Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Verification Condition Generation for
Conditional Information Flow
Torben Amtoft Anindya Banerjee

Kansas State University

FMSE, November 2, 2007

0] b_j ectives Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Introduction

» Specify and implement information flow analysis for
sequential OO-programs.

» Integrate with programmer assertions in style of JML

» Precision:

» flow-sensitive
» model also conditional flows

Verification Condition

ApproaCh Generation for
Conditional Information
Flow

Amtoft & Banerjee

Introduction

» Hoare-like assertions, computing (weakest)
preconditions

» Object invariants, cf. Boogie methodology (no
expensive alias analysis)

Information Flow Regulates Confidentiality

» Data is secret () or public/observable (Low).

» Confidentiality: inputs do not influence Low
output channels (End-to-end property)
» Typical analyses based on security types, e.g.,
(inta)7 (C0m7 [—),
» Flow insensitive [Volpano/Smith/Irvine,Myers,. ..]
» Flow sensitive [Hunt/Sands]

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Introduction

Noninterference

Hin —— —H out

} classified
channels

unclassified

Lin —— Program |——1 out } channels

Noninterference property [Goguen-Meseguer]: For any
two runs of program, Low-indistinguishable input states
yield Low-indistinguishable output states.

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Introduction
Agreement Assertions
Object Invariants
The Algorithm
Implementation
Conclusion

Extra Material

Noninterference

Hin ——

- ou)

Lin ——

Program

)

classified
channels

unclassified
channels

Noninterference property [Goguen-Meseguer]: For any
two runs of program, Low-indistinguishable input states
yield Low-indistinguishable output states.

Equivalently [Cohen]: L out independent of initial H in.

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Introduction
Agreement Assertions
Object Invariants
The Algorithm
Implementation
Conclusion

Extra Material

Logical Approach e

Conditional Information
Flow

Amtoft & Banerjee

Agreement Assertions

Consider (Hoare-style) triple [Amtoft/Banerjee SAS'04]
{x1x,...;xp X} P{y1 X,...,ym X}

Meaning: given any two runs of P:
> If observable inputs xi, ..., x, agree (precondition)

» Then observable outputs yi,...,ym agree in the
same two runs (postcondition).

Special case: xi,...,x, and yi,...yn, are the low
variables.

Leveraging Standard Assertions

if w
then x (=7
else x =7

{xx}

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Agreement Assertions

Leveraging Standard Assertions Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Agreement Assertions
{wx} naive rules need w to be low
if w
then x (=7
else x =7

{xx}

Leveraging Standard Assertions Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Agreement Assertions

{} no assumptions about w
if w
then x (=7
else x =7

{}

assert(x =7)

{xx}

Leveraging Standard Assertions

{} no assumptions about w
if w
then x (=7
else x =7

{}

assert(x =7)

{xx}

Integrate with assertion checker (ESC/Java2,

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Agreement Assertions

BLAST)

Heap Manipulation in Hoare-Like Logics Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Recall rule for variable assignment:

{OE/x]} x = E {0}
For field update, we could try

{6|E/x.f]} x.f := E {¢}
so that for example

{w=T7Ay.f=5}xf.=w{x.f=7TANy.f =05}

but this is incorrect if x and y alias.
(Above is main motivation for separation logic.)

Example Setting

Motivated by an actual program, provided by
Rockwell-Collins, used in hardware verification of
operational amplifiers.

ddx =1 ddx = 2 ddx =3
wval =5 val =7 wval = 8
.src = .Src = .Src =

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

Example Setting

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Yy = X.Src; Object Invariants
ddx =1 .idx Jdx = 3
wval =5 val val =8
.Src = .Src .SIc =
X

Example Setting

y = X.SIc;
t:=y.val,
ddx =1
val =8
.src =
X

x.val ==t
Jddx = 2 ddx =3
val =7 wval = 8
.Src = .Src =

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

Example Setting

y = X.SIc;
t:=y.val, x.wal =t
result := x.val

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

result = 8 Object Invariants
ddx =3
val =8
.Src =

ddx =1 ddx =2

val =8 val =7

.src = src =
X

Object Flow Invariant

Overall policy: odd elements should be public
y = x.src; I := x.idx
t:=y.val, x.wal =t

result := x.val
{odd(i) = result x }

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

O bject FIOW I nva ri a nt Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Overall policy: odd elements should be public

y = X.SIC: I — XIdX Object Invariants
=y.wal, x.al .=t
result := x.val
{odd(i) = result x }

Object Flow Invariant (holds for object in steady state)

{odd(o.idx) = o.val x}
{odd(o.idx) = o.src x }

O bject FIOW I nva ri a nt Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Overall policy: odd elements should be public

y 1= x.src; [:= x.idx Object Invariants
assert(odd(i) — odd(y.idx))
=y.wal, x.al .=t
result := x.val
{odd(i) = result x }

Object Flow Invariant (holds for object in steady state)

{odd(o.idx) = o.val x}
{odd(o.idx) = o.src x }

Intuition: to update odd elements, only use odd elements

Scopi ng Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

» All objects are manipulated within scopes.

