CIS 301, Spring 2008, Exam III, model solutions

Question 1

 $A: \forall i \forall j ((i < k \land j < k \land i \neq j) \to \mathbf{a}[i] \neq \mathbf{a}[j]).$

B: From the loop test we see that at loop exit we have $\mathbf{q} \ge k - 1$, which combined with the invariant entails that $\mathbf{q} = k - 1$. Now let j be given, with j < k - 2; we must prove that either $\mathbf{a}[j+1]$ is greater than both of $\mathbf{a}[j]$ and $\mathbf{a}[j+2]$, or smaller than both. There are two cases; in both we exploit that $j < \mathbf{q}$ and $j + 1 < \mathbf{q}$.

- j is odd : The invariant tells us that $\mathbf{a}[j] < \mathbf{a}[j+1]$, and since j+1 is even, the invariant further tells us that $\mathbf{a}[j+2] < \mathbf{a}[j+1]$. This establishes (the first disjunct of) the desired conclusion.
- j is even : The invariant tells us that $\mathbf{a}[j+1] < \mathbf{a}[j]$, and since j+1 is odd, the invariant further tells us that $\mathbf{a}[j+1] < \mathbf{a}[j+2]$. This establishes (the second disjunct of) the desired conclusion.

C: It is sufficient to assign zero to \mathbf{q} . Then $\operatorname{perm}(\mathbf{a}, a_0)$ follows from the precondition; we have $\mathbf{q} < k$ due to $k \geq 1$ being in the precondition; finally, $\forall (j < q \rightarrow \ldots)$ holds vacuously.

D: We use \mathbf{a}' to denote the new value of \mathbf{a} . Recall that our assumptions are that \mathbf{q} is odd, and that $\mathbf{a}[\mathbf{q}+1] < \mathbf{a}[\mathbf{q}]$; we must establish (since \mathbf{q} is odd) that $\mathbf{a}'[\mathbf{q}] < \mathbf{a}'[\mathbf{q}+1]$. For that purpose, it will suffice to execute $\operatorname{swap}(\mathbf{a}[\mathbf{q}], \mathbf{a}[\mathbf{q}+1])$.

We are not done with our proof obligations yet, however; since we have modified $\mathbf{a}[\mathbf{q}]$, we need to check that the invariant is maintained also when $j = \mathbf{q} - 1$. But $\mathbf{q} - 1$ is even, so the invariant ensures that $\mathbf{a}[\mathbf{q}] < \mathbf{a}[\mathbf{q} - 1]$; we must prove that $\mathbf{a}'[\mathbf{q}] < \mathbf{a}'[\mathbf{q} - 1]$. But by our case assumption $\mathbf{a}[\mathbf{q} + 1] < \mathbf{a}[\mathbf{q}]$ we get $\mathbf{a}[\mathbf{q} + 1] < \mathbf{a}[\mathbf{q} - 1]$, which amounts to the desired $\mathbf{a}'[\mathbf{q}] < \mathbf{a}'[\mathbf{q} - 1]$.

```
\begin{array}{ll} E: & \mathbf{q}:=\mathbf{0};\\ & \texttt{while}\;\mathbf{q} < k-1\;\texttt{do}\\ & \texttt{if}\;(\texttt{odd}(\mathbf{q})\wedge\mathtt{a}[\mathbf{q}+1] < \mathtt{a}[\mathbf{q}]) \lor (\texttt{even}(\mathbf{q})\wedge\mathtt{a}[\mathbf{q}] < \mathtt{a}[\mathbf{q}+1])\\ & \texttt{then}\;\texttt{swap}(\mathtt{a}[\mathbf{q}],\mathtt{a}[\mathbf{q}+1])\\ & \texttt{fi};\\ & \mathbf{q}:=\mathbf{q}+1\\ & \texttt{od} \end{array}
```

n 2 The basis step is when x = nil, and the claim follows (even with "=") since sumlist(incr(nonneg(nil))) = sumlist(incr(nil)) = sumlist(nil) = 0 + 0= sumlist(nil) + len(nil).

For the inductive step, where x is of the form $m \odot y$, we assume

 $sumlist(incr(nonneg(y))) \ge sumlist(y) + len(y)$

and our task is to prove

 $sumlist(incr(nonneg(x))) \ge sumlist(x) + len(x).$

If $m \ge 0$, the goal follows from the calculation

sumlist(incr(nonneg(x)))= (definition of *nonneq*) $sumlist(incr(m \odot nonneg(y)))$ = (definition of *incr*) $sumlist((m+1) \odot incr(nonneq(y)))$ (definition of *sumlist*) = (m+1) + sumlist(incr(nonneq(y))) \geq (induction hypothesis) (m+1) + sumlist(y) + len(y)(rearrange) =(m + sumlist(y)) + (1 + len(y))(definition of *sumlist* and *len*) = sumlist(x) + len(x)

If m < 0, the goal follows from the calculation

sumlist(incr(nonneg(x)))(definition of *nonneg*) = sumlist(incr(nonneq(y)))(induction hypothesis) \geq sumlist(y) + len(y) \geq (since $0 \ge m+1$) (m+1) + sumlist(y) + len(y)= (rearrange) (m + sumlist(y)) + (1 + len(y))= (definition of *sumlist* and *len*) sumlist(x) + len(x)

Now assume that we want to prove the claim with "=" instead of " \geq ". Then it is easy to see that the above proof would carry through, except that the inductive step for the case m < 0 only works when 0 = m + 1. This shows that we have sumlist(incr(nonneg(x))) = sumlist(x) + len(x) whenever x is a list where all elements are ≥ -1 . (For example, if x = [5, 0, -1, 3] we have sumlist(incr(nonneg(x))) = sumlist(incr([5, 0, 3])) = sumlist([6, 1, 4]) = 11whereas sumlist(x) + len(x) = 7 + 4 = 11.)

Question 2