CIS 301, Spring 2008, Exam III, model solutions

Question $1 \quad A: \forall i \forall j((i<k \wedge j<k \wedge i \neq j) \rightarrow \mathrm{a}[i] \neq \mathrm{a}[j])$.
B : From the loop test we see that at loop exit we have $\mathrm{q} \geq k-1$, which combined with the invariant entails that $\mathrm{q}=k-1$. Now let j be given, with $j<k-2$; we must prove that either a $[j+1]$ is greater than both of $\mathrm{a}[j]$ and $\mathrm{a}[j+2]$, or smaller than both. There are two cases; in both we exploit that $j<\mathrm{q}$ and $j+1<\mathrm{q}$.
j is odd : The invariant tells us that $\mathrm{a}[j]<\mathrm{a}[j+1]$, and since $j+1$ is even, the invariant further tells us that $\mathrm{a}[j+2]<\mathrm{a}[j+1]$. This establishes (the first disjunct of) the desired conclusion.
j is even : The invariant tells us that $\mathrm{a}[j+1]<\mathrm{a}[j]$, and since $j+1$ is odd, the invariant further tells us that $\mathrm{a}[j+1]<\mathrm{a}[j+2]$. This establishes (the second disjunct of) the desired conclusion.
C : It is sufficient to assign zero to q . Then perm $\left(\mathrm{a}, a_{0}\right)$ follows from the precondition; we have $\mathrm{q}<k$ due to $k \geq 1$ being in the precondition; finally, $\forall(j<q \rightarrow \ldots)$ holds vacuously.
D : We use a' to denote the new value of a. Recall that our assumptions are that q is odd, and that $\mathrm{a}[\mathrm{q}+1]<\mathrm{a}[\mathrm{q}]$; we must establish (since q is odd) that $a^{\prime}[q]<a^{\prime}[q+1]$. For that purpose, it will suffice to execute $\operatorname{swap}(\mathrm{a}[\mathrm{q}], \mathrm{a}[\mathrm{q}+1])$.
We are not done with our proof obligations yet, however; since we have modified $\mathrm{a}[\mathrm{q}]$, we need to check that the invariant is maintained also when $j=\mathrm{q}-1$. But $\mathrm{q}-1$ is even, so the invariant ensures that $\mathrm{a}[\mathrm{q}]<\mathrm{a}[\mathrm{q}-1]$; we must prove that $a^{\prime}[q]<a^{\prime}[q-1]$. But by our case assumption $a[q+1]<a[q]$ we get $a[q+1]<a[q-1]$, which amounts to the desired $a^{\prime}[q]<a^{\prime}[q-1]$.

```
E: \(\mathrm{q}:=0\);
    while \(\mathrm{q}<k-1\) do
    if \((\operatorname{odd}(\mathrm{q}) \wedge \mathrm{a}[\mathrm{q}+1]<\mathrm{a}[\mathrm{q}]) \vee(\operatorname{even}(\mathrm{q}) \wedge \mathrm{a}[\mathrm{q}]<\mathrm{a}[\mathrm{q}+1])\)
    then \(\operatorname{swap}(a[q], a[q+1])\)
    fi;
    \(\mathrm{q}:=\mathrm{q}+1\)
od
```

Question 2 The basis step is when $x=$ nil, and the claim follows (even with " $=$ ") since

$$
\operatorname{sumlist}(\operatorname{incr}(\operatorname{nonneg}(\text { nil })))=\operatorname{sumlist}(\operatorname{incr}(\text { nil }))=\operatorname{sumlist}(\text { nil })=0+0
$$

$$
=\operatorname{sumlist}(\text { nil })+l e n(\text { nil }) .
$$

For the inductive step, where x is of the form m © y, we assume

$$
\operatorname{sumlist}(\operatorname{incr}(\operatorname{nonneg}(y))) \geq \operatorname{sumlist}(y)+\operatorname{len}(y)
$$

and our task is to prove

$$
\operatorname{sumlist}(\operatorname{incr}(\operatorname{nonneg}(x))) \geq \operatorname{sumlist}(x)+\operatorname{len}(x) .
$$

If $m \geq 0$, the goal follows from the calculation

$$
\begin{aligned}
\text { sumlist }(\text { incr }(\text { nonneg }(x)))) & =\text { (definition of nonneg) } \\
\text { sumlist }(\text { incr }(m \mathbb{C} \text { nonneg }(y))) & =\text { (definition of } \text { incr }) \\
\text { sumlist }((m+1) \mathbb{C} \text { incr }(\text { nonneg }(y))) & =\text { (definition of sumlist) } \\
(m+1)+\operatorname{sumlist}(\text { incr }(\text { nonneg }(y))) & \geq \text { (induction hypothesis) } \\
(m+1)+\operatorname{sumlist}(y)+\operatorname{len}(y) & =\text { (rearrange) } \\
(m+\operatorname{sumlist}(y))+(1+\operatorname{len}(y)) & =\text { (definition of sumlist and len) } \\
\operatorname{sumlist}(x)+\operatorname{len}(x) &
\end{aligned}
$$

If $m<0$, the goal follows from the calculation

$$
\begin{aligned}
\operatorname{sumlist}(\operatorname{incr}(\text { nonneg }(x))) & =\text { (definition of nonneg) } \\
\operatorname{sumlist}(\operatorname{incr}(\text { nonneg }(y))) & \geq \text { (induction hypothesis) } \\
\operatorname{sumlist}(y)+\operatorname{len}(y) & \geq \text { (since } 0 \geq m+1) \\
(m+1)+\operatorname{sumlist}(y)+\operatorname{len}(y) & =\text { (rearrange) } \\
(m+\operatorname{sumlist}(y))+(1+\operatorname{len}(y)) & =\text { (definition of sumlist and len) } \\
\operatorname{sumlist}(x)+\operatorname{len}(x) &
\end{aligned}
$$

Now assume that we want to prove the claim with " $=$ " instead of " \geq ". Then it is easy to see that the above proof would carry through, except that the inductive step for the case $m<0$ only works when $0=m+1$. This shows that we have $\operatorname{sumlist}(\operatorname{incr}(\operatorname{nonneg}(x)))=\operatorname{sumlist}(x)+\operatorname{len}(x)$ whenever x is a list where all elements are ≥-1. (For example, if $x=[5,0,-1,3]$ we have $\operatorname{sumlist}(\operatorname{incr}(\operatorname{nonneg}(x)))=\operatorname{sumlist}(\operatorname{incr}([5,0,3]))=\operatorname{sumlist}([6,1,4])=11$ whereas $\operatorname{sumlist}(x)+\operatorname{len}(x)=7+4=11$.)