» Each scope must maintain the object invariant Object Invariants
(cf. pack/unpack in Boogie)

» Then aliasing issue become irrelevant.

1 Verification Condition
Scopl n g Generation for
Conditional Information

Flow

Amtoft & Banerjee

» All objects are manipulated within scopes.

» Each scope must maintain the object invariant
(cf. pack/unpack in Boogie)

» Then aliasing issue become irrelevant.

Object Invariants

Yy 1= X.src; open x {

i = x.idx y = .src; i = .idx }

1 Verification Condition
Scopl n g Generation for
Conditional Information

Flow

Amtoft & Banerjee

» All objects are manipulated within scopes.

» Each scope must maintain the object invariant
(cf. pack/unpack in Boogie)

» Then aliasing issue become irrelevant.

Object Invariants

a _ open x {
=X , open y {

assert(odd(/)) assert(odd(i) — odd(.idx));
— odd(y.idx) t = .val }

t:=y.val, -

Scopi ng Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

» All objects are manipulated within scopes.

» Each scope must maintain the object invariant
(cf. pack/unpack in Boogie)

» Then aliasing issue become irrelevant.

Object Invariants

a _ open x {
=X , open y {

assert(odd(/)) assert(odd(i) — odd(.idx));
— odd(y.idx) t = .val }

t:= y.val, open x {

x.val .=t

result := x.val
wval :=t; result := .val }

Scopi ng Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

» All objects are manipulated within scopes.

» Each scope must maintain the object invariant
(cf. pack/unpack in Boogie)

» Then aliasing issue become irrelevant.

Object Invariants

a _ open x {
=X , open y {

assert(odd(/)) assert(odd(i) — odd(.idx));
— odd(y.idx) t = .val }

t:= y.val, open x {

x.val .=t

assert(.idx = 1)
wval :=t; result := .val }

result ;= x.val

Propagating Assertions

open x
assert .idx =i
wval =t
result := .val

close x

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

Propagating Assertions

Object invariant:
odd(.idx) = .val x, odd(.idx) = .src X

open x
assert .idx =i
wval =t
result := .val

close x
odd(i) = result x

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

Propagating Assertions

Object invariant:
odd(.idx) = .val x, odd(.idx) = .src X

open x

assert .idx = |

wval =t
result == .val
odd(i) = result x, odd(.idx) = .val x, odd(.idx) = .src X
close x

odd(i) = result x

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

Propagating Assertions

Object invariant:
odd(.idx) = .val x, odd(.idx) = .src X

open x
assert .idx = |

wval =t
odd(i) = .val x, odd(.idx) = .val x, odd(.idx) = .src x
result := .val
odd(i) = result x, odd(.idx) = .val x, odd(.idx) = .src x
close x
odd(i) = result x

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Object Invariants

Propagating Assertions Verfication Condition
Conditional Information
Flow
ObjeCt invariant: Amtoft & Banerjee

odd(.idx) = .val x, odd(.idx) = .src X

Introduction
Agreement Assertions
Object Invariants
The Algorithm
Implementation
open x Conclusion
Extra Material
assert .idx =/
odd(i) = t X, odd(.idx) = t x, odd(.idx) = .src x
wval =t
odd(i) = .val x, odd(.idx) = .val x, odd(.idx) = .src x
result := .val
odd(i) = result x, odd(.idx) = .val x, odd(.idx) = .src x
close x
odd(i) = result x

