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Secure Information 
Flow Analysis

• Static analysis is used to ensure sensitive 
information is not leaked

• Define a lattice of security levels and prove 
information only flows upwards
e.g. 

Stuff in Stuff

September 21, 2010

Phrases p ::= e | c

Expressions e ::=
x | l | n | e+ e

� | e− e
� |

e = e
� | e < e

�

Commands c ::=
e := e

� | c; c� | if e then c else c
� |

while e do c | letvar x := e in c

Security classes s ∈ SC (partially ordered by ≤)

Type τ ::= s

Phrase types ρ ::= τ | τ var | τ cmd

Theorem 6.8 (Type Soundess) Suppose

(a) λ � c : ρ, c is well typed
(b) µ � c ⇒ µ

�, execution one
(c) v � c ⇒ v

�, execution two
(d) dom(µ) = dom(v) = dom(λ), and
(e) v(l) = µ(l) for all l such that λ(l) ≤ τ the same low inputs

Then v
�(l) = µ

�(l) for all l such that λ(l) ≤ τ the same low outputs

Lemma 6.3 If λ � e : τ , then for every l in e, λ(l) � τ
if L ≤ H and τ = L then e can be evaluated without reading any H locations
Lemma 6.4 If λ; γ � c : τ cmd, then for every l

assigned to in c, λ(l) ≥ τ
Lemma 6.5 If λ; γ � l : τ var and
λ; γ[x : τ var] � c : τ �cmd, then λ; γ � [l/x]c : τ �cmd

if L ≤ H then L ❀ L, H ❀ H, L ❀ H, H �❀ L
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Definition (Noninterference) Program c satisifies noninterference if, for
any memories µ and v that agree on L variables, the memories produced by
running c on µ and on v also agree on L variables (provided both runs
terminate successfully)
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Type-Based Approach

• Security levels ≈ Types

• Lattice order on security levels ≈ Subtyping

• Program certification ≈ Type checking
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• Security levels ≈ Types

• Lattice order on security levels ≈ Subtyping

• Program certification ≈ Type checking

welltyped(P) ⇒ noninterference(P)
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Typing Judgements
λ; γ � p : ρ
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•               location typing

λ; γ � p : ρ

λ : l → τ
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Typing Judgements

•               location typing

•                identifier typing

λ; γ � p : ρ

λ : l → τ

γ : x → ρ
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Typing Rules
8 D. Volpano, G. Smith, C. Irvine

(int) λ; γ ! n : τ

(var) λ; γ ! x : τ var if γ(x) = τ var

(varloc) λ; γ ! l : τ var if λ(l) = τ

(arith)

λ; γ ! e : τ,
λ; γ ! e′ : τ

λ; γ ! e + e′ : τ

(r-val)
λ; γ ! e : τ var

λ; γ ! e : τ

(assign)

λ; γ ! e : τ var ,
λ; γ ! e′ : τ

λ; γ ! e := e′ : τ cmd

(compose)

λ; γ ! c : τ cmd ,
λ; γ ! c′ : τ cmd

λ; γ ! c; c′ : τ cmd

(if)

λ; γ ! e : τ,
λ; γ ! c : τ cmd ,
λ; γ ! c′ : τ cmd

λ; γ ! if e then c else c′ : τ cmd

(while)

λ; γ ! e : τ,
λ; γ ! c : τ cmd

λ; γ ! while e do c : τ cmd

(letvar)

λ; γ ! e : τ,
λ; γ[x : τ var ] ! c : τ ′ cmd

λ; γ ! letvar x := e in c : τ ′ cmd

Figure 2. Typing rules for secure information flow

Lemma 4.1 (Structural Subtyping) If ! ρ ⊆ ρ′, then either
(a) ρ is of the form τ , ρ′ is of the form τ ′, and τ ≤ τ ′,
(b) ρ is of the form τ var and ρ′ = ρ, or
(c) ρ is of the form τ cmd , ρ′ is of the form τ ′ cmd , and τ ′ ≤ τ .

Proof. By induction on the height of the derivation of ! ρ ⊆ ρ′. If the derivation
ends with rule (base) then (a) is true by the hypothesis of the rule. If it ends with
(reflex), then ρ = ρ′. So if ρ is of the form τ , then (a) holds since ≤ is reflexive.
And if ρ is of the form τ var or τ cmd , then (b) or (c) hold, respectively.

