Defining Tractability

Motivation

Question:
When is a problem "tractable"?
Conventional answer:
iff it allows a polynomial algorithm
\mathcal{P} and $\mathcal{N P}$
Reductions
N \mathcal{P}-Hard/Complete

Why not: "if it allows an $O\left(n^{2}\right)$ algorithm"?

- this would be arbitrary
- composing two such algorithms may give an $O\left(n^{4}\right)$ algorithm
Since polynomials are closed under most operations, the conventional answer enables the development of an elegant theory.

Outline

- We have seen many problems that allow polynomial solutions
- while for many problems we do not know if they have a polynomial solution
- but many of those problems are related in the sense that if one of them has a polynomial solution then all of them have.

Restrictions:

- we focus on decision problems: does x belong to X, yes or no?

We identify a decision problem with the set of its "yes" instances.

- we can in most cases reduce an optimization problem to a decision problem, and vice versa.
- we only consider deterministic algorithms

The Set \mathcal{P}

Motivation

\mathcal{P} and $\mathcal{N} \mathcal{P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the Reductions

- p is a polynomial

Example element of \mathcal{P} :
in a graph with n nodes,
where edges have lengths,
is there a path from a to b of length ≤ 10 ?

The Set $\mathcal{N P}$, Motivation

Intuitively, $\mathcal{N P}$ should consist of those decision problems where a yes answer can be equipped with a certificate. A couple of examples:

Non-Primality:

- appears hard to check (deterministically) if n is non-prime
- but once m, q are given, easy to verify that $n=m q$ Hamiltonian Cycle: (a cycle that includes all nodes)
- appears not easy to see if given graph contains a Hamiltonian cycle
- but once a list of nodes is given, easy to verify if they do form a Hamiltonian cycle.

The Set $\mathcal{N} \mathcal{P}$, Definition

A decision problem X (the set of "yes" instances) is in
$\mathcal{N P}$ iff there is a set F and polynomial p such that

- $F \subseteq X \times Q$ with Q the set of certificates
(no-instances don't have certificates)
- for all $x \in X$, there exists $q \in Q$ such that $<x, q>\in F$ and the size of q is at most $p(|x|)$
- a polynomial time algorithm can check membership of F.
If $x \in X$ it is thus possible to verify that fact in polynomial time, once a certificate has been given.
- Observe that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$ (choose say 0 as certificate and ignore it)
- is the inequality strict? that is, is $\mathcal{P}=\mathcal{N} \mathcal{P}$? that's the $\$ 1 \mathrm{M}$ question (literally)

Motivation
\mathcal{P} and $\mathcal{N} \mathcal{P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the
Reductions

Reductions

We can ofte connect problems by showing that if we can do one we can also do the other.

- if we can multiply then we can surely also square

Motivation

\mathcal{P} and $\mathcal{N} \mathcal{P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the Reductions

- but if we can square then we can also multiply:

$$
x * y=\frac{(x+y)^{2}-(x-y)^{2}}{4}
$$

Polynomial Many-One Reductions

Motivation

\mathcal{P} and $N \mathcal{P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the Reductions

We say that decision problem X is polynomially many-one reducible to decision problem Y, to be written $X \leq_{m}^{p} Y$, if there exists f such that

$$
x \in X \text { iff } f(x) \in Y
$$

and f can be computed in polynomial time.

- in particular, $|f(x)|$ is polynomial in $|x|$.

Theorem: if $X \leq_{m}^{p} Y$ and $Y \in \mathcal{P}$ then also $X \in \mathcal{P}$.
Transitivity: if $X \leq_{m}^{p} Y$ and $Y \leq_{m}^{p} Z$ then $X \leq_{m}^{p} Z$.

Example Reduction

We have $H C \leq_{m}^{p} T S$ where

- HC is the problem of detecting if a graph has a Hamiltonian cycle
- TS is the problem of detecting if a table of distances between each pair of cities allows a traveling salesman to visit each city once, and come back home again, while traveling at most given d
For given a graph $G=(V, E)$, construct table D by stipulating that
- if $(u, v) \in E$ then $D(u, v)=1$
- if $(u, v) \notin E$ then $D(u, v)=2$

Thus $G \in H C$ iff D in $T S_{|V|}$

Optimization Problems

For an optimization problem, there often exists a decision problem such that a solution to the former translates into a solution to the latter, and vice versa.
Example: assume we want to study certain kinds of paths (like cycles where each node occurs exactly once).