Propagating Assertions Verfication Condition
Conditional Information
Flow

ObjeCt invariant: Amtoft & Banerjee
odd(.idx) = .val x, odd(.idx) = .src X

Introduction
Agreement Assertions
Object Invariants
The Algorithm
Implementation
open x Conclusion
odd(i) N\ .idx =i = t x, odd(.idx) A .idx = i = .src X Extra Material
assert .idx =/
odd(i) = t X, odd(.idx) = t x, odd(.idx) = .src x

wval =t
odd(i) = .val x, odd(.idx) = .val x, odd(.idx) = .src x
result := .val
odd(i) = result x, odd(.idx) = .val x, odd(.idx) = .src x
close x

odd(i) = result x

Propagating Assertions Verfication Condition
Conditional Information
Flow

ObjeCt invariant: Amtoft & Banerjee
odd(.idx) = .val x, odd(.idx) = .src X

Introduction
Agreement Assertions

Object Invariants

The Algorithm

true = x X, odd(i) = t x N
open x Conclusion

odd(i) N\ .idx =i = t x, odd(.idx) A .idx = i = .src X Extra Material

assert .idx =/
odd(i) = t X, odd(.idx) = t x, odd(.idx) = .src x

wval =t
odd(i) = .val x, odd(.idx) = .val x, odd(.idx) = .src x
result := .val
odd(i) = result x, odd(.idx) = .val x, odd(.idx) = .src x
close x

odd(i) = result x

Propagating Assertions Verfication Condition
Conditional Information
Flow

ObjeCt invariant: Amtoft & Banerjee
odd(.idx) = .val x, odd(.idx) = .src X

Introduction

Agreement Assertions

true = x X st [varins
e The Algorithm
true = x X, odd(i) = t x Implementation
open x et
odd(i) N .idx =i = t x, odd(.idx) A .idx = i = .src X Extra Material

assert .idx =/

odd(i) = t x, odd(.idx) = t x, odd(.idx) = .src x
wval =t

odd(i) = .val x, odd(.idx) = .val x, odd(.idx) = .src x
result := .val

odd(i) = result x, odd(.idx) = .val x, odd(.idx) = .src x

close x
odd(i) = result x

The Algorithm VCgen

Program

VCgen

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

The Algorithm

The Algorlth m VCgen Verification Condition

Program

Generation for
Conditional Information
Flow

Amtoft & Banerjee

Precondition

The Algorithm

VCgen

Verification
Conditions

The Algorithm VCgen

Precondition

VCgen

Program

Verification
Conditions

Always terminates, given loop & object invariants, but
VC may fail (if invariants not strong enough)

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

The Algorithm

The Algorith m VCgen Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

The Algorithm

Program

Verification
Conditions

Always terminates, given loop & object invariants, but
VC may fail (if invariants not strong enough)

Syntax & Semantics

RS

skip

assert(¢)

RS : RS

if B then RS
else RS

while B do RS

x:=A

f=A

TS

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

skip
assert(¢)
TS: TS The Algorithm
if B then TS TS
else TS
while B do TS
x:=A

new x RS
open x RS

Syntax & Semantics

RS skip TS
assert(¢)
RS : RS
if B then RS
else RS
| while B do RS
| x:=A
| f:=A

s,r [RS] s',r

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

skip
assert(¢)
TS: TS The Algorithm
if B then TS TS
else TS
while B do TS
x:=A

new x RS
open x RS

s,h [TS] s’ .0

s: store, r: object state (maps fields to values), h: heap

Correctness Properties Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

The Algorithm
RS

e/

Correctness Properties Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

s,ros,n E 0O E=VC

IIRS]] RS The Algorithm

S s o

Correctness Properties Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

srosun Eg O =VC
IIRS]] RS The Algorithm
! /

/ —
s osun Fs @

» For RS, the heap stays the same

Correctness Properties Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

ssh ss.h Fg © =VC

[[TS]] TS The Algorithm

sh shy Ep @

» For RS, the heap stays the same
» For TS, the heap may be augmented

Correctness Properties Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

ssh ss.h Fg © =VC

[[TS]] TS The Algorithm

sh shy Ep @

» For RS, the heap stays the same
» For TS, the heap may be augmented

» This is termination insensitive

Correctness Properties Verification Conditon
Conditional Information
Flow

Amtoft & Banerjee

ssh ss.h Fg © =VC

[[TS]] TS The Algorithm

sh shy Ep @

» For RS, the heap stays the same
» For TS, the heap may be augmented

» This is termination insensitive
» Auxiliary lemmas tell about R component
» write confinement, aka “* property”

Assign ments Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

R Implementation

X =y+z

e’ X>7T=wK w>5=xK

[V(];"F]{@} (R)<=x = A{9'}

Assign ments Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

© y+z>7T=wkx w>5=(y+2z)x
R X::y+z Implementation
© x>T=wx w > 5= x K

[VC]{©} (R)<—= x = A{O'}
iff R={(¢[A/x] = E[A/x]x, ¢ = Ex)
| (0= Ex)e®

and © = dom(R) and VC = ()

