CIS 301, Spring 2008, Exam II, model solutions

Question 1

$$
\begin{array}{ll}
\forall \mathbf{x}(\operatorname{Tet}(\mathbf{x}) \rightarrow \neg \operatorname{Small}(\mathbf{x})) \\
\exists \mathbf{x}(\operatorname{Large}(\mathbf{x}) \wedge \operatorname{Dodec}(\mathbf{x}) \wedge \forall \mathbf{y}((\operatorname{Large}(\mathbf{y}) \wedge \operatorname{Dodec}(\mathbf{y})) \rightarrow \mathbf{y}=\mathbf{x})) \\
\forall \mathbf{x}(\operatorname{Cube}(\mathbf{x}) \rightarrow \exists \mathbf{y}(\mathbf{y} \neq \mathbf{x} \wedge \operatorname{SameSize}(\mathbf{x}, \mathbf{y}))) \\
\{0=4 \cdot(\mathrm{x}-\mathrm{x})\} & \\
\quad \mathrm{y}:=0 ; & \\
\left\{\begin{array}{l}
\mathrm{y}=4 \cdot(\mathrm{x}-\mathrm{x})\} \\
\\
\mathrm{w}:=\mathrm{x} ;
\end{array}\right. & \text { Assignment } \\
\{\mathrm{y}=4 \cdot(\mathrm{x}-\mathrm{w})\} & \text { Assignment } \\
\quad \mathrm{while} \mathrm{w} \neq 0 \text { do } & \\
\{\mathrm{y}=4 \cdot(\mathrm{x}-\mathrm{w}) \wedge \mathrm{w} \neq 0\} & \text { WhileTrue } \\
\{\mathrm{y}+4=4 \cdot(\mathrm{x}-(\mathrm{w}-1))\} & \text { Implies } \\
\quad \mathrm{y}:=\mathrm{y}+4 ; & \text { Assignment } \\
\{\mathrm{y}=4 \cdot(\mathrm{x}-(\mathrm{w}-1))\} & \text { Assignment } \\
\quad \mathrm{w}:=\mathrm{w}-1 & \\
\{\mathrm{y}=4 \cdot(\mathrm{x}-\mathrm{w})\} & \text { WhileFalse } \\
\quad \text { od } & \text { Implies }
\end{array}
$$

Question 2

Since $0=4 \cdot(\mathrm{x}-\mathrm{x})$ always holds, ϕ_{0} could be anything. On the other hand, remember that the above proof shows only partial correctness. To ensure termination, we must demand that $\mathrm{x} \geq 0$.

Question 3

1. $\forall x(P(x) \rightarrow(Q(x) \vee R(x)))$
2. $\exists y(P(y) \wedge \neg Q(y))$
3. $a P(a) \wedge \neg Q(a) \quad$ (name the object satisfying P but not Q)
4. $P(a) \rightarrow(Q(a) \vee R(a)) \quad \forall$ Elim:1
5. $P(a) \wedge R(a) \quad$ TautCon : 3, 4
6. $\exists w(P(w) \wedge R(w)) \quad \exists$ Intro : 5
7. $\exists w(P(w) \wedge R(w)) \quad \exists$ Elim : 2, 3-6

Question 4 If we replace SameRow and SameCol by SameSize then (a) says that all cubes have the same size - which clearly does not imply (b). To make (b) a FO consequence of (a), we must capture that two different objects cannot occupy the same square; this can be achieved by the axiom
$\forall x \forall y((\operatorname{SameRow}(x, y) \wedge \operatorname{SameCol}(x, y)) \rightarrow x=y)$.
If we replace SameRow and SameCol by Larger then (a) says that all cubes are larger than each other, which can only hold if there are no cubes - a stronger property than (b), and hence not implied by (b). To make (a) a FO consequence of (b), we must capture that a cube is in the same row and same column as itself; this can be achieved by the axiom (where of course we could omit the antecedent "Cube (x)")

$$
\forall x(\operatorname{Cube}(x) \rightarrow(\operatorname{SameRow}(x, x) \wedge \operatorname{SameCol}(x, x)))
$$

