
Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Defining Tractability

Question:

When is a problem “tractable”?

Conventional answer:

iff it allows a polynomial algorithm

Why not: “if it allows an O(n2) algorithm”?

I this would be arbitrary

I composing two such algorithms may give an O(n4)
algorithm

Since polynomials are closed under most operations, the
conventional answer enables the development of an
elegant theory.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Outline

I We have seen many problems that allow polynomial
solutions

I while for many problems we do not know if they
have a polynomial solution

I but many of those problems are related in the sense
that if one of them has a polynomial solution then
all of them have.

Restrictions:

I we focus on decision problems:

does x belong to X , yes or no?

We identify a decision problem with the set of its
“yes” instances.

I we can in most cases reduce an optimization
problem to a decision problem, and vice versa.

I we only consider deterministic algorithms

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

The Set P

P consists of those decision problems that can be solved
in time O(p(x)) where

I x is the bit size of a “natural encoding” of the input

I p is a polynomial

Example element of P:

in a graph with n nodes,
where edges have lengths,
is there a path from a to b of length ≤ 10?

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

The Set NP , Motivation

Intuitively, NP should consist of those decision problems
where a yes answer can be equipped with a certificate. A
couple of examples:

Non-Primality:

I appears hard to check (deterministically) if n is
non-prime

I but once m, q are given, easy to verify that n = mq

Hamiltonian Cycle: (a cycle that includes all nodes)

I appears not easy to see if given graph contains a
Hamiltonian cycle

I but once a list of nodes is given, easy to verify if
they do form a Hamiltonian cycle.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

The Set NP , Definition

A decision problem X (the set of “yes” instances) is in
NP iff there is a set F and polynomial p such that

I F ⊆ X × Q with Q the set of certificates
(no-instances don’t have certificates)

I for all x ∈ X , there exists q ∈ Q such that
<x , q>∈ F and the size of q is at most p(|x |)

I a polynomial time algorithm can check membership
of F .

If x ∈ X it is thus possible to verify that fact in
polynomial time, once a certificate has been given.

I Observe that P ⊆ NP
(choose say 0 as certificate and ignore it)

I is the inequality strict? that is, is P = NP?
that’s the $1M question (literally)

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Reductions

We can ofte connect problems by showing that if we can
do one we can also do the other.

I if we can multiply then we can surely also square

I but if we can square then we can also multiply:

x ∗ y =
(x + y)2 − (x − y)2

4

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Polynomial Many-One Reductions

We say that decision problem X is polynomially
many-one reducible to decision problem Y , to be written
X ≤p

m Y , if there exists f such that

x ∈ X iff f (x) ∈ Y

and f can be computed in polynomial time.

I in particular, |f (x)| is polynomial in |x |.
Theorem: if X ≤p

m Y and Y ∈ P then also X ∈ P.

Transitivity: if X ≤p
m Y and Y ≤p

m Z then X ≤p
m Z .

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Example Reduction

We have HC ≤p
m TS where

I HC is the problem of detecting if a graph has a
Hamiltonian cycle

I TS is the problem of detecting if a table of distances
between each pair of cities allows a traveling
salesman to visit each city once, and come back
home again, while traveling at most given d

For given a graph G = (V ,E), construct table D by
stipulating that

I if (u, v) ∈ E then D(u, v) = 1

I if (u, v) /∈ E then D(u, v) = 2

Thus G ∈ HC iff D in TS|V |

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Optimization Problems

For an optimization problem, there often exists a decision
problem such that a solution to the former translates into
a solution to the latter, and vice versa.

Example: assume we want to study certain kinds of paths
(like cycles where each node occurs exactly once).

I the decision problem AtMost(k) asks whether the
length of the shortest path is k or less.

I the optimization problem Shortest finds the length
of the shortest path.

If we can solve one we can solve the other:

I we can decide AtMost(k) as the result of the
comparison Shortest ≤ k .

I we can find Shortest as the smallest k such that
AtMost(k) holds.

If AtMost runs in O(na), and the shortest path has
length in O(nb), then Shortest runs in time O(na+b).

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Construction Problems

We can often reduce construction problems to decision
problems:

I if we in polynomial time can decide if a graph
contains a Hamiltonian cycle

I we can in polynomial time find a Hamiltonian cycle.

For we consider each edge e in turn, and ask whether the
graph still has a Hamiltonian cycle even if e is removed

I if “yes”, remove e

I if “no”, make e part of the cycle

If decision is in O(nq) then construction is in O(nq+2).

It is trivial to reduce decision problems to construction
problems.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Defining NP-Hardness

We say that X is NP-hard if all problems in NP can be
polynomially many-one reduced to X .

I if X is NP-hard

I but a polynomial time algorithm is found for X

I then P = NP (which is unlikely)

If we have shown a problem to be NP-hard, you don’t
feel bad about not being able to find polynomial solution!

I if X is NP-hard

I and X ≤p
m Y

I then also Y is NP-hard

If X ∈ NP is NP-hard we say that X is NP-complete.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Finding NP-Hard Problems

I if X is NP-hard and X ≤p
m Y then Y is NP-hard

I but how do we find just one NP-hard problem?

