Language-Based
Information-Flow Security

Andrei Sabelfeld = Andrew C. Myers
Cornell University

survey appeared in
IEEE-JSAC, Jan. 2003

Dagstuhl
Oct. 2003

A scenario: free service
software

Users freely download and
use the software providing
a service:

o Grokster, Kazaa,
Morpheus,... are file-
sharing services helping
users exchange files

e Come with “hooks” for
automatic updates

e Support advertisement
to justify cost

Users are tricked to download
software bundled with:

e Homepage/search hijackers
(MySearch)

e Unsolicited pop-up ads
e Rewriting URLs to override
original ads with own

e “"Hooks"” for automatic updates are used to execute
the advertiser’s arbitrary code (MediaUpdate,
DownlLoadware)

e Information gathering—visited URLs and filled forms
are forwarded to a third-party (Gator, IPInsight,
Transponder)

General problem: malicious
and/or buggy code is a threat

e Trends in software
— mobile code, executable content
— platform-independence
— extensibility

e These trends are attackers’ opportunities!
— easy to distribute worms, viruses, exploits, ...
— write (an attack) once, run everywhere

— systems are vulnerable to undesirable
modifications

e Need to keep the trends without
compromising information security

Language-based security

e | ooking under the street light...
Attacker model:
— eavesdropping on network
— modifying network traffic
— trusted communication endpoints

= cryptographic protection of communication

o ...for a key that lies somewhere else!
Real story [CERT]: Most attacks are

— remote penetrations (buffer overruns, format
strings, RPC vulnerabilities,...)

— malware (viruses, worms, DDoS slaves,...)
= need protection at application level

Information security:
confidentiality

Confidentiality: sensitive information must not
be leaked by computation (non-example:
spyware attacks)

End-to-end confidentiality: there is no
insecure information flow through the system

Standard security mechanisms provide no
end-to-end guarantees

— Security policies too low-level (legacy of OS-based
security mechanisms)

— Programs treated as black boxes

Confidentiality: standard
security mechanisms

Access control

+prevents “unauthorized” release of information
- but what process should be authorized?
Firewalls

+permit selected communication

- permitted communication might be harmful
Encryption

+secures a communication channel

- even if properly used, endpoints of
communication may leak data 7

Confidentiality: standard
security mechanisms

Antivirus scanning

+rejects a “black list” of known attacks

- but doesn’t prevent new attacks

Digital signatures

+help identify code producer

-No security policy or security proof guaranteed
Sandboxing/OS-based monitoring

+good for low-level events (such as read a file)

-programs treated as black boxes

= Useful building blocks but no end-to-end
security guarantee

Confidentiality: language-
based approach

e Counter application-level attacks at the level
of a programming language—look inside the
black box! Immediate benefits:

e Semantics-based security specification
— End-to-end security policies
— Powerful techniques for reasoning about
semantics
e Static security analysis
— Analysis enforcing end-to-end security
— Track information flow via security types

— Type checking by the compiler removes
run-time overhead

Dynamic security enforcement

Java’s sandbox, OS-based monitoring,
and Mandatory Access Control dynamically
enforce security policies; But:

E\lgh(secretU __|:=false; from h to Ij

. /\
_ if h then [:=true
[Iow(publlc) else skip

Problem: monitoring a single execution path
is not enough! "

Static certification

e Only run programs which can be
statically verified as secure before
running them

e Static certification for inclusion in a
compiler [Denning & Denning'77]

e More precise implicit flow analysis

e Enforcement by static analysis (e.q.,
security-type systems)

11

A security-type system

Expressions: | €xp : high

h O Vars(exp)

exp : low

Atomic commands (pc represents context):

[pc] = skip

[pc] - h:=exp

exp : low

[low] =1 := exp

A security-type system:
Compositional rules

[high] - C

[low] I C

[pC

- C; [pc]F G,

pc] -Cy; G

mot | expipc [pc] €, [pcl G,

flows:

branches / [pc] - if exp then C, else C,

of a high

if must be

typable in
a high

exp:pc [pc] - C

\contextj [pC] = while exp do C

13

A security-type system:
Examples

[low] F h:=l+4; |:=I-5

[pc] + if h then h:=h+7 else skip

[low] while 1<34 do |:=[+1

[pc]/whne h<4 do I:=I+1

14

Semantics-based security

e What end-to-end policy such a type
system guarantees (if any)?

e Semantics-based specification of
information-flow security [Cohen'77],
generally known as noninterference
[Goguen & Meseguer'82].

