Defining Tractability

Question:

When is a problem "tractable"?

Conventional answer:

iff it allows a polynomial algorithm

Why not: "if it allows an $O(n^2)$ algorithm"?

- this would be arbitrary
- composing two such algorithms may give an O(n⁴) algorithm

Since polynomials are closed under most operations, the conventional answer enables the development of an elegant theory.

Intractable Problems

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complete}$ Problems

Intractable Problems

Outline

- We have seen many problems that allow polynomial solutions
- while for many problems we do not know if they have a polynomial solution
- but many of those problems are related in the sense that if one of them has a polynomial solution then all of them have.

Restrictions:

we focus on decision problems:

does x belong to X, yes or no?

We identify a decision problem with the set of its "yes" instances.

- we can in most cases reduce an optimization problem to a decision problem, and vice versa.
- we only consider deterministic algorithms

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems

- -

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complete}$ Problems

 $\mathcal{NP} ext{-Hardness}$, the Reductions

 \mathcal{P} consists of those decision problems that can be solved in time O(p(x)) where

x is the bit size of a "natural encoding" of the input

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

p is a polynomial

Example element of \mathcal{P} :

in a graph with n nodes, where edges have lengths, is there a path from a to b of length ≤ 10 ? Intuitively, \mathcal{NP} should consist of those decision problems where a yes answer can be equipped with a certificate. A couple of examples:

Non-Primality:

- appears hard to check (deterministically) if n is non-prime
- but once m, q are given, easy to verify that n = mq

Hamiltonian Cycle: (a cycle that includes all nodes)

- appears not easy to see if given graph contains a Hamiltonian cycle
- but once a list of nodes is given, easy to verify if they do form a Hamiltonian cycle.

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems

The Set \mathcal{NP} , Definition

A decision problem X (the set of "yes" instances) is in \mathcal{NP} iff there is a set F and polynomial p such that

- F ⊆ X × Q with Q the set of certificates (no-instances don't have certificates)
- For all x ∈ X, there exists q ∈ Q such that
 <x, q>∈ F and the size of q is at most p(|x|)
- a polynomial time algorithm can check membership of *F*.

If $x \in X$ it is thus possible to verify that fact in polynomial time, once a certificate has been given.

- Observe that P ⊆ NP (choose say 0 as certificate and ignore it)
- is the inequality strict? that is, is P = NP? that's the \$1M question (literally)

Intractable Problems

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complete}$ Problems

 \mathcal{NP} -Hardness, the Reductions

We can ofte connect problems by showing that if we can do one we can also do the other.

- if we can multiply then we can surely also square
- but if we can square then we can also multiply:

$$x * y = \frac{(x + y)^2 - (x - y)^2}{4}$$

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

We say that decision problem X is polynomially many-one reducible to decision problem Y, to be written $X \leq_m^p Y$, if there exists f such that $x \in X$ iff $f(x) \in Y$

and f can be computed in polynomial time.

• in particular, |f(x)| is polynomial in |x|.

Theorem: if $X \leq_m^p Y$ and $Y \in \mathcal{P}$ then also $X \in \mathcal{P}$.

Transitivity: if $X \leq_m^p Y$ and $Y \leq_m^p Z$ then $X \leq_m^p Z$.

Intractable Problems

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 \mathcal{NP} -Complete Problems

Intractable Problems

Example Reduction

We have $HC \leq_m^p TS$ where

- HC is the problem of detecting if a graph has a Hamiltonian cycle
- TS is the problem of detecting if a table of distances between each pair of cities allows a traveling salesman to visit each city once, and come back home again, while traveling at most given d

For given a graph G = (V, E), construct table D by stipulating that

▶ if
$$(u, v) \in E$$
 then $D(u, v) = 1$
▶ if $(u, v) \notin E$ then $D(u, v) = 2$
Thus $G \in HC$ iff D in $TS_{|V|}$

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complete}$ Problems

 \mathcal{NP} -Hardness, the Reductions

・ロ・・ 「「・」・ ・ 川 ・ ・ 「」・ うくの

Optimization Problems

For an optimization problem, there often exists a decision problem such that a solution to the former translates into a solution to the latter, and vice versa.

Example: assume we want to study certain kinds of paths (like cycles where each node occurs exactly once).

- ► the decision problem ATMOST(k) asks whether the length of the shortest path is k or less.
- the optimization problem SHORTEST finds the length of the shortest path.

