CIS 301, Spring 2008, Exam I, model solutions

Question 1

A	B	C	P:	$A \leftrightarrow ($	$(B \land \neg C)$	Q:	$\neg((\neg B \lor C$	$() \rightarrow A)$
T	T	T		\mathbf{F}	F F		$\mathbf{F} \ F \ T$	Т
T	T	F		\mathbf{T}	T T		$\mathbf{F} F F$	T
T	F	T		\mathbf{F}	F F		$\mathbf{F} \ T \ T$	T
T	F	F		\mathbf{F}	F T		$\mathbf{F} \ T \ T$	T
F	T	T		\mathbf{T}	F F		$\mathbf{T} F T$	F
F	T	F		\mathbf{F}	T T		$\mathbf{F} F F$	T
F	F	T		\mathbf{T}	F F		$\mathbf{T} \ T \ T$	F
F	F	F		\mathbf{T}	F T		$\mathbf{T} \ T \ T$	F

P is true in every row where Q is true, showing that P is a tautological consequence of Q. The completeness result mentioned on p.219 now tells us that P can be proved from Q.

On the other hand, line 2 shows that Q is not a tautological consequence of P. From the soundness result mentioned on p.215, we infer that Q cannot be proved from P.

Question 2	$1.(P \rightarrow$	$\rightarrow \neg R) \lor (Q \to \neg R)$	We write line numbers even though not required			
	2.R		"Assume R"			
		3. $P \wedge Q$	Starting proof by contradiction			
		4. <i>P</i>	\wedge Elim (3)			
		5. $P \rightarrow \neg R$	Case 1			
		$6. \neg R$	\rightarrow Elim (4, 5)			
		7. ⊥	\perp Intro (2, 6)			
		8. Q	\wedge Elim (3)			
		9. $Q \rightarrow \neg R$	Case 2			
		10. $\neg R$	\rightarrow Elim (8, 9)			
		11. ⊥	\perp Intro (2, 10)			
		12. ⊥	\vee Elim (1, 5–7, 9–11)			
	13.	$\neg (P \land Q)$	\neg Intro (3–12)			
	14. $R \to \neg (P \land Q)$		\rightarrow Intro (2–13)			

Question 3

First note that we have the following *modularity* property: changes to the preamble can never violate proof item 2 or proof item 3, while changes to the loop body can never violate proof item 1 or proof item 3.

Change 2 violates item 1, since $0 \neq \text{fac}(0)$. (But not item 4, since that argument does not depend on y.) That is, the invariant is never established (and in fact, the program is wrong as it always returns y = 0).

Change 3 violates item 4, since if $\mathbf{x} = 0$, the identifier \mathbf{z} will never equal \mathbf{x} . (But item 1 is not violated, as 1 = fac(1).)

Change 4 violates item 2, since we now have $\mathbf{y}' = \mathbf{y} \cdot \mathbf{z} = \operatorname{fac}(\mathbf{z}) \cdot \mathbf{z}$ which is not equal to $\operatorname{fac}(\mathbf{z}') = \operatorname{fac}(\mathbf{z} + 1) = \operatorname{fac}(\mathbf{z}) \cdot (\mathbf{z} + 1)$. (In particular, after the first loop iteration we have $\mathbf{y}' = 0 \neq 1 = \operatorname{fac}(1) = \operatorname{fac}(\mathbf{z}')$.)