
Information Flow in a

Simple Imperative Language

CIS 890/2003-9-17 / 1

The Problem

� System with High and Low inputs, L ≤ H.

H ≡ secret/private/classified

� L users permitted to see L outputs.

Security policy: Confidentiality ≡ “PROTECT SECRETS”, i.e.,
L-outputs should not depend on H-inputs.

Dual policy: Integrity, i.e., Licensed data is not influenced by

Hacked data. No Hacked data should be used at a Licensed sink.

Formalize for programs written in a simple imperative languages.

� Noninterference (NI) [Goguen-Meseguer ’82]

“No matter how H inputs change, L outputs remain same”.

CIS 890/2003-9-17 / 2

Examples

h := 42; l := 42;

l := h;

l := h; l := l - h;
h := l; l := h;

h := h mod 2; // High variable set

l := 0; // Low variable set

if h = 1 then l := 1 // Implicit flow from high to low

else skip

while h > 0 do
l := l + 1;

h := h - 1;

CIS 890/2003-9-17 / 3

Syntax and typing rules

Syntax:

T ::= int

e ::= x | n | e1 + e2 | e1 − e2

S ::= x:= e | if e then S1 else S2 | S1; S2

Typing rules for expressions: Γ ` e : T

Γ ` x : Γ x Γ ` n : int
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 − e2 : int

CIS 890/2003-9-17 / 4

Typing rules for commands: Γ ` S

Γ, x : T ` e : T

Γ, x : T ` x:= e

Γ ` e : int Γ ` S1 Γ ` S2

Γ ` if e then S1 else S2

Γ ` S1 Γ ` S2

Γ ` S1; S2

CIS 890/2003-9-17 / 5

Semantics

[[int]] = Z

[[Γ]] = {η | dom η = dom Γ ∧ ∀x ∈ dom η • η x ∈ [[Γ x]]}

Semantics of expressions: The meaning of an expression Γ ` e : T

is a function [[Γ]] → [[T]].

[[Γ ` x : T]]η = ηx

[[Γ ` n : int]]η = n

[[Γ ` e1 + e2 : int]]η = let d1 = [[Γ ` e1 : int]]η in

let d2 = [[Γ ` e2 : int]]η in d1 + d2

Similary for e1 − e2.

CIS 890/2003-9-17 / 6

Semantics of commands: The meaning of a command Γ ` S is a

function [[Γ]] → [[Γ]] that takes a store η, and returns a possibly

updated store.

[[Γ ` x:= e]]η = let d = [[Γ ` e : T]]η in [η | x 7→d]

[[Γ ` if e then S1 else S2]]η

= let b = [[Γ ` e : int]]η in

if b > 0 then [[Γ ` S1]]η else [[Γ ` S2]]η

[[Γ ` S1; S2]]η= let η1 = [[Γ ` S1]]η in [[Γ ` S2]]η1

CIS 890/2003-9-17 / 7

What does being secure mean?

Suppose Γ ` e : T and suppose Γ ` S. Under what conditions are
e, S secure? First, partition variables into H-variables and

L-variables. Then:

� The value of a “low security” expression should not depend on
H-variables. This is called read confinement.

� A “high security” command (i.e., one that depends on the
results of a “high expression”) should not assign to

L-variables. This is called write confinement.

Security literature: “no read up” or “simple security” and “no write

down” or “*-property”.

Formalization coming up ...

CIS 890/2003-9-17 / 8

Checking information flow using security types.

� Label variables by security types, for example replace x : T by

x : (T, κ) where κ is the security level.

� Syntax-directed typing rules specify conditions that ensure

secure flow.

� Overt flows, like an assignment of an H-variable to an

L-variable, are disallowed by the typing rule for assignment.

� Covert flows due to control flow are precluded via the typing

rule for conditional.

� Technical machinery: Commands are given types comκ with

the meaning that all assigned variables have at least level κ.

CIS 890/2003-9-17 / 9

Security type system: Rules for expressions

General form: ∆ ` e : (T, κ). Note: L ≤ H.

∆ ` x : ∆ x ∆ ` n : (int, κ)

∆ ` e1 : (int, κ) ∆ ` e2 : (int, κ)

∆ ` e1 + e2 : (int, κ)

∆ ` e : (T, κ) κ ≤ κ ′

∆ ` e : (T, κ ′)

CIS 890/2003-9-17 / 10

Security type system: Rules for commands

General form: ∆ ` S : (com κ).