A “first” NP-hard problem [Cook, Levin] is Sat:

given a boolean formula φ
decide if one can assign truth values to variables
such that φ is true (satisfied)

I Sat is in NP since the satisfying assignment can be
used as certificate.

I Sat is NP-hard because (pages of details omitted)
any computation can be represented as a boolean
formula.

We shall now see other NP-complete problems.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

CSat

CSat:

given a boolean formula φ in CNF
decide if one can assign truth values to variables
such that φ is true (satisfied)

I A formula is in CNF if it is a conjunction of clauses

I A clause is a disjunction of literals

I A literal is a variable, or the negation of a variable

Trivially, CSat ≤p
m Sat.

I CSat is in NP
I CSat is NP-hard, as we shall show by establishing

Sat ≤p
m CSat

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

3-Sat

3-Sat:

given a boolean formula φ in CNF
where each clause has at most 3 literals
decide if one can assign truth values to variables
such that φ is true (satisfied)

Trivially, 3-Sat ≤p
m CSat.

I 3-Sat is in NP
I 3-Sat is NP-hard, as we shall show by establishing

CSat ≤p
m 3-Sat.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Clique

Given an undirected graph (V ,E), a clique C is a subset
of V such that for all u 6= w ∈ C , the edge (u,w)
belongs to E .

I all singleton sets are cliques

I a graph with at least one edge has a clique of size 2

The decision problem Clique asks if a given graph
contains a clique of size k .

I Clique is in NP
I Clique is NP-hard, as we shall show by

establishing 3-Sat ≤p
m Clique.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

VC

Given an undirected graph (V ,E), a vertex cover C is a
subset of V such that for all edges (u,w) ∈ E , either
u ∈ C or w ∈ C (or both).

I for all u, the set V \ {u} is a vertex cover

The decision problem VC asks if a given graph contains a
vertex cover of size k.

I VC is in NP
I VC is NP-hard, as we shall show by establishing

Clique ≤p
m VC.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Outline of Reductions

Recall that we shall establish the chain

Sat ≤p
m CSat ≤p

m 3-Sat ≤p
m Clique ≤p

m VC

Since Sat is NP-hard (seminal result) this will establish
that all the other problems are also NP-hard.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Reducing Clique to VC

Observe that (with X the complement of X) the
following claims are equivalent:

C is a clique in (V ,E)

∀u 6= w ∈ V : (u,w ∈ C ⇒ (u,w) ∈ E)

∀u 6= w ∈ V : ((u,w) /∈ E ⇒ u /∈ C ∨ w /∈ C)

∀u 6= w ∈ V : ((u,w) ∈ E ⇒ u ∈ C ∨ w ∈ C)

C is a vertex cover for (V ,E)

Given (V ,E) with |V | = n, we see:

(V ,E) has a clique of size k iff
(V ,E) has a vertex cover of size n − k

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Reducing 3-Sat to Clique

Given CNF formula φ with k clauses, each having at most
3 literals, construct graph G such that

I we have a node for each literal
(one node for each occurrence)

I we have an edge between l1 and l2 iff
I they occur in different clauses
I they are not contradictory (l1 not negation of l2)

Lemma: φ can be satisfied iff G has a k-clique.

I Assume that φ is satisfied by A. Then each clause
has at least one literal that is true wrt. A; let one of
those go into C . Then C has k elements, all of
which are connected by edges.

I Assume that C is a clique with k elements. The
literals in C do not contradict each other; hence, we
can construct a truth assignment A that assigns true
to all literals in C . Since C must consist of one
literal from each clause, φ will be satisfied by A.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Reducing CSat to 3-Sat

Let us just show how to reduce 4-Sat to 3-Sat; the
generalization is straight-forward. So let

φ = x ∨ y ∨ z ∨ w

be given. With u a fresh variable, now define

φ′ = (x ∨ y ∨ u) ∧ (z ∨ w ∨ ¬u).

Lemma: A satisfies φ iff an extension of A satisfies φ′.

I first assume that A satisfies φ. Wlog, assume
A(y) = true. Now extend A to A′ by stipulating
A′(u) = false. Then A′ satisfies φ′.

I Next assume that A satisfies φ′. Wlog, assume that
A(u) = true. But then A satisfies z ∨w and hence φ.

Intractable Problems

Amtoft

Motivation

P and NP

Reductions

NP-Hard/Complete

NP-Complete
Problems

NP-Hardness, the
Reductions

Reducing Sat to CSat

Given arbitrary boolean expression, first convert it to an
equivalent expression φ in NNF (negation normal form)

I why not just normalize it all the way into CNF?

I this could cause exponential blow-up.

Instead, convert to φ′ in CNF such that

I all variables in φ occur also in φ′

I any satisfying assignment for φ can be extended into
a satisfying assignment for φ′

I the restriction of any satisfying assignment for φ′ is a
satisfying assignment for φ

Thus φ is satisfiable iff φ′ is.

I if φ is literal, then φ′ = φ

I if φ = φ1 ∧ φ2, apply induction hypothesis to find φ′1
and φ′2, and then let φ′ = φ′1 ∧ φ′2

I if φ = φ1 ∨ φ2, we need a more complex constrution.
Details in Howell,p.519-520.

	Motivation
	P and NP
	Reductions
	NP-Hard/Complete
	NP-Complete Problems
	NP-Hardness, the Reductions

