Boolean Connectives

Torben Amtoft
Kansas State University
Agenda

- **Chapter 1** introduced basic FOL
 (one main aim of book)
- **Chapter 2** introduced notion of logical consequence
 (other main aim of book)
- **Chapter 3** introduces more features of FOL
Recall that an atomic sentence is a predicate applied to one or more terms:

\[\text{Older}(\text{father}(\text{max}), \text{max}) \]

We now extend FOL with the boolean connectives:

- **and**, to be written \land
- **or**, to be written \lor
- **not**, to be written \neg.
Negation ("not")

Truth table:

<table>
<thead>
<tr>
<th>P</th>
<th>$\neg P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

- Symbol \neg is not standard (cf. p. 91); in emails and on the web I'll write \sim.

- $\neg \neg P$ is equivalent to P
 unlike English, where double negation emphasizes: *it doesn’t make no difference; there will be no nothing*

- $\neg \text{LeftOf}(a, b)$ is not equivalent to $\text{RightOf}(a, b)$
Conjunction ("and")

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

- in emails and on the web I may write \land or $\&$
- English sentences translated using \land may not use "and"

 Max is a tall man \land Tall(max) \land Man(max)
- carry temporal implications

 Max went home and went to sleep
- be expressed using other connectives

 Max was home but Claire was not
Disjunction ("or")

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

- in emails and on the web I may write \(\setminus/\) or \(\lor\).
- the interpretation is "inclusive", not "exclusive":
 \[true \lor true = true\]
- In English, the default is often "exclusive", as when a waiter offers *soup or salad*
- We can express exclusive or (p. 75):
Disjunction ("or")

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

- In emails and on the web I may write \(\lor \) or \(\lor \).
- The interpretation is "inclusive", not "exclusive":
 \[\text{true} \lor \text{true} = \text{true}. \]
- In English, the default is often "exclusive", as when a waiter offers *soup or salad*
- We can express exclusive or (p. 75): \((P \lor Q) \land \neg(P \land Q)\)
- We can also encode "neither nor": \(\neg(P \lor Q)\)
A sentence P is thus given by

- if P is an atomic sentence then P is also a sentence;
- if P_1 and P_2 are sentences then $P_1 \land P_2$ is a sentence;
- if P_1 and P_2 are sentences then $P_1 \lor P_2$ is a sentence;
- if P is a sentence then $\neg P$ is a sentence.

This can be written in “Backus-Naur” notation:

$$P ::= \text{atomic sentence}$$

$$| \quad P \land P$$

$$| \quad P \lor P$$

$$| \quad \neg P$$
Resolving Ambiguity

<table>
<thead>
<tr>
<th>Expression</th>
<th>How to Read It</th>
<th>How Not to Read It</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 + 4 \times 5$</td>
<td>$3 + (4 \times 5) = 23$</td>
<td>$(3 + 4) \times 5 = 35$</td>
</tr>
<tr>
<td>$3 \times 4 + 5$</td>
<td>$(3 \times 4) + 5$</td>
<td>$3 \times (4 + 5)$</td>
</tr>
</tbody>
</table>
Resolving Ambiguity

<table>
<thead>
<tr>
<th></th>
<th>expression</th>
<th>how to read it</th>
<th>how not to read it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3 + 4 \times 5$</td>
<td>$3 + (4 \times 5) = 23$</td>
<td>$(3 + 4) \times 5 = 35$</td>
<td></td>
</tr>
<tr>
<td>$3 \times 4 + 5$</td>
<td>$(3 \times 4) + 5$</td>
<td>$3 \times (4 + 5)$</td>
<td></td>
</tr>
</tbody>
</table>

| **Boolean Algebra** | interpretation I | interpretation II | |
| true \lor false \land false | true \lor (false \land false) evaluates to true | (true \lor false) \land false evaluates to false |
Resolving Ambiguity

<table>
<thead>
<tr>
<th>Expression</th>
<th>How to Read It</th>
<th>How Not to Read It</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 + 4 \times 5$</td>
<td>$3 + (4 \times 5) = 23$</td>
<td>$(3 + 4) \times 5 = 35$</td>
</tr>
<tr>
<td>$3 \times 4 + 5$</td>
<td>$(3 \times 4) + 5$</td>
<td>$3 \times (4 + 5)$</td>
</tr>
</tbody>
</table>

Boolean Algebra

<table>
<thead>
<tr>
<th>Expression</th>
<th>Interpretation I</th>
<th>Interpretation II</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{true} \lor \text{false} \land \text{false}$</td>
<td>$\text{true} \lor (\text{false} \land \text{false})$</td>
<td>$(\text{true} \lor \text{false}) \land \text{false}$</td>
</tr>
<tr>
<td></td>
<td>evaluates to true</td>
<td>evaluates to false</td>
</tr>
</tbody>
</table>

- In the literature, I is often chosen (as \land is considered “multiplication” and \lor is considered “addition”).
Resolving Ambiguity