- the decision problem $\operatorname{AtMost(k)~asks~whether~the~}$ length of the shortest path is k or less.
- the optimization problem Shortest finds the length of the shortest path.
If we can solve one we can solve the other:
- we can decide $\operatorname{AtMost}(k)$ as the result of the comparison SHORTEST $\leq k$.
- we can find Shortest as the smallest k such that $\operatorname{AtMost}(k)$ holds.
If AtMost runs in $O\left(n^{a}\right)$, and the shortest path has length in $O\left(n^{b}\right)$, then SHORTEST runs in time $O\left(n^{a+b}\right)$.

Construction Problems

Motivation

\mathcal{P} and $\mathcal{N P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the Reductions

For we consider each edge e in turn, and ask whether the graph still has a Hamiltonian cycle even if e is removed

- if "yes", remove e
- if "no", make e part of the cycle

If decision is in $O\left(n^{q}\right)$ then construction is in $O\left(n^{q+2}\right)$.
It is trivial to reduce decision problems to construction problems.

Defining $\mathcal{N} \mathcal{P}$-Hardness

Motivation

\mathcal{P} and $\mathcal{N P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
\mathcal{N}-Hardness, the Reductions

- then $\mathcal{P}=\mathcal{N} \mathcal{P}$ (which is unlikely)

If we have shown a problem to be $\mathcal{N} \mathcal{P}$-hard, you don't feel bad about not being able to find polynomial solution!

- if X is $\mathcal{N} \mathcal{P}$-hard
- and $X \leq_{m}^{p} Y$
- then also Y is $\mathcal{N P}$-hard

If $X \in \mathcal{N} \mathcal{P}$ is $\mathcal{N} \mathcal{P}$-hard we say that X is $\mathcal{N} \mathcal{P}$-complete.

Finding NP-Hard Problems

- if X is $\mathcal{N} \mathcal{P}$-hard and $X \leq_{m}^{p} Y$ then Y is $\mathcal{N} \mathcal{P}$-hard
- but how do we find just one $\mathcal{N} \mathcal{P}$-hard problem?

A "first" $\mathcal{N} \mathcal{P}$-hard problem [Cook, Levin] is Sat:
given a boolean formula ϕ
decide if one can assign truth values to variables such that ϕ is true (satisfied)

- SAT is in $\mathcal{N P}$ since the satisfying assignment can be used as certificate.
- SAT is $\mathcal{N P}$-hard because (pages of details omitted) any computation can be represented as a boolean formula.

We shall now see other $\mathcal{N} \mathcal{P}$-complete problems.

CSAT

CSAT:

given a boolean formula ϕ in CNF
decide if one can assign truth values to variables
such that ϕ is true (satisfied)

- A formula is in CNF if it is a conjunction of clauses
- A clause is a disjunction of literals
- A literal is a variable, or the negation of a variable Trivially, CSAT \leq_{m}^{p} SAt.
- CSAt is in $\mathcal{N P}$
- CSAT is $\mathcal{N} \mathcal{P}$-hard, as we shall show by establishing SAT \leq_{m}^{p} CSAT

3-SAT

Motivation

\mathcal{P} and $N P$
Reductions
NP-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the
Reductions

Trivially, 3-SAT \leq_{m}^{p} CSAT.

- 3-Sat is in $\mathcal{N P}$
- 3-SAT is $\mathcal{N P}$-hard, as we shall show by establishing CSAT $\leq_{m}^{p} 3$-SAT.

Clique

Motivation

\mathcal{P} and $N \mathcal{P}$
Reductions
$\mathcal{N P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the
Reductions

Given an undirected graph (V, E), a clique C is a subset of V such that for all $u \neq w \in C$, the edge (u, w) belongs to E.

- all singleton sets are cliques
- a graph with at least one edge has a clique of size 2

The decision problem Clique asks if a given graph contains a clique of size k.

- Clique is in $\mathcal{N P}$
- Clique is $\mathcal{N} \mathcal{P}$-hard, as we shall show by establishing 3 -SAT \leq_{m}^{p} Clique.

Motivation

\mathcal{P} and $\mathcal{N P}$
Reductions
NP-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the
Reductions

- for all u, the set $V \backslash\{u\}$ is a vertex cover

The decision problem VC asks if a given graph contains a vertex cover of size k.

