CIS 761. Database Management Systems Lecture notes on "The Chase"

Torben Amtoft

March 3, 2006

A typical problem

Assume that the relation r satisfies the functional dependency

$$
A \rightarrow B
$$

and the multi-valued dependency

$$
B \rightarrow \rightarrow C .
$$

We want to use the above dependencies to simplify the query q given by

$$
q=\Pi_{A B D}(r) \bowtie \Pi_{A C}(r) .
$$

The solution

Assume that t is a tuple in q. Let $t=(a, b, c, d)$, then we know that $(a, b, d) \in$ $\Pi_{A B D}(r)$ and that $(a, c) \in \Pi_{A C}(r)$. Therefore, there exists $c^{\prime}, b^{\prime}, d^{\prime}$ such that r contains the tuples

$$
\begin{array}{llll}
A & B & C & D \\
\hline a & b & c^{\prime} & d \\
a & b^{\prime} & c & d^{\prime}
\end{array}
$$

Since r satisfies $A \rightarrow B$, we infer that $b=b^{\prime}$, and the situation is therefore that r contains the tuples

$$
\begin{array}{llll}
A & B & C & D \\
\hline a & b & c^{\prime} & d \\
a & b & c & d^{\prime}
\end{array}
$$

and since r satisfies $B \rightarrow C C, r$ also contains the tuples

$$
\begin{array}{llll}
A & B & C & D \\
\hline a & b & c^{\prime} & d \\
a & b & c & d^{\prime} \\
a & b & c & d \\
a & b & c^{\prime} & d^{\prime}
\end{array}
$$

In particular, we see that $t=(a, b, c, d) \in r$. Since t was an arbitrary tuple in q, this shows that $q \subseteq r$. Clearly, $r \subseteq q$, so $q=r$. Thus, the complex query q can be reduced to the simple query r.

For more material on "the chase", see [Abiteboul \& Hull \& Vianu, 1995].