Assign ments Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

© y+z>7T=>wx w>5=(y+2z)x
R X::y+z Implementation
© x>T=wx w > 5= x K

[VC]{©} (R)<—= x = A{O'}
iff R ={(¢[A/x] = E[A/x] x,7v,¢ = E x)
| (p = Ex) €@,
v = miff x € fv(E)
and © = dom(R) and VC = ()

Verification Condition

Conditionals Generation for

Conditional Information
Flow

Amtoft & Banerjee

v>3=>wK
ify>5
v>3=>wK v>3=wK
X =w Z =V
Implementation
v>3= wkKX

[VC]{©} (R)<= if B then S else 5, {©'}
iff [VC1]{@1} (R1)<: S {@/}
and [VCQ]{@Q} (R2)<: S {@’} and VC = VG, U V(G
and R=RyUR]; UR,URj and © = dom(R)
where Ry = {(¢ = E x,u,0')
| (6= Ex,u,0) € Ry,
(d):> El><,u,9,) €ER;

Verification Condition

Conditionals Generation for

Conditional Information
Flow

(z>3Ay>5)V(v>3Ay<5)=wx fimeoft & Baneree
ify>5
z>3=>wkKX v>3=wK

X =w Z .=V

Implementation

z>3=>wK

[VC]{©} (R)<= if B then S else 5, {©'}
iff [VC1]{@1} (R1)<: S {@/}
and [VCQ]{@Q} (R2)<: S {@’} and VC = VG, U V(G
and R=RyUR]; UR,URj and © = dom(R)
where Ry = {(((¢1 A B) V (¢2 A —=B)) = E x,u,0)
| (61 = Ex,u,0) € Ry,
(d)Q = EIX,U,QI) € Ry

Verification Condition

Conditionals Generation for
Conditional Information
Flow
z>TA y >h=wkx Amtoft & Banerjee
ify>5
z>7T=wK v>T7= XK
X =w zZ . =V

Implementation

z>71T=xK

[VC]{©} (R)<= if B then S; else 5, {©'}
iff [VC1]{@1} (R1)<: S {@/}
and [VCQ]{@Q} (R2)<: S {@’} and VC = VG, U V(G
and R=RyUR]; UR,URj and © = dom(R)
where R{ = {((¢1 A B) = E1 x, m,§)
| ((f)l = E I><,’y,(9/) € Ry,
vy=mor(,m0) e R

Verification Condition

Conditionals Generation for

Conditional Information
Flow

Z>7/\y>5:>W[>< V>7/\y§5$XD< Amtoft & Banerjee
ify>5
z>1=wK v>T7=XxK
X =W Z .=V

Implementation

z>71T=xK

[VC]{©} (R)<= if B then S; else 5, {©'}
iff [VC1]{@1} (R1)<: S {@/}
and [VCQ]{@Q} (R2)<: S {@’} and VC = VG, U V(G
and R=RyUR]; UR,URj and © = dom(R)
where R} = {((¢2 A =B) = E; x,m,0")
| ((f)z = E I><,’y,(9/) € Ry,
y=mor(,m0)eR

Verification Condition

Conditionals Generation for

Conditional Information
Flow

Z>7/\y>5:>W[>< V>7/\y§5$XD< Amtoft & Banerjee
(z>7TANy>5)V(v>7TAy<5)=(y>5)K
ify>5
z>T7T= wkK v>T7= XK
X =w Z:=vV

Implementation

z>71T=xK

[VC]{©} (R)<= if B then S; else 5 {©'}
iff [VC1]{@1} (R1)<: 5 {@/}
and [VC2]{92} (R2)<: S {@’} and VC = VG U VG
and R=RyUR]; UR,URj and © = dom(R)
where Ry = {(((61 1 B) V (62 A ~B)) = B x, m, /)
| (¢1= E1x,71,0") € Ry,
(¢2 = E2 [><77279/) € R21
M=mory=m

Simplification

Needs to apply rules like

¢ = (x+w)Kx
(x=1Ax#1)=wkx

x=1=xKx

= ¢=>xK, p=>w X

=
=

T=0 x
T=0x

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Implementation

Ongoing Work

vV v.v. v Yy

implementation (Jonathan Hoag)
compute loop invariants

interprocedural (given method summaries)
array manipulation

language for conditional information flow
(extending SPARK)

conditional information flow for state chart language

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Conclusion

Verification Condition

PreViOUS Work Generation for

Conditional Information
Flow

Amtoft & Banerjee

Logic can be augmented by points-to assertions x ~» L
[Amtoft/Bandhakavi/Banerjee POPL'06]
» If also y ~» Ly with L and L disjoint, then x and y
cannot alias.
Conclusion