A program is secure iff high inputs do not
interfere with low-level view of the system

15

Semantics-based security

e Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

/

2

h1—> —»h’ oy —»h

e Semantics-based security for C:

vmem,mem’. mem =, mem’ = [C[mem ~ [[C]]mem

ow memory equality: |(C’s behavior: || LOW View =
(h) =, (h",I") iff [=I semantics [C] |nd|st|ngwshab|I|
by attacker

Semantics-based security

e What is ~, for our language?

e Intention: [pc] + C = C is secure
I.e., if Cis typable then

V51,55- S1 LS,
= [Cls; = [C]s;
o [Clsyz1L2[Cls,=[C]s; = [C]s,

l
Termination-insensitive
interpretation of ~~ 17

Evolution of language-based
information flow

Before mid nineties two separate lines of work:

Static certification, e.g., [Denning & Denning’76,
Bergeretti & Carré’85, Mizuno & Oldehoeft'87,

Palsberg & @rbaek95]

Security specification, e.g., [Cohen’77, Andrews &
Reitman’80, Banatre & Bryce'93, McLean'94]

Volpano et al.’96: First connection between
noninterference and static certification:
security-type system that enforces
noninterference

18

Evolution of language-based
information flow

Four main categories of current
information-flow security research:

e Enriching language expressiveness
e Exploring impact of concurrency

e Analyzing covert channels (mechanisms not
intended for information transfer)

e Refining security policies

19

Static certification l

Procedures

Functions

Exceptions

Objects l

|
!

Expressiveness

~

Noninterference l

-

Sound security analysis

20

Static certification l Noninterference l

Procedures

-

~ -
~ -
~— -
~ -
~ -
—y -
—y -

Sound security analysis

Functions l

Exceptions

Objects l
|
%

Expressiveness

Nondeterminism

Threads

Distribution l

I
'

Concurrency

21

Concurrency: Nondeterminism

e Possibilistic security: variation of h
should not affect the set of possible |

e An elegant equational security
characterization [Leino & Joshi’00]:
suppose HH (“havoc on h") sets h to an
arbitrary value; C is secure iff

vs.[HH; C; HH|s =~ [C; HH]s

22

Concurrency: Multi-threading

e The high data must be protected at all times:
h:=0; l:=h is secure as a sequential program,
but not when h:=h"is run in parallel

e A type system [Smith & Vol

nondeterministically scheduled threads rejects
high while loops, but not

if h then sleep(100);
l:=1

nano’98] for

eaks via schedulers:

sleep(50); |:=0

e Encoding of a timing leak to a direct leak

23

Concurrency: Multi-threading

e A later work [Volpano & Smith’98] proposes a “protect”
command for wrapping high ifs

e Scheduler-independent security; no need for “protect”
via Agat’s transformation [Sabelfeld & Sands’00]

e Thread synchronization (as by semaphores) may lead
to leaks by blocking [Sabelfeld’01]

e Permissive type systems for multithreaded programs
[Boudol & Castellani'01,’02]

A uniform type system [Honda et al.’00,’02] and a light
type system [Pottier'02] for noninterference in 1
calculus

e Security through low determinism [Zdancewic & Myers'03]

24

Confidentiality issues for
distributed systems

concur-| ® Blocking of a process observable by other
rency | processes (also timing, probabilities,...)