Now suppose the derivation ends with rule (trans). Then there is a ρ′′ such
that ! ρ ⊆ ρ′′ and ! ρ′′ ⊆ ρ′ by the hypotheses of the rule. There are three cases:

1. If ρ is of the form τ , then by induction ρ′′ is of the form τ ′′ and τ ≤ τ ′′. So by
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(var) λ; γ ! x : τ var if γ(x) = τ var
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λ; γ ! while e do c : τ cmd

(letvar)

λ; γ ! e : τ,
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λ; γ ! letvar x := e in c : τ ′ cmd
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8 D. Volpano, G. Smith, C. Irvine

(int) λ; γ ! n : τ

(var) λ; γ ! x : τ var if γ(x) = τ var

(varloc) λ; γ ! l : τ var if λ(l) = τ

(arith)

λ; γ ! e : τ,
λ; γ ! e′ : τ

λ; γ ! e + e′ : τ

(r-val)
λ; γ ! e : τ var

λ; γ ! e : τ

(assign)

λ; γ ! e : τ var ,
λ; γ ! e′ : τ

λ; γ ! e := e′ : τ cmd

(compose)

λ; γ ! c : τ cmd ,
λ; γ ! c′ : τ cmd

λ; γ ! c; c′ : τ cmd

(if)

λ; γ ! e : τ,
λ; γ ! c : τ cmd ,
λ; γ ! c′ : τ cmd

λ; γ ! if e then c else c′ : τ cmd

(while)

λ; γ ! e : τ,
λ; γ ! c : τ cmd

λ; γ ! while e do c : τ cmd

(letvar)

λ; γ ! e : τ,
λ; γ[x : τ var ] ! c : τ ′ cmd

λ; γ ! letvar x := e in c : τ ′ cmd

Figure 2. Typing rules for secure information flow

Lemma 4.1 (Structural Subtyping) If ! ρ ⊆ ρ′, then either
(a) ρ is of the form τ , ρ′ is of the form τ ′, and τ ≤ τ ′,
(b) ρ is of the form τ var and ρ′ = ρ, or
(c) ρ is of the form τ cmd , ρ′ is of the form τ ′ cmd , and τ ′ ≤ τ .

Proof. By induction on the height of the derivation of ! ρ ⊆ ρ′. If the derivation
ends with rule (base) then (a) is true by the hypothesis of the rule. If it ends with
(reflex), then ρ = ρ′. So if ρ is of the form τ , then (a) holds since ≤ is reflexive.
And if ρ is of the form τ var or τ cmd , then (b) or (c) hold, respectively.

Now suppose the derivation ends with rule (trans). Then there is a ρ′′ such
that ! ρ ⊆ ρ′′ and ! ρ′′ ⊆ ρ′ by the hypotheses of the rule. There are three cases:

1. If ρ is of the form τ , then by induction ρ′′ is of the form τ ′′ and τ ≤ τ ′′. So by
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Subtyping Rules
A Sound Type System for Secure Flow Analysis 9

(base)
τ ≤ τ ′

" τ ⊆ τ ′

(reflex) " ρ ⊆ ρ

(trans)
" ρ ⊆ ρ′, " ρ′ ⊆ ρ′′

" ρ ⊆ ρ′′

(cmd−)
" τ ⊆ τ ′

" τ ′ cmd ⊆ τ cmd

(subtype)

λ; γ " p : ρ,
" ρ ⊆ ρ′

λ; γ " p : ρ′

Figure 3. Subtyping rules

induction again, ρ′ is of the form τ ′ and τ ′′ ≤ τ ′. And since ≤ is transitive,
τ ≤ τ ′.

2. If ρ is of the form τ var , then by induction ρ′′ = ρ. So by induction again,
ρ′ = ρ′′, and hence ρ′ = ρ.

3. If ρ is of the form τ cmd , then by induction ρ′′ is of the form τ ′′ cmd and
τ ′′ ≤ τ . So by induction again, ρ′ is of the form τ ′ cmd and τ ′ ≤ τ ′′. So, since
≤ is transitive, τ ′ ≤ τ .

Finally, suppose the derivation ends with (cmd−). Then ρ is of the form
τ cmd , ρ′ is of the form τ ′ cmd , and " τ ′ ⊆ τ by the hypothesis of the rule.
By induction, τ ′ ≤ τ . $%

Lemma 4.2 ⊆ is a partial order.

Proof. Reflexivity and transitivity follow directly from rules (reflex) and
(trans). Antisymmetry follows from Lemma 4.1 and the antisymmetry of ≤. $%

5. The Formal Semantics

The soundness of our type system is established with respect to a natural semantics
for closed phrases in the core language. We say that a phrase is closed if it has
no free identifiers. A closed phrase is evaluated relative to a memory µ, which is
a finite function from locations to values. The contents of a location l ∈ dom(µ)
is the value µ(l), and we write µ[l := n] for the memory that assigns value n to
location l, and value µ(l′) to a location l′ '= l; note that µ[l := n] is an update of µ
if l ∈ dom(µ) and an extension of µ otherwise.