» semantically sound
» sound intraprocedural algorithm

Verification Condition

PreViOUS Work Generation for

Conditional Information
Flow

Amtoft & Banerjee

Logic can be augmented by points-to assertions x ~» L
[Amtoft/Bandhakavi/Banerjee POPL'06]
» If also y ~» Ly with L and L disjoint, then x and y
cannot alias.
» semantically sound Conclusion
» sound intraprocedural algorithm
Problems:
» algorithm needs to be told the shape of the heap
(might be overcome by Indus)
» does not easily integrate with programmer assertions

» logic does not capture conditional information flows

Verification Condition
Related Work Generation for
Conditional Information
Flow

Self-composition At 03 Beneies

{xx}
P

{wx}

is equivalent to (using primes for fresh copies)

{X = X/} Conclusion
P;
P/

{w=w'}

which can in principle be checked by tool for standard

safety analysis.

Verification Condition
Related Work Generation for
Conditional Information
Flow

Self-composition At 03 Beneies

{xx}
P

{wx}
is equivalent to (using primes for fresh copies)

{X = X/} Conclusion
P;
P/

{w=w'}

which can in principle be checked by tool for standard

safety analysis.

» For good results, need to combine with security
static analysis [Terauchi/Aiken, SAS'05]

» To deal with heap manipulation, more machinery is
needed [Naumann, ESORICS'06]

Future Work Verfeaten Condtin

vV v v Yy

v

Conditional Information
Flow

Amtoft & Banerjee

Integrate with automatic safety analysis tool
compute object invariants
compute method summaries Conclusion

compilation from structured code to state chart, also
compiling information flow assertions

applications to declassification

» concurrency

Language for Conditional Information Flow

SPARK has annotations
derives wy from xi,x»

derives wy from x»,Xx3

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

Language for Conditional Information Flow

SPARK has annotations
derives wy from xi,x»

derives wy from x»,Xx3

wg X ————

R

wy X — 00O

X1 X
Xo X

X3 X

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

Language for Conditional Information Flow

SPARK has annotations
derives wy from xj,xp» when ¢

derives wy from xp,x3 when ¢o

(/51:>W1l><

¢2:>W2[><

//’l;‘ﬁ = X1 X
wwz = X X

3= x3 X

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

ASSG rtions Verification Condition

Generation for
Conditional Information
Flow

Amtoft & Banerjee

[VC]{©} (R) <= assert(¢p) {©'}
iff R={((6Ado)= Ex,up=Ex)
| (0= Ex)e @
and © = dom(R) and VC = ()

Extra Material

Verification Condition

Asse rtions Generation for

Conditional Information
Flow

Amtoft & Banerjee

[VC]{©} (R) <= assert(¢p) {©'}
iff R={((6Ado)= Ex,up=Ex)
| (0= Ex)e @
and © = dom(R) and VC = ()

Extra Material

© y<b5Ay>T7T=1zx w>5Ay>7=xK

R assert(y >7)

o’ y<b=zKx w>5= xK

Verification Condition

Asse rtions Generation for

Conditional Information
Flow

Amtoft & Banerjee

[VC]{©} (R) <= assert(¢p) {©'}
iff R={((6Ado)= Ex,up=Ex)
| (0= Ex)e @
and © = dom(R) and VC = ()

T Extra Material

© w>5ANy>7= xX

R assert(y >7)

o’ y<b=zKx w>5= xK

Sequential Com position Verification Condition

Generation for
Conditional Information

Flow
{@} (R)<: 51 ,52 {@/} Amtoft & Banerjee
iff {07} (Ry)<—= S, {6/} and {O} (R1)<— S {6}
and R = {(9a779/) ‘ 39//7’71772 :
(0,7,0") € Ry, (0",72,0") € R
where y=miff yy =mory=m
93 eb ec
A A A Extra Material
S1
0 0 o
S

0, 0 0

Procedure Calls

Procedure p modifies X = {x}

Precondition for x x: {y >0=zx,y <0=wkKx, y X}
derives x from z when y > 0, from w when y <0

{0} (R)<=call p{©'}

iff

R=R,URyURy, and © = dom(R)

