

'p1u0૭ ‘sગ!ןuewəs

$$
\begin{aligned}
& \text { We will be interested in a finite abstraction of the pre-traces and the } \\
& \text { post-traces relevant to the execution of a command. } \\
& \text { The abstract traces are termed independences: an independence } \\
& \mathrm{T} \# \in \text { Independ }=\mathcal{P}((\mathrm{Var} \cup\{\perp\}) \times \text { Var }) \text { is a set of pairs of the form } \\
& {[x \ltimes \mathcal{W}] \text {. }} \\
& \text { If } x \text { is a variable, then }[x \ltimes w] \text { denotes that the current value of } x \text { is } \\
& \text { independent of the initial value of } w . \\
& \text { If } x \text { is } \perp, \text { then the nontermination behavior of the command is } \\
& \text { independent of } w . \text { This is formalized by the following definition of } \\
& \text { when an independence correctly describes a set of traces. }
\end{aligned}
$$

$\{\# \perp=\perp \mid$ OLL $\mathcal{L} \perp\}=(\# \perp) \curlywedge$

