Cook's Theorem

Jason Belt CIS 890

Lecture material adapted from Dr. Howell's CIS 770 lecture notes

October