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Computational Complexity

Defn: Let T : N→ N. A TM M is said to have time complexity
T (n) if on every input string w, M takes no more than T (|w|)
transitions.

Defn: P is the set of all languages L ⊆ {0, 1}∗ such that there
is a polynomial p(n) and a TM M with time complexity p(n)
such that L(M) = L.

Defn: NP is the set of all languages L ⊆ {0, 1}∗ such that
there is a polynomial p(n) and a nondeterministic TM M with
the time complexity p(n) such that L(M) = L.



NP Classes

Defn: A language L is said to be NP-hard if for every
L′ ∈ NP, L′ ≤p

m L.

L1 ≤p
m L2

Let L1 ⊆ Σ∗, L2 ⊆ ∆∗. We say L1 ≤p
m L2 if there exists a

TM M = (Q,Σ,Γ, δ, q0, B, {q}) with polynomial running time
complexity such that

I ∆ ⊆ Γ;
I on every input, M halts on an ID qy for some y ∈ ∆∗; and
I if q0x `∗M qy, then x ∈ L1 iff y ∈ L2

Defn: If L ∈ NP-hard and L ∈ NP then L is said to be
NP-complete.
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Boolean Satisfiability (SAT)

Input: A boolean formulat F consisting of boolean variables
and the operators ∧, ∨, ¬

Question: Is there an assignment of boolean values to the
variables in F that causes F to evaluate to true

Claim: LSAT ∈ NP-complete, where LSAT denotes the
language of satisfiable formulas encoded over {0, 1}



Cook’s Theorem: SAT ∈ NP-complete

Proof:
1. LSAT ∈ NP.

I Use a NTM to guess a truth assignment T for a given
expression E. If |E| = n then O(n) time suffices on a
multitape NTM. Note that there may be as many as 2n

unique truth assignments.
I Evaluate E for the truth assignment T . Can be done in
O(n2) time on a multitape NTM

2. LSAT ∈ NP-hard
Proof idea:

I For each language L in NP, there is a polynomial p(n) and
a nondeterministic TM M with time complexity p(n) such
that L(M) = L

I From w ∈ {0, 1}∗, we construct a formula F that is
satisfiable iff there is an accepting computation of M on w

I The time for the construction will be polynomial in p(n)



Cook’s Theorem: SAT ∈ NP-complete

Construction overview:
I We will view a computation as a sequence of IDs
α0, . . . , αp(n) such that either αi ` αi+1 or αi = αi+1.

I Each αi will be of the form X−pn · · ·X0 · · ·Xp(n)+1 where
Xj is either a tape symbol or a state.

I We use boolean variable yijA to denote whether Xj of αj is
A.

I F will constrain the sequence of IDs to be an accepting
computation of w.



Cook’s Theorem: SAT ∈ NP-complete

We will describe a set of formulas, each enforcing certain
constraints on the variables yijA, for 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n) + 1, A ∈ Q ∪ Γ.

F will be the conjuction of these formulas.

α0 is the initial ID:

I y00q0

I y0jaj for 1 ≤ j ≤ n, where a1 · · · an = w.
I y0jB for −p(n) ≤ j < 0, n < j ≤ p(n) + 1.

αp(n) contains a final state

p(n)+1∨
j=−p(n)

∨
q∈F

yp(n)jq



Cook’s Theorem: SAT ∈ NP-complete

I We still need to enforce that αi ` αi+1 or αi = αi+1 for
0 ≤ i ≤ p(n).

I For 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n) + 1, we construct a
formula enforcing one of the following
1. Xij is a state and Xi+1,j−1Xi+1,jXi+1,j+1 results from

doing nothing or taking a transition of M from
Xi,j−1XijXi,j+1 (if j = −p(n) or j = p(n) + 1, this is
omitted); or

2. Xi,j−1, Xij , and Xi,j+1 are not states, and Xi+1,j = Xij



Cook’s Theorem: SAT ∈ NP-complete

Constraint 1 is enforced by the disjunction of the following
formulas:

I For each q ∈ Q, X,Y ∈ Γ, and (q′, Z,R) ∈ δ(q, Y ):
yi,j−1,X ∧ yi+1,j−1,X ∧ yijq ∧ yi+1,j,Z ∧ yi,j+1,Y ∧ yi+1,j+1,q′ .

I For each q ∈ Q, X,Y ∈ Γ, and (q′, Z, L) ∈ δ(q, Y ):
yi,j−1,X ∧ yi+1,j−1,q′ ∧ yijq ∧ yi+1,j,X ∧ yi,j+1,Y ∧ yi+1,j+1,Z .

I For each q ∈ Q, X,Y ∈ Γ:
yi,j−1,X ∧ yi+1,j−1,X ∧ yijq ∧ yi+1,j,q ∧ yi,j+1,Y ∧ yi+1,j+1,Y .



Cook’s Theorem: SAT ∈ NP-complete

Constraint 2 is enforced by the conjunction of:
I

∨
X∈Γ yi,j−1,X ;

I
∨

X∈Γ(yijX ∧ yi+1,j,X); and
I

∨
X∈Γ yi,j+1,X .

Conjuncts containing out-of-bounds subscripts are omitted.

I The formula can be constructed in polynomial time.
I The formula is satisfiable iff M has an accepting

computation on w
I Therefore, SAT is NP-hard.