- VC is in $\mathcal{N} \mathcal{P}$
- VC is $\mathcal{N} \mathcal{P}$-hard, as we shall show by establishing Clique \leq_{m}^{p} VC.

Outline of Reductions

Motivation

\mathcal{P} and $\mathcal{N} \mathcal{P}$
Reductions
$\mathcal{N} \mathcal{P}$-Hard/Complete
$\mathcal{N} \mathcal{P}$-Hardness, the Reductions

Since Sat is $\mathcal{N} \mathcal{P}$-hard (seminal result) this will establish that all the other problems are also $\mathcal{N} \mathcal{P}$-hard.

Reducing Clique to VC

Observe that (with \bar{X} the complement of X) the following claims are equivalent:

$$
\begin{aligned}
& C \text { is a clique in }(V, E) \\
& \forall u \neq w \in V:(u, w \in C \Rightarrow(u, w) \in E) \\
& \forall u \neq w \in V:((u, w) \notin E \Rightarrow u \notin C V w \notin C) \\
& \forall u \neq w \in V:((u, w) \in \bar{E} \Rightarrow u \in \bar{C} \vee w \in \bar{C}) \\
& \bar{C} \text { is a vertex cover for }(V, \bar{E})
\end{aligned}
$$

Given (V, E) with $|V|=n$, we see:
(V, E) has a clique of size k iff
(V, \bar{E}) has a vertex cover of size $n-k$

Reducing 3-Sat to Clique

Given CNF formula ϕ with k clauses, each having at most 3 literals, construct graph G such that

- we have a node for each literal (one node for each occurrence)
- we have an edge between I_{1} and I_{2} iff
- they occur in different clauses
- they are not contradictory (I_{1} not negation of I_{2})

Motivation
\mathcal{P} and $\mathcal{N P}$
Reductions
NP-Hard/Complete
$\mathcal{N} \mathcal{P}$-Complete
Problems
$\mathcal{N} \mathcal{P}$-Hardness, the Reductions
Lemma: ϕ can be satisfied iff G has a k-clique.

- Assume that ϕ is satisfied by A. Then each clause has at least one literal that is true wrt. A; let one of those go into C. Then C has k elements, all of which are connected by edges.
- Assume that C is a clique with k elements. The literals in C do not contradict each other; hence, we can construct a truth assignment A that assigns true to all literals in C. Since C must consist of one literal from each clause, ϕ will be satisfied by A.

Reducing CSAT to 3 -Sat

Let us just show how to reduce 4 -SAT to 3 -SAT; the generalization is straight-forward. So let

$$
\phi=x \vee y \vee z \vee w
$$

be given. With u a fresh variable, now define

$$
\phi^{\prime}=(x \vee y \vee u) \wedge(z \vee w \vee \neg u)
$$

Lemma: A satisfies ϕ iff an extension of A satisfies ϕ^{\prime}.

- first assume that A satisfies ϕ. Wlog, assume $A(y)=$ true. Now extend A to A^{\prime} by stipulating $A^{\prime}(u)=$ false. Then A^{\prime} satisfies ϕ^{\prime}.
- Next assume that A satisfies ϕ^{\prime}. Wlog, assume that $A(u)=$ true. But then A satisfies $z \vee w$ and hence ϕ.

Reducing Sat to CSAT

Amtoft

Given arbitrary boolean expression, first convert it to an equivalent expression ϕ in NNF (negation normal form)

- why not just normalize it all the way into CNF?
- this could cause exponential blow-up.

Instead, convert to ϕ^{\prime} in CNF such that

- all variables in ϕ occur also in ϕ^{\prime}
- any satisfying assignment for ϕ can be extended into a satisfying assignment for ϕ^{\prime}
- the restriction of any satisfying assignment for ϕ^{\prime} is a satisfying assignment for ϕ
Thus ϕ is satisfiable iff ϕ^{\prime} is.
- if ϕ is literal, then $\phi^{\prime}=\phi$
- if $\phi=\phi_{1} \wedge \phi_{2}$, apply induction hypothesis to find ϕ_{1}^{\prime} and ϕ_{2}^{\prime}, and then let $\phi^{\prime}=\phi_{1}^{\prime} \wedge \phi_{2}^{\prime}$
- if $\phi=\phi_{1} \vee \phi_{2}$, we need a more complex constrution. Details in Howell, p.519-520.

