A Sound Type System for Secure Flow Analysis

Dennis Volpana, Geoffrey Smith, Cynthia Irvine

Jason Belt
CIS 890
09.20.2010

Secure Information Flow Analysis

- Static analysis is used to ensure sensitive information is not leaked
- Define a lattice of security levels and prove information only flows upwards
e.g. if $L \leq H$ then $L \leadsto L, H \leadsto H, L \leadsto H, H \nsim L$

Secure Information Flow Analysis

- Static analysis is used to ensure sensitive information is not leaked
- Define a lattice of security levels and prove information only flows upwards
e.g. if $L \leq H$ then $L \leadsto L, H \leadsto H, L \leadsto H, H \nsim L$

Definition (Noninterference) Program c satisifies noninterference if, for any memories μ and v that agree on L variables, the memories produced by running c on μ and on v also agree on L variables (provided both runs terminate successfully)

Type-Based Approach

- Security levels \approx Types
- Lattice order on security levels \approx Subtyping
- Program certification \approx Type checking

Type-Based Approach

- Security levels \approx Types
- Lattice order on security levels \approx Subtyping
- Program certification \approx Type checking
welltyped $(P) \Rightarrow$ noninterference(P)

The Core Language

Phrases $p::=e \mid c$
Expressions $\quad e \quad::=\begin{aligned} & x|l| n\left|e+e^{\prime}\right| e-e^{\prime} \mid \\ & e=e^{\prime} \mid e<e^{\prime}\end{aligned}$
Commands $\quad c \quad::=\begin{aligned} & e:=e^{\prime}\left|c ; c^{\prime}\right| \text { if } e \text { then } c \text { else } c^{\prime} \mid \\ & \text { while } e \text { do } c \mid \text { letvar } x:=e \text { in } c\end{aligned}$

The Core Language

Phrases $p::=e \mid c$
Expressions $\quad e \quad::=\begin{aligned} & x|l| n\left|e+e^{\prime}\right| e-e^{\prime} \mid \\ & e=e^{\prime} \mid e<e^{\prime}\end{aligned}$
Commands $\quad c \quad::=\begin{aligned} & e:=e^{\prime}\left|c ; c^{\prime}\right| \text { if } e \text { then } c \text { else } c^{\prime} \mid \\ & \text { while } e \text { do } c \mid \text { letvar } x:=e \text { in } c\end{aligned}$
Security classes $s \in S C$ (partially ordered by \leq)

$$
\text { Type } \tau::=s
$$

Phrase types $\quad \rho::=\tau|\tau \operatorname{var}| \tau \mathrm{cmd}$

Typing Judgements

$$
\lambda ; \gamma \vdash p: \rho
$$

Typing Judgements

$$
\lambda ; \gamma \vdash p: \rho
$$

- $\lambda: l \rightarrow \tau$ location typing

Typing Judgements

$$
\lambda ; \gamma \vdash p: \rho
$$

- $\lambda: l \rightarrow \tau$ location typing
- $\gamma: x \rightarrow \rho$ identifier typing

Typing Rules

(INT)	$\lambda ; \gamma \vdash n: \tau$
(VAR)	$\lambda ; \gamma \vdash x: \tau$ var \quad if $\gamma(x)=\tau$ var
(VARLOC)	$\lambda ; \gamma \vdash l: \tau$ var \quad if $\lambda(l)=\tau$
	$\lambda ; \gamma \vdash e: \tau$,
(ARITH)	$\frac{\lambda ; \gamma \vdash e^{\prime}: \tau}{\lambda ; \gamma \vdash e+e^{\prime}: \tau}$
	$\frac{\lambda ; \gamma \vdash e: \tau \text { var }}{\lambda ; \gamma \vdash e: \tau}$
(R-VAL)	
	$\lambda ; \gamma \vdash e: \tau$ var,
(ASSIGN)	$\frac{\lambda ; \gamma \vdash e^{\prime}: \tau}{\lambda ; \gamma \vdash e:=e^{\prime}: \tau c m d}$