The evaluation rules are given in Figure 4. They allow us to derive judgments
of the form µ " e ⇒ n for expressions and µ " c ⇒ µ′ for commands. These
judgments assert that evaluating closed expression e in memory µ results in integer
n and that evaluating closed command c in memory µ results in a new memory µ′.
Note that expressions cannot cause side effects and commands do not yield values.
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(base) µ ! n ⇒ n

(contents) µ ! l ⇒ µ(l) if l ∈ dom(µ)

(add)
µ ! e ⇒ n, µ ! e′ ⇒ n′

µ ! e + e′ ⇒ n + n′

(update)
µ ! e ⇒ n, l ∈ dom(µ)

µ ! l := e ⇒ µ[l := n]

(sequence)
µ ! c ⇒ µ′, µ′ ! c′ ⇒ µ′′

µ ! c; c′ ⇒ µ′′

(branch)
µ ! e ⇒ 1, µ ! c ⇒ µ′

µ ! if e then c else c′ ⇒ µ′

µ ! e ⇒ 0, µ ! c′ ⇒ µ′

µ ! if e then c else c′ ⇒ µ′

(loop)
µ ! e ⇒ 0

µ ! while e do c ⇒ µ

µ ! e ⇒ 1,
µ ! c ⇒ µ′,
µ′ ! while e do c ⇒ µ′′

µ ! while e do c ⇒ µ′′

(bindvar)

µ ! e ⇒ n,
l is the first location not in dom(µ),
µ[l := n] ! [l/x]c ⇒ µ′

µ ! letvar x := e in c ⇒ µ′ − l

Figure 4. The evaluation rules

We write [e/x]c to denote the capture-avoiding substitution of e for all free
occurrences of x in c, and let µ− l be memory µ with location l deleted from its do-
main. Note the use of substitution in rule (bindvar), which governs the evaluation
of letvar x := e in c. A new location l is substituted for all free occurrences of x in
c. The result [l/x]c is then evaluated in the extended memory µ[l := n], where n is
the value of e. By using substitution, we avoid having to introduce an environment
mapping x to l. One can view [l/x]c as a partially-evaluated command, perhaps
containing other free locations.

6. Type Soundness

We now establish the soundness of the type system with respect to the semantics
of the core language. The soundness theorem states that if λ(l) = τ , for some
location l, then one can arbitrarily alter the initial value of any location l′ such
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Type Soundness

• Altering the initial values of locations of 
type    cannot affect the initial values of any 
locations of type    , provided that 

τ
τ � τ �≤ τ �
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Simple Security

• Secrecy

Only locations at level    or lower will have their 
contents read when    is evaluated (no read up)

• Confinement

If    has integrity level   , then every location in   
stores information at integrity level

Stuff in Stuff

September 20, 2010

Phrases p ::= e | c

Expressions e ::=
x | l | n | e+ e� | e− e� |
e = e� | e < e�

Commands c ::=
e := e� | c; c� | if e then c else c� |
while e do c | letvar x := e in c

Security classes s ∈ SC (partially ordered by ≤)

Type τ ::= s

Phrase types ρ ::= τ | τ var | τ cmd

Theorem 6.8 (Type Soundess) Suppose

(a) λ � c : ρ, c is well typed
(b) µ � c ⇒ µ�, execution one
(c) v � c ⇒ v�, execution two
(d) dom(µ) = dom(v) = dom(λ), and
(e) v(l) = µ(l) for all l such that λ(l) ≤ τ the same low inputs

Then v�(l) = µ�(l) for all l such that λ(l) ≤ τ the same low outputs

Lemma 6.3 If λ � e : τ , then for every l in e, λ(l) � τ

1

τ
e

e τ e
τ
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Confinement

• Secrecy

No location below level    is updated in             
(no write down)

• Confinement

Every location assigned to in    can be updated by 
information at integrity level 

Stuff in Stuff

September 20, 2010

Phrases p ::= e | c

Expressions e ::=
x | l | n | e+ e

� | e− e
� |

e = e
� | e < e

�

Commands c ::=
e := e

� | c; c� | if e then c else c
� |

while e do c | letvar x := e in c

Security classes s ∈ SC (partially ordered by ≤)

Type τ ::= s

Phrase types ρ ::= τ | τ var | τ cmd

Theorem 6.8 (Type Soundess) Suppose

(a) λ � c : ρ, c is well typed
(b) µ � c ⇒ µ

�, execution one
(c) v � c ⇒ v

�, execution two
(d) dom(µ) = dom(v) = dom(λ), and
(e) v(l) = µ(l) for all l such that λ(l) ≤ τ the same low inputs

Then v
�(l) = µ

�(l) for all l such that λ(l) ≤ τ the same low outputs

Lemma 6.3 If λ � e : τ , then for every l in e, λ(l) � τ
if L ≤ H and τ = L then e can be evaluated without reading any H locations
Lemma 6.4 If λ; γ � c : τ cmd, then for every l

assigned to in c, λ(l) ≥ τ

1

τ

τ
c

c
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