If we can solve one we can solve the other:

- ▶ we can decide ATMOST(k) as the result of the comparison SHORTEST ≤ k.
- we can find SHORTEST as the smallest k such that ATMOST(k) holds.

If ATMOST runs in $O(n^a)$, and the shortest path has length in $O(n^b)$, then SHORTEST runs in time $O(n^{a+b})$.

Intractable Problems

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 $\mathcal{NP} ext{-Complete}$ Problems

We can often reduce construction problems to decision problems:

 if we in polynomial time can decide if a graph contains a Hamiltonian cycle

▶ we can in polynomial time find a Hamiltonian cycle.
For we consider each edge *e* in turn, and ask whether the

graph still has a Hamiltonian cycle even if e is removed

- ▶ if "yes", remove e
- if "no", make e part of the cycle

If decision is in $O(n^q)$ then construction is in $O(n^{q+2})$.

It is trivial to reduce decision problems to construction problems.

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems

Defining $\mathcal{NP}\text{-}\mathsf{Hardness}$

We say that X is \mathcal{NP} -hard if all problems in \mathcal{NP} can be polynomially many-one reduced to X.

- ▶ if X is NP-hard
- but a polynomial time algorithm is found for X
- then $\mathcal{P} = \mathcal{NP}$ (which is unlikely)

If we have shown a problem to be $\mathcal{NP}\text{-hard},$ you don't feel bad about not being able to find polynomial solution!

- if X is \mathcal{NP} -hard
- ▶ and $X \leq_m^p Y$
- then also Y is \mathcal{NP} -hard

If $X \in \mathcal{NP}$ is \mathcal{NP} -hard we say that X is \mathcal{NP} -complete.

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complete}$ Problems

Finding NP-Hard Problems

- ▶ if X is \mathcal{NP} -hard and $X \leq_m^p Y$ then Y is \mathcal{NP} -hard
- ▶ but how do we find just one *NP*-hard problem?
- A "first" \mathcal{NP} -hard problem [Cook, Levin] is SAT: given a boolean formula ϕ decide if one can assign truth values to variables such that ϕ is true (satisfied)
 - SAT is in NP since the satisfying assignment can be used as certificate.
 - SAT is NP-hard because (pages of details omitted) any computation can be represented as a boolean formula.

We shall now see other \mathcal{NP} -complete problems.

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complete}$ Problems

CSAT

CSAT:

given a boolean formula ϕ in CNF decide if one can assign truth values to variables such that ϕ is true (satisfied)

- A formula is in CNF if it is a conjunction of clauses
- A clause is a disjunction of literals
- A literal is a variable, or the negation of a variable

Trivially, CSAT \leq_m^p SAT.

- **CSAT** is in \mathcal{NP}
- ► CSAT is \mathcal{NP} -hard, as we shall show by establishing SAT \leq_m^p CSAT

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 \mathcal{NP} -Complete Problems

Intractable Problems

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 \mathcal{NP} -Complete Problems

 \mathcal{NP} -Hardness, the Reductions

3-Sat:

given a boolean formula ϕ in CNF where each clause has at most 3 literals decide if one can assign truth values to variables such that ϕ is true (satisfied)

Trivially, 3-SAT \leq_m^p CSAT.

- ▶ 3-SAT is in \mathcal{NP}
- ► 3-SAT is \mathcal{NP} -hard, as we shall show by establishing CSAT \leq_m^p 3-SAT.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Given an undirected graph (V, E), a clique C is a subset of V such that for all $u \neq w \in C$, the edge (u, w)belongs to E.

- all singleton sets are cliques
- a graph with at least one edge has a clique of size 2

The decision problem C_{LIQUE} asks if a given graph contains a clique of size k.

- **CLIQUE** is in \mathcal{NP}
- ► CLIQUE is \mathcal{NP} -hard, as we shall show by establishing 3-SAT \leq_m^p CLIQUE.

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems

Given an undirected graph (V, E), a vertex cover C is a subset of V such that for all edges $(u, w) \in E$, either $u \in C$ or $w \in C$ (or both).

• for all u, the set $V \setminus \{u\}$ is a vertex cover

The decision problem VC asks if a given graph contains a vertex cover of size k.

- VC is in \mathcal{NP}
- ▶ VC is \mathcal{NP} -hard, as we shall show by establishing CLIQUE \leq_m^p VC.