Typing Rules

Upward flow from e to e^{\prime} allowed if $e: H, e^{\prime}: L$, and e^{\prime} can be coerced to H, then with the rule applied with $\tau=H$

$$
\begin{array}{ll}
& \lambda ; \gamma \vdash e: \tau \text { var }, \\
\text { (ASSIGN) } & \frac{\lambda ; \gamma \vdash e^{\prime}: \tau}{\lambda ; \gamma \vdash e:=e^{\prime}: \tau c m d}
\end{array}
$$

Typing Rules

(COMPOSE)	$\lambda ; \gamma \vdash c: \tau c m d$, $\lambda ; \gamma \vdash c^{\prime}: \tau c m d$
	$\lambda ; \gamma \vdash c ; c^{\prime}: \tau c m d$
(IF)	$\begin{aligned} & \lambda ; \gamma \vdash e: \tau, \\ & \lambda ; \gamma \vdash c: \tau c m d, \\ & \lambda ; \gamma \vdash c^{\prime}: \tau c m d \end{aligned}$
(WHILE)	$\lambda ; \gamma \vdash$ if e then c else $c^{\prime}: \tau c m d$
	$\begin{aligned} & \lambda ; \gamma \vdash e: \tau, \\ & \lambda ; \gamma \vdash c: \tau c m d \end{aligned}$
	$\lambda ; \gamma \vdash$ while e do $c: \tau$ cmd
(LETVAR)	$\begin{aligned} & \lambda ; \gamma \vdash e: \tau \\ & \lambda ; \gamma[x: \tau \text { var }] \vdash c: \tau^{\prime} c m d \end{aligned}$
	$\lambda ; \gamma \vdash$ letvar $x:=e$ in $c: \tau^{\prime} c m d$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=\gamma(y)=H$ var and $\tau=H$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=\gamma(y)=H$ var and $\tau=H$
$\gamma \vdash$ if $x=1$ then $y:=1$ else $y:=0$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=\gamma(y)=H$ var and $\tau=H$
$H \quad H \quad c m d \quad H \mathrm{cmd}$
$\gamma \vdash$ if $x=1$ then $y:=1$ else $y:=0$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=\gamma(y)=H$ var and $\tau=H$

$$
\begin{gathered}
H \quad H \quad c m d \quad H \mathrm{cmd} \\
\gamma \vdash \text { if } x=1 \text { then } y:=1 \text { else } y:=0: H \mathrm{cmd}
\end{gathered}
$$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=L$ var, $\gamma(y)=H$ var, $\tau=L$, and $L \leq H$ so that $H \mathrm{cmd} \subseteq L \mathrm{cmd}$
$\gamma \vdash$ if $x=1$ then $y:=1$ else $y:=0$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=L$ var, $\gamma(y)=H$ var, $\tau=L$, and $L \leq H$ so that $H c m d \subseteq L c m d$
$\gamma \vdash$ if $x \stackrel{L}{=} 1$ then $y:=1$ else $y:=0$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=L$ var, $\gamma(y)=H$ var, $\tau=L$, and $L \leq H$ so that $H \mathrm{cmd} \subseteq L \mathrm{cmd}$
$\gamma \vdash$ if $x \stackrel{L}{=} \quad \begin{aligned} & H \text { then } y d \\ & y\end{aligned}:=1$ else $y:=0$

Typing Rules

$$
\begin{aligned}
& \lambda ; \gamma \vdash e: \tau, \\
& \lambda ; \gamma \vdash c: \tau c m d, \\
& \lambda ; \gamma \vdash c^{\prime}: \tau c m d \\
& \hline \lambda ; \gamma \vdash \text { if } e \text { then } c \text { else } c^{\prime}: \tau c m d
\end{aligned}
$$

Suppose $\gamma(x)=L$ var, $\gamma(y)=H$ var, $\tau=L$, and $L \leq H$ so that $H \mathrm{cmd} \subseteq L \mathrm{cmd}$