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

P roced ure Ca I |s Verification Condition

Generation for
Conditional Information
Flow

Procedure p modifies X = {x}
Precondition for x x: {y >0=zx,y <0=wkKx, y X}
derives x from z when y > 0, from w when y <0

Amtoft & Banerjee

{0} (R) <= call p {©'}
iff R=R,URyURyand © =dom(R)
where R, = {(rm}(¢) = E x,u,¢ = E x)
| (p=Ex)e @ AAE)NX =0}

Extra Material

y>0=wx

T call p

x>0Ay>0=wx

P roced ure Ca I |s Verification Condition

Generation for
Conditional Information
Flow

Procedure p modifies X = {x}
Precondition for xx: {y >0=2zx,y < 0= wx, y X}
derives x from z when y > 0, from w when y <0

Amtoft & Banerjee

{0} (R) <= call p {©'}
iff R=R,URyURyand © =dom(R)
where Ry = {(rm{(¢) = v x,m, ¢ = E x)
| (p=Ex)e®,vefv(E)\ X C fv(E)}

Extra Material

w>0=vK,
y>0=wx

bow

x>0Ay>0=>wx w>0= (x+v)x

P roced ure Ca I |s Verification Condition

Generation for
Conditional Information
Flow

Procedure p modifies X = {x}
Precondition for x x: {y >0=zx,y <0=wkKx, y X}

derives x from z when y > 0, from w when y <0

Amtoft & Banerjee

{0} (R) <= call p {©'}
iff R=R,URyURyand © =dom(R)
where Ry, = {(rmy(¢) A ¢x = Ex x,m, ¢ = E x)
| (p = Ex) e @, xefv(E)Nn X}
w>0=vXx, w>0=yKx
y>0=wK w>0ANy>0=zK
w>0ANy <0=wKx

o

x>0Ay>0=>wx w>0=(x+v)x

Extra Material

While Loops

Need iteration

while i < 7 do

r X

if odd(i)
thenr:=r+v;v:=v+h
else v := x;

i=i+1

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

Wh | |e LOOpS Veng:tel:;us:r;::non

Conditional Information

Flow
Need iteration Amtoft & Banerjee
while i < 7 do
if odd(i)
thenr:=r+v;v:=v+h
else v := x;
i=i+1 Extra Material

r X

= K
F h
F i
T r
F v
F X

Wh | |e LOOpS Veng:tel:;us:r;::non

Conditional Information

Flow
Need iteration Amtoft & Banerjee
while i < 7 do
if odd(i)
thenr:=r+v;v:=v+h
else v := x;
i=i+1 Extra Material

r X

= KX
F F h
F T i
T T r
F odd(i) v
F F X

Wh | |e LOOpS Verlgzz;telfalg:r;::non

Conditional Information

Flow
Need iteration Amtoft & Banerjee
while i < 7 do
if odd(i)
thenr:=r+v;v:=v+h
else v := x;
i=i+1 Extra Material
rix
= K
F F F h
F T T i
T T T r
F odd(i) odd(i) v
F F —odd(i) X

1 Verification Condition
Wh I |e Loops Generation for
Conditional Information
Flow

Need iteration to reach fixed point Amtoft & Banerjee
while i < 7 do

if odd(i)

thenr:=r+v;v:i=v+h

else v := x;

i=i+1 Extra Material
rx

by e B B s Ml |
S
SN B

X < N - 3>X

While Loops, continued

while x > 5 do
x:=x-1;
y=y+1

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

While Loops, continued

while x > 5 do
x:=x-1;
y=y+1

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

y>25

N < X | X

While Loops, continued

while x > 5 do

x:=x-1;
y=y+1
X
T T X
F F 3%
z

y>25 y>24

Verification Condition
Generation for
Conditional Information
Flow

Amtoft & Banerjee

Extra Material

Verification Condition

While Loops, continued fication Condi
Conditional Information
Flow

Amtoft & Banerjee

Iteration may not terminate.

while x > 5 do

x:=x-1;
y=y+1 Extra Material
= KX
T T T X
F F F 3%
z

y>25 y>24 y>23

Verification Condition

While Loops, continued fication Condi
Conditional Information

Flow

Amtoft & Banerjee

Iteration may not terminate. Use widening.

while x > 5 do

x:=x-1;
y=y+1 Extra Material
= KX
T T T T X
F F F F y
z

y>25 y>24 y>23 T

	Introduction
	Agreement Assertions
	Object Invariants
	The Algorithm
	Implementation
	Conclusion
	Extra Material