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 \mathcal{NP} -Complete Problems

Recall that we shall establish the chain

SAT $\leq_m^p \text{CSAT} \leq_m^p 3\text{-SAT} \leq_m^p \text{CLIQUE} \leq_m^p \text{VC}$

Since SAT is \mathcal{NP} -hard (seminal result) this will establish that all the other problems are also \mathcal{NP} -hard.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Intractable Problems

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 $\mathcal{NP} ext{-Complet}$ Problems

Reducing $\ensuremath{\underline{\mathrm{CLIQUE}}}$ to $\ensuremath{\mathrm{VC}}$

Observe that (with \overline{X} the complement of X) the following claims are equivalent:

$$C \text{ is a clique in } (V, E)$$

$$\forall u \neq w \in V : (u, w \in C \Rightarrow (u, w) \in E)$$

$$\forall u \neq w \in V : ((u, w) \notin E \Rightarrow u \notin C \lor w \notin C)$$

$$\forall u \neq w \in V : ((u, w) \in \overline{E} \Rightarrow u \in \overline{C} \lor w \in \overline{C})$$

$$\overline{C} \text{ is a vertex cover for } (V, \overline{E})$$

Given
$$(V, E)$$
 with $|V| = n$, we see:
 (V, E) has a clique of size k iff
 (V, \overline{E}) has a vertex cover of size $n - k$

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 \mathcal{NP} -Hard/Complete

 \mathcal{NP} -Complete Problems

 \mathcal{NP} -Hardness, the Reductions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Intractable Problems

Reducing 3-SAT to CLIQUE

Given CNF formula ϕ with k clauses, each having at most 3 literals, construct graph G such that

- we have a node for each literal (one node for each occurrence)
- we have an edge between l_1 and l_2 iff
 - they occur in different clauses
 - ▶ they are not contradictory (*l*₁ not negation of *l*₂)

Lemma: ϕ can be satisfied iff G has a k-clique.

- Assume that \u03c6 is satisfied by A. Then each clause has at least one literal that is true wrt. A; let one of those go into C. Then C has k elements, all of which are connected by edges.
- Assume that C is a clique with k elements. The literals in C do not contradict each other; hence, we can construct a truth assignment A that assigns true to all literals in C. Since C must consist of one literal from each clause, φ will be satisfied by A.

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems

Reducing CSAT to 3-SAT

Let us just show how to reduce 4-SAT to 3-SAT; the generalization is straight-forward. So let

$$\phi = x \lor y \lor z \lor w$$

be given. With u a fresh variable, now define

(

$$\phi' = (x \lor y \lor u) \land (z \lor w \lor \neg u).$$

Lemma: A satisfies ϕ iff an extension of A satisfies ϕ' .

- ▶ first assume that A satisfies φ. Wlog, assume A(y) = true. Now extend A to A' by stipulating A'(u) = false. Then A' satisfies φ'.
- Next assume that A satisfies φ'. Wlog, assume that A(u) = true. But then A satisfies z∨w and hence φ.

Amtoft

Motivation

 ${\mathcal P} \text{ and } {\mathcal N} {\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 $\mathcal{NP} ext{-Complet}$ Problems

Reducing SAT to CSAT

Given arbitrary boolean expression, first convert it to an equivalent expression ϕ in NNF (negation normal form)

- why not just normalize it all the way into CNF?
- this could cause exponential blow-up.

Instead, convert to ϕ^\prime in CNF such that

- all variables in ϕ occur also in ϕ'
- any satisfying assignment for φ can be extended into a satisfying assignment for φ'
- \blacktriangleright the restriction of any satisfying assignment for ϕ' is a satisfying assignment for ϕ

Thus ϕ is satisfiable iff ϕ' is.

- if ϕ is literal, then $\phi' = \phi$
- if $\phi = \phi_1 \wedge \phi_2$, apply induction hypothesis to find ϕ'_1 and ϕ'_2 , and then let $\phi' = \phi'_1 \wedge \phi'_2$
- if φ = φ₁ ∨ φ₂, we need a more complex constrution. Details in *Howell*,p.519-520.

Intractable Problems

Amtoft

Motivation

 ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Reductions

 $\mathcal{NP} ext{-Hard}/ ext{Complete}$

 \mathcal{NP} -Complete Problems