Information Flow In a

Simple Imperative Language

The Problem

¢ System with High and Low inputs, L < H.
H = secret/private/classified

¢ L users permitted to see L outputs.

Security policy: Confidentiality = “PROTECT SECRETS”, i.e.,
L-outputs should not depend on H-inputs.

Dual policy: Integrity, i.e., Licensed data is not influenced by
Hacked data. No Hacked data should be used at a Licensed sink.

Formalize for programs written in a simple imperative languages.
¢ Noninterference (NI) [Goguen-Meseguer '82]

“No matter how H inputs change, L outputs remain same”.

Examples

h := 42; | := 42;

h;
| :=h; | :=1 - h;
l; | := h;

h :=h mod 2; // High variable set

| := 0; // Low variable set

if h=1then | := 1 // Implicit flow from high to low
else skip

while h > 0 do
| =1 + 1;

h :=h - 1;

Syntax and typing rules

Syntax:
T = Int
e = x|njeir+exle;—es
S = x=el|ifethenS;elseS,|Sq; Sy

Typing rules for expressions: I'~e: T

I“Pe1:int erzzint
ey +ey:int

NeEx:Tx 'Fn:int

ey :int "+ es:int

r|—€1—€2:int

Typing rules for commands: '+ S

x:Tre:T NFe:int 'Sy 'S,
Nx:TkHEx=e ' if ethen S else S,

'Sy TFES,
F|—S1; 32

Semantics

lintf = Z
M = {n|ldomn=domTAVxedomnenx e [I"'x]}

Semantics of expressions: The meaning of an expression I'+e: T
Is a function [I'] — [T].

[x:Tln = nx
[n:intn = n
[T er4+ex:intln = letdy=["Fe;:intlnin

letdy =Tk es:intlnind; + dy
Similary for ey — e».

Semantics of commands: The meaning of a command '+ S is a
function [I'] — [I'] that takes a store 1, and returns a possibly
updated store.

MTEx=eln=letd=[T'Fe:TInin N |x—d]
Il Fif e then S4 else Ss]n
—letb=[I"Fe:intlnin
if b > 0then [I"+ Sqln else [T+ Ssln

[+ Sq; Soln=letmy = ["'= Sylnin [T = Sz]n;y

What does being secure mean?

Suppose I' - e : T and suppose I' - S. Under what conditions are
e, S secure? First, partition variables into H-variables and
L-variables. Then:

¢ The value of a “low security” expression should not depend on
H-variables. This is called read confinement.

¢ A *high security” command (i.e., one that depends on the
results of a “high expression”) should not assign to
L-variables. This is called write confinement.

Security literature: “no read up” or “simple security” and “no write
down” or “*-property”.

Formalization coming up ...

Checking information flow using security types.

¢ Label variables by security types, for example replace x : T by
x : (T, k) where « is the security level.

¢ Syntax-directed typing rules specify conditions that ensure
secure flow.

¢ Overt flows, like an assignment of an H-variable to an
L-variable, are disallowed by the typing rule for assignment.

¢ Covert flows due to control flow are precluded via the typing
rule for conditional.

¢ Technical machinery: Commands are given types com k with
the meaning that all assigned variables have at least level «.

Security type system: Rules for expressions

General form: AF e: (T, k). Note: L < H.

AFx:Ax AFn:(int k)

AFeq: (int, K) AFes: (int, K)
AFej+er:(int k)

Ale:(Tk) kK < Kk’
Ale: (T k')

Security type system: Rules for commands

General form: AF S: (com k).

Ax:(Tk)Fe: (T k)
A x:(Tk)Fx:=e:(com k)

A e:(int, k) At Sq:(com k) AF Sy :(com k)

A ifethen Sy else S, : (com k)

A+ Sq:(comk) AF Sy :(com k)
At S1: Sy (com k)

AFS:(comkq) K < Kj
A+ S:(comk)

Examples revisited

Let A = [x: (int,H),y: (int,L)].

x =42 : (com H); y := 42 : (com L)
x = 42; y := 42 : (com L)
y := x (x untypable *)

y :=X;y =y - x; (* untypable *)
X :=y; y :=x; (x untypable *)

x :=x mod 2; (* (com H) %)
y :=0; (x (com L) *)
f x =1theny :=1

else skip

(* untypable: low assignment under high test *)

while x > 0 do (x x: (int, H) =*)
y :=y +1; (x (com L) *)
x :=x - 1; (x (com H) *)

(* untypable: low assignment under high test *)

“Being secure” revisited

Want a notion of being “indistinguishable by L”. Define the
following relation:

d~md & d=d’forprimitive types T
N~ & Vix:(Tk))cAek=L = mx)~m M'x)

Thus two stores are indistinguishable if the L-view of the stores
are the same. That is, any change in the H-variables are invisible
to the L-viewer (“attacker”).

Ultimately want noninterference: for any pair of initial stores that
are indistinguishable for L, the two corresponding runs of the
program yield final stores that are indistinguishable for L.

Safe expressions are read confined

Say that an expression or command is safe if it is typable using
the security typing rules.

Lemma (safe expressions are read confined)

Suppose A e: (T,L) andn ~jaqn’. If d =[AT e : TIn and

d’ =[AT+e:Tln' then d ~pp d’.

The lemma says that if an expression can be typed A+ e: (T, L)
then its meaning is the same in two L-indistinguishable stores.

Proof: The proof is by induction on a derivation of A+ e: (T, L)
with cases on the last rule used.

All cases are easy, with only a small excitement in the
subsumption rule.

Write confinement of commands

Lemma (write confinement of commands)

Suppose A F S : (com k). For all 1, if no = [AT I S]n then

K=H = 1 ~paij No

Proof: The proof is by induction on a derivation of A+ S : (com k)
and by cases on the last rule used in the derivation.

Noninterference

Theorem (safe commands are noninterfering)

Suppose A+ S : (com k) and 1 ~paiy '. Let o = [AT + SIn and
ny = [ATF SIn’. Then ng ~ai; né.

Proof: The proof is by induction on a derivation of A+ S : (com k)
with cases on the last rule used in the derivation.

Could we say something more?

Suppose A S:(com L) andn ~parpn’. Ifno = [AT F SIn, then
there exists 1y, such thatn) = [AT SIn’ and 1o ~jar Np-

Dually, if n} = [AT I SIn’, then there exists 1, such that
no = [AT I SIn and ng ~parg M.

Handling loops

Semantics of commands: The meaning of a command '+ S is a
function [I'] — [I'] | that takes a store n, and returns a possibly
updated store or returns L which indicates divergence.

[T -whileedoS] = 1lubf where
fon =L
fip 1= letb = [AT - e : bool]n in

If b =0 thenn else

letfi = [AT F SInin f; fi

We assume that the (metalanguage) construct, let x = e; Iin ey, IS Strict:
If the value of e; iIs L then that is the value of the entire let expression;
otherwise, its value Is the value of e, with x bound to the value of e;.

Predicates

The predicate wconf on [I'] — [I'] | is defined as:

weonf f < Wnelllefn#L1L = n~p M

The predicate nonint on [I'] — [I'] | is defined as:

nonint f & Vm,m)em~n)A(Mm#L#M) = Mm~1M’

Technical results revisited

Lemma (write confinement of commands) Suppose
AFS:(comk). Then k =H = weconf[AT F S].

Theorem (safe commands are noninterfering) Suppose
AF S : (com k). Then nonint[AT + S].

The proofs of the above require additional lemmas for the while
case:

1. Vie wconf f;
2. (Vie wconf i) = wconf (lub f)
3. Vienonint f;

4. (Vienonint f;) = nonint (lub f)