<table>
<thead>
<tr>
<th>expression</th>
<th>how to read it</th>
<th>how not to read it</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 + 4 \times 5$</td>
<td>$3 + (4 \times 5) = 23$</td>
<td>$(3 + 4) \times 5 = 35$</td>
</tr>
<tr>
<td>$3 \times 4 + 5$</td>
<td>$(3 \times 4) + 5$</td>
<td>$3 \times (4 + 5)$</td>
</tr>
</tbody>
</table>

Boolean Algebra

<table>
<thead>
<tr>
<th>expression</th>
<th>interpretation I</th>
<th>interpretation II</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{true} \lor \text{false} \land \text{false}$</td>
<td>$\text{true} \lor (\text{false} \land \text{false})$</td>
<td>$(\text{true} \lor \text{false}) \land \text{false}$</td>
</tr>
<tr>
<td></td>
<td>evaluates to true</td>
<td>evaluates to false</td>
</tr>
</tbody>
</table>

- In the literature, I is often chosen (as \land is considered “multiplication” and \lor is considered “addition”).
- In the textbook, neither I or II is chosen, instead (p. 80):

 > Parentheses must be used whenever ambiguity would result from their omission.
Resolving Ambiguity

<table>
<thead>
<tr>
<th>Algebra</th>
<th>how to read it</th>
<th>how not to read it</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 + 4 \times 5$</td>
<td>$3 + (4 \times 5) = 23$</td>
<td>$(3 + 4) \times 5 = 35$</td>
</tr>
<tr>
<td>$3 \times 4 + 5$</td>
<td>$(3 \times 4) + 5$</td>
<td>$3 \times (4 + 5)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boolean Algebra</th>
<th>interpretation I</th>
<th>interpretation II</th>
</tr>
</thead>
<tbody>
<tr>
<td>true \lor false \land false</td>
<td>$\text{true} \lor (\text{false} \land \text{false})$ evaluates to true</td>
<td>$(\text{true} \lor \text{false}) \land \text{false}$ evaluates to false</td>
</tr>
</tbody>
</table>

- In the literature, I is often chosen (as \land is considered “multiplication” and \lor is considered “addition”).

- In the textbook, neither I or II is chosen, instead (p. 80):

 Parentheses must be used whenever ambiguity would result from their omission

Negation binds tightly: $\neg P \land Q$ is not equivalent to $\neg(P \land Q)$.
Ambiguity in English

Consider the phrase

\[you \ can \ have \ soup \ or \ salad \ and \ pasta. \]

If the intended meaning is “soup or (salad and pasta)”:

Consider the phrase

\textit{you can have soup or salad and pasta.}

If the intended meaning is “soup or (salad and pasta)”:

\textit{you can have soup or both salad and pasta}

If the intended meaning is “(soup or salad) and pasta”:
Ambiguity in English

Consider the phrase

\textit{you can have soup or salad and pasta.}

If the intended meaning is “soup or (salad and pasta)”:

\textit{you can have soup or both salad and pasta}

If the intended meaning is “(soup or salad) and pasta”:

\textit{you can have soup or salad, and pasta}

or
Ambiguity in English

Consider the phrase

\[\text{you can have soup or salad and pasta.} \]

If the intended meaning is “soup or (salad and pasta)”:

\[\text{you can have soup or both salad and pasta} \]

If the intended meaning is “(soup or salad) and pasta”:

\[\text{you can have soup or salad, and pasta} \]

or

\[\text{you can have pasta and either soup or salad} \]
The Game in Tarski’s World

- Given sentence $P = \text{Cube}(c) \lor \text{Cube}(d)$.
- Given world where c is a cube but d is not.

We: P is false in this world

Opponent: So c is not a cube?

Eh... I admit defeat
Given sentence $P = \text{Cube}(c) \lor \text{Cube}(d)$.
Given world where c is a cube but d is not.

We

Opponent

P is false in this world

So c is not a cube?

Eh... I admit defeat

OK, P is true in this world

Because c is a cube or because d is?

Because d is a cube

You lost but could have won
The Game in Tarski’s World

- Given sentence $P = \text{Cube}(c) \lor \text{Cube}(d)$.
- Given world where c is a cube but d is not.

<table>
<thead>
<tr>
<th>We</th>
<th>Opponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>P is false in this world</td>
<td>So c is not a cube?</td>
</tr>
<tr>
<td>Eh. . . I admit defeat</td>
<td></td>
</tr>
<tr>
<td>OK, P is true in this world</td>
<td>Because c is a cube or because d is?</td>
</tr>
<tr>
<td>Because d is a cube</td>
<td>You lost but could have won</td>
</tr>
<tr>
<td>OK, because c is a cube</td>
<td>You won (finally!)</td>
</tr>
</tbody>
</table>
More about the Game

- Given sentence $P = \text{Cube}(a) \lor \neg\text{Cube}(a)$.

<table>
<thead>
<tr>
<th>We</th>
<th>Opponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>P is true in this world</td>
<td>Because a is a cube or because a is not a cube?</td>
</tr>
<tr>
<td>Eh... I don't know but P will always be true!</td>
<td>Please answer my question!</td>
</tr>
</tbody>
</table>

- Who won the game???