\[
\Gamma \vdash E : (\text{int}, \kappa) \quad \Gamma \vdash C_1 : (\text{com } \kappa) \quad \Gamma \vdash C_2 : (\text{com } \kappa) \\
\Gamma \vdash \text{if } E \text{ then } C_1 \text{ else } C_2 : (\text{com } \kappa)
\]

Connection A well-typed program has \([l \# h]\) as invariant: if \([l \# h]\) appears in the precondition, then it also appears in the strongest postcondition.

- we can handle \(l := h ; l := 0\)
Counterexamples

- if \([l \neq h]\) not in postcondition, we would like to find two different values of \(h\) producing different values of \(l\)
- as analysis not complete, naive approach will produce false positives
- paper adopts semantic interpretation that makes all false positives become genuine positives
Composition with other Analyses

Parity Assume an attacker can read the parity only. Then

\[
\text{while } h \text{ do } l := l + 2 ; h := h - 1
\]

is secure. We can abstract it to

\[
\text{while } h \text{ do } h := h - 1
\]

which our logic deems secure.

Signs Then

\[
l := h \times h + 1
\]

is abstracted to

\[
l := \text{pos}
\]

which our logic deems secure.
Related Work

Clark, Hankin & Hunt [Computer Languages, 2002]

- for each S determines whether different values for y prior to S
 results in different values for x after S
- termination-sensitive

Joshi & Leino [SCP, 2000]

- semantic characterization of noninterference
 $$C ; HH = HH ; C ; HH$$
 where HH assigns an arbitrary value to a high variable.
- handles termination sensitivity/insensitivity

Darvas, Hähnle & Sands [WITS 2003]

- employs general purpose theorem prover
- can give counterexamples with actual runtime values
Future Work

We want to investigate if our techniques are scalable (this is why we insisted on frame rule)

Current directions

▶ extension with list pointers
▶ compile into machine code (translate assertions)

Other Extensions

▶ functions, procedures, objects
▶ concurrency
▶ declassification

Joint with Sruthi Bandhakavi, Tamara Rezk, Franklyn Turbak; the Bandera group at Kansas State University