Typing Rules

(COMPOSE)	$\lambda ; \gamma \vdash c: \tau c m d$, $\lambda ; \gamma \vdash c^{\prime}: \tau c m d$
	$\lambda ; \gamma \vdash c ; c^{\prime}: \tau c m d$
(IF)	$\begin{aligned} & \lambda ; \gamma \vdash e: \tau, \\ & \lambda ; \gamma \vdash c: \tau c m d, \\ & \lambda ; \gamma \vdash c^{\prime}: \tau c m d \end{aligned}$
(WHILE)	$\lambda ; \gamma \vdash$ if e then c else $c^{\prime}: \tau c m d$
	$\begin{aligned} & \lambda ; \gamma \vdash e: \tau, \\ & \lambda ; \gamma \vdash c: \tau c m d \end{aligned}$
	$\lambda ; \gamma \vdash$ while e do $c: \tau$ cmd
(LETVAR)	$\begin{aligned} & \lambda ; \gamma \vdash e: \tau \\ & \lambda ; \gamma[x: \tau \text { var }] \vdash c: \tau^{\prime} c m d \end{aligned}$
	$\lambda ; \gamma \vdash$ letvar $x:=e$ in $c: \tau^{\prime} c m d$

Subtyping Rules

$$
\begin{aligned}
\text { (BASE) } & \frac{\tau \leq \tau^{\prime}}{\vdash \tau \subseteq \tau^{\prime}} \\
\text { (REFLEX) } & \vdash \rho \subseteq \rho \\
\text { (TRANS) } & \frac{\vdash \rho \subseteq \rho^{\prime}, \vdash \rho^{\prime} \subseteq \rho^{\prime \prime}}{\vdash \rho \subseteq \rho^{\prime \prime}} \\
\left(\mathrm{CMD}^{-}\right) & \frac{\vdash \tau \subseteq \tau^{\prime}}{\vdash \tau^{\prime} c m d \subseteq \tau c m d} \\
& \lambda ; \gamma \vdash p: \rho, \\
\text { (SUBTYPE) } & \frac{\vdash \rho \subseteq \rho^{\prime}}{} \\
& \lambda ; \gamma \vdash p: \rho^{\prime}
\end{aligned}
$$

Operational Semantics

- Evaluation is performed relative to a memory $\mu: l \rightarrow n$

Operational Semantics

- Evaluation is performed relative to a memory $\mu: l \rightarrow n$

$$
\mu \vdash e \Rightarrow n \quad \mu \vdash c \Rightarrow \mu^{\prime}
$$

Operational Semantics

$$
\begin{aligned}
\text { (BASE) } & \mu \vdash n \Rightarrow n \\
\text { (CONTENTS) } & \mu \vdash l \Rightarrow \mu(l) \quad \text { if } l \in \operatorname{dom}(\mu) \\
\text { (ADD) } & \frac{\mu \vdash e \Rightarrow n, \quad \mu \vdash e^{\prime} \Rightarrow n^{\prime}}{\mu \vdash e+e^{\prime} \Rightarrow n+n^{\prime}} \\
\text { (UPDATE) } & \frac{\mu \vdash e \Rightarrow n, \quad l \in \operatorname{dom}(\mu)}{\mu \vdash l:=e \Rightarrow \mu[l:=n]} \\
\text { (SEQUENCE) } & \frac{\mu \vdash c \Rightarrow \mu^{\prime}, \quad \mu^{\prime} \vdash c^{\prime} \Rightarrow \mu^{\prime \prime}}{\mu \vdash c ; c^{\prime} \Rightarrow \mu^{\prime \prime}} \\
\text { (BRANCH) } & \frac{\mu \vdash e \Rightarrow 1, \quad \mu \vdash c \Rightarrow \mu^{\prime}}{\mu \vdash \text { if } e \text { then } c \text { else } c^{\prime} \Rightarrow \mu^{\prime}} \\
& \frac{\mu \vdash e \Rightarrow 0, \quad \mu \vdash c^{\prime} \Rightarrow \mu^{\prime}}{\mu \vdash \text { if } e \text { then } c \text { else } c^{\prime} \Rightarrow \mu^{\prime}}
\end{aligned}
$$

Operational Semantics

$$
\begin{aligned}
\text { (LOOP) } \quad & \frac{\mu \vdash e \Rightarrow 0}{\mu \vdash \text { while } e \text { do } c \Rightarrow \mu} \\
& \mu \vdash e \Rightarrow 1, \\
& \mu \vdash c \Rightarrow \mu^{\prime}, \\
& \frac{\mu^{\prime} \vdash \text { while } e \text { do } c \Rightarrow \mu^{\prime \prime}}{\mu \vdash \text { while } e \text { do } c \Rightarrow \mu^{\prime \prime}} \\
& \mu \vdash e \Rightarrow n, \\
& l \text { is the first location not in } \operatorname{dom}(\mu), \\
& \frac{\mu[l:=n] \vdash[l / x] c \Rightarrow \mu^{\prime}}{\mu \vdash \operatorname{letvar} x:=e \text { in } c \Rightarrow \mu^{\prime}-l}
\end{aligned}
$$

Type Soundness

- Altering the initial values of locations of type τ cannot affect the initial values of any locations of type τ^{\prime}, provided that $\tau \not \leq \tau^{\prime}$

Simple Security

Lemma 6.3 If $\lambda \vdash e: \tau$, then for every l in $e, \lambda(l) \vdash \tau$

- Secrecy

Only locations at level τ or lower will have their contents read when e is evaluated (no read up)

- Confinement

If e has integrity level τ, then every location in e stores information at integrity level τ

Confinement

Lemma 6.4 If $\lambda ; \gamma \vdash c: \tau c m d$, then for every l assigned to in $c, \lambda(l) \geq \tau$

- Secrecy

No location below level τ is updated in c
(no write down)

- Confinement

Every location assigned to in c can be updated by information at integrity level τ

Type Soundness

Theorem 6.8 (Type Soundess) Suppose
(a) $\lambda \vdash c: \rho$,
c is well typed

Type Soundness

Theorem 6.8 (Type Soundess) Suppose
(a) $\lambda \vdash c: \rho$,
c is well typed
(b) $\mu \vdash c \Rightarrow \mu^{\prime}$, execution one

Type Soundness

Theorem 6.8 (Type Soundess) Suppose
(a) $\lambda \vdash c: \rho$,
(b) $\mu \vdash c \Rightarrow \mu^{\prime}$,
(c) $v \vdash c \Rightarrow v^{\prime}$,
c is well typed execution one execution two

Type Soundness

Theorem 6.8 (Type Soundess) Suppose
(a) $\lambda \vdash c: \rho$,
(b) $\mu \vdash c \Rightarrow \mu^{\prime}$,
(c) $v \vdash c \Rightarrow v^{\prime}$,
c is well typed
(d) $\operatorname{dom}(\mu)=\operatorname{dom}(v)=\operatorname{dom}(\lambda)$, and execution one execution two

Type Soundness

Theorem 6.8 (Type Soundess) Suppose
(a) $\lambda \vdash c: \rho$,
(b) $\mu \vdash c \Rightarrow \mu^{\prime}$,
(c) $v \vdash c \Rightarrow v^{\prime}$,
c is well typed
(d) $\operatorname{dom}(\mu)=\operatorname{dom}(v)=\operatorname{dom}(\lambda)$, and
(e) $\quad v(l)=\mu(l)$ for all l such that $\lambda(l) \leq \tau \quad$ the same low inputs

Type Soundness

Theorem 6.8 (Type Soundess) Suppose
(a) $\lambda \vdash c: \rho$,
c is well typed
(b) $\mu \vdash c \Rightarrow \mu^{\prime}$, execution one
(c) $v \vdash c \Rightarrow v^{\prime}$, execution two
(d) $\operatorname{dom}(\mu)=\operatorname{dom}(v)=\operatorname{dom}(\lambda)$, and
(e) $\quad v(l)=\mu(l)$ for all l such that $\lambda(l) \leq \tau \quad$ the same low inputs

Then $v^{\prime}(l)=\mu^{\prime}(l)$ for all l such that $\lambda(l) \leq \tau \quad$ the same low outputs