‘e Messages travel over publicly observable
medium; encryption protects messages’
gictri. | contents but not their presence

pution e Mutual distrust of components

e Components (hosts) may be compromised/
. subverted; messages may be delayed/lost

25

Concurrency: Distribution

e Jif/split: An architecture for secure program splitting

to run on heterogeneously trusted hosts [Zdancewic et
al.’01]

e Type systems for secrecy for cryptographic protocols
in spi-calculus [Abadi’97, Abadi & Blanchet'01]

e Logical relations for the low view [Sumii & Pierce’01]

e Interplay between communication primitives and
types of channels [Sabelfeld & Mantel'02]

e Secure replication and partitioning [Zheng et al.’03]

26

Static certification l Noninterference l

Procedures

-

~ -
~ -
~ -
-~ -
~ -
~ -
—y -

Sound security analysis

Functions

Exceptions

Objects I
|

Expressiveness

Nondeterminism [| Termination

Threads (Timing
Distribution I Probablllty I
Covert
Concurrency

channels

27

Covert channels: Termination

e Covert channels are mechanisms not
intended for information transfer

Is while h>0 do h:=h+1 secure?

e Low view =, must match observational power
(if the attacker observes (non)termination):

S~ S iffs=1=s"V(s#LlL#sS As=_5)

 PER model can be naturally lifted to handle
termination
28

Covert channels: Timing

e Nontermination ~, time-consuming
computation

e Bisimulation-based =, accurately

expresses the observational power
[Sabelfeld & Sands’00, Smith’'01,’03]

e Agat’s cross-copying technique for
transforming out timing leaks [Agat’00]

29

Covert channels: Probabilistic

e Possibilistically but not probabilistically secure:

if h then sleep(100); “
=1

e Probability-sensitive ~, by PERs [Sabelfeld &
Sands’99]

e Probabilistic bisimulation-based security
[Volpano & Smith"99,Sabelfeld & Sands’00,
Smith’01,’03]

sleep(50); |:=0

30

Static certification l Noninterference l

~y -

~ -
~ -
~ -
-~ -
~ -
~ -
—y -

Procedures

Sound security analysis Declassification

%’Eioﬁ‘ Nondeterminism f|| Termination Admissibility l
Exceptions Threads Timing Relative

security

Quantitative

Probability S——

!

Covert Security
channels policies

Objects I Distribution l
|
%

|

|

Y
Expressiveness Concurrency

Security policies

e Many programs intentionally release information, or
perform declassification

e Noninterference is restrictive for declassification
— Encryption
— Password checking
— Spreadsheet computation (e.g., tax preparation)
— Database query (e.g., average salary)
— Information purchase

e Most approaches to information flow control ignore
declassification—need more flexible security policies

32

Security policies:
Declassification

e To legitimize declassification we could
add to the type system:

declassify(h) : low

e But this violates noninterference

e What's the right typing rule? What's the
security condition that allows intended
declassifications?

33

Security policies

Secrecy in protocols [Abadi'97]

Relative SeCrecy [Volpano&Smith’00, Volpano'00]
Quantitative security [Denning’82,Clark et al.’02,Lowe’02]
Approximate security (a2). [Di Pierro et al.'02]
Complexity-theoretic security [Laud'01,03]
Admissibility [Dam & Giambiagi’00, Giambiagi & Dam’03]
Decentralized security model [Myers&Liskov'97]

Robust declassification [zdancewic&Myers'01, Zdancewic'03]

Access control policies for secure information flow
[Banerjee & Naumann’03]

Cryptographic types [Duggan’02]
Type-based distributed access control [Chothia et al.’03]

34

Language-based information
security: challenges

Some essential challenges—some are not
addressed by current trends!

e System-wide security

e Certifying compilation

e Attacks beyond abstraction
> e Dynamic policies

= e Practical issues

= Opportunities for integrating model checking,
logic, theorem proving, code rewriting,... 35

Conclusion

Security practices not capable of tracking
information flow

Language-based security: effective information
flow security models (semantics-based security)
and enforcement mechanisms (security-

type systems)

Progress on expressive languages, concurrency,
covert channels, security policies

Critical challenges remain for language-based
mechanisms to become a part of security practice

36

End of talk