∆, x : (T, κ) ` e : (T, κ)

∆, x : (T, κ) ` x:= e : (com κ)

∆ ` e : (int, κ) ∆ ` S1 : (com κ) ∆ ` S2 : (com κ)

∆ ` if e then S1 else S2 : (com κ)

∆ ` S1 : (com κ) ∆ ` S2 : (com κ)

∆ ` S1; S2 : (com κ)

∆ ` S : (com κ1) κ ≤ κ1

∆ ` S : (com κ)

CIS 890/2003-9-17 / 11

Examples revisited

Let ∆ = [x : (int, H), y : (int, L)].

x := 42 : (com H); y := 42 : (com L)

x := 42; y := 42 : (com L)

y := x (* untypable *)

y := x; y := y - x; (* untypable *)

x := y; y := x; (* untypable *)

x := x mod 2; (* (com H) *)

y := 0; (* (com L) *)

if x = 1 then y := 1

else skip

(* untypable: low assignment under high test *)

CIS 890/2003-9-17 / 12

while x > 0 do (* x: (int, H) *)

y := y + 1; (* (com L) *)

x := x - 1; (* (com H) *)

(* untypable: low assignment under high test *)

CIS 890/2003-9-17 / 13

“Being secure” revisited

Want a notion of being “indistinguishable by L”. Define the

following relation:

d ∼[[T]] d ′
⇐⇒ d = d ′ for primitive types T

η ∼[[∆†]] η ′
⇐⇒ ∀(x : (T, κ)) ∈ ∆ • κ = L ⇒ (η x) ∼[[T]] (η ′ x)

Thus two stores are indistinguishable if the L-view of the stores

are the same. That is, any change in the H-variables are invisible

to the L-viewer (“attacker”).

Ultimately want noninterference: for any pair of initial stores that

are indistinguishable for L, the two corresponding runs of the

program yield final stores that are indistinguishable for L.

CIS 890/2003-9-17 / 14

Safe expressions are read confined

Say that an expression or command is safe if it is typable using
the security typing rules.

Lemma (safe expressions are read confined)

Suppose ∆ ` e : (T, L) and η ∼[[∆†]] η ′. If d = [[∆† ` e : T]]η and
d ′ = [[∆† ` e : T]]η ′ then d ∼[[T]] d ′.

The lemma says that if an expression can be typed ∆ ` e : (T, L)

then its meaning is the same in two L-indistinguishable stores.

Proof: The proof is by induction on a derivation of ∆ ` e : (T, L)

with cases on the last rule used.

All cases are easy, with only a small excitement in the
subsumption rule.

CIS 890/2003-9-17 / 15

Write confinement of commands

Lemma (write confinement of commands)

Suppose ∆ ` S : (com κ). For all η, if η0 = [[∆† ` S]]η then

κ = H ⇒ η ∼[[∆†]] η0

Proof: The proof is by induction on a derivation of ∆ ` S : (com κ)

and by cases on the last rule used in the derivation.

CIS 890/2003-9-17 / 16

Noninterference

Theorem (safe commands are noninterfering)

Suppose ∆ ` S : (com κ) and η ∼[[∆†]] η ′. Let η0 = [[∆† ` S]]η and

η ′
0

= [[∆† ` S]]η ′. Then η0 ∼[[∆†]] η ′
0
.

Proof: The proof is by induction on a derivation of ∆ ` S : (com κ)

with cases on the last rule used in the derivation.

Could we say something more?

Suppose ∆ ` S : (com L) and η ∼[[∆†]] η ′. If η0 = [[∆† ` S]]η, then

there exists η ′
0
, such that η ′

0
= [[∆† ` S]]η ′ and η0 ∼[[∆†]] η ′

0
.

Dually, if η ′
0

= [[∆† ` S]]η ′, then there exists η0, such that

η0 = [[∆† ` S]]η and η0 ∼[[∆†]] η ′
0
.

CIS 890/2003-9-17 / 17

Handling loops

Semantics of commands: The meaning of a command Γ ` S is a
function [[Γ]] → [[Γ]]⊥ that takes a store η, and returns a possibly
updated store or returns ⊥ which indicates divergence.

[[Γ ` while e do S]] = lub f where

f0 η =⊥

fi+1 η= let b = [[∆† ` e : bool]]η in

if b = 0 then η else

let η̂ = [[∆† ` S]]η in fi η̂

We assume that the (metalanguage) construct, let x = e1 in e2, is strict:

If the value of e1 is ⊥ then that is the value of the entire let expression;

otherwise, its value is the value of e2 with x bound to the value of e1.

CIS 890/2003-9-17 / 18

Predicates

The predicate wconf on [[Γ]] → [[Γ]]⊥ is defined as:

wconf f ⇐⇒ ∀η ∈ [[Γ]] • fη 6= ⊥ ⇒ η ∼[[Γ]] fη

The predicate nonint on [[Γ]] → [[Γ]]⊥ is defined as:

nonint f ⇐⇒ ∀(η, η ′) • (η ∼ η ′) ∧ (fη 6= ⊥ 6= fη ′) ⇒ fη ∼ fη ′

CIS 890/2003-9-17 / 19

Technical results revisited

Lemma (write confinement of commands) Suppose

∆ ` S : (com κ). Then κ = H ⇒ wconf [[∆† ` S]].

Theorem (safe commands are noninterfering) Suppose

∆ ` S : (com κ). Then nonint [[∆† ` S]].

The proofs of the above require additional lemmas for the while

case:

1. ∀i • wconf fi

2. (∀i • wconf fi) ⇒ wconf (lub f)

3. ∀i • nonint fi

4. (∀i • nonint fi) ⇒ nonint (lub f)

CIS 890/2003-9-17 / 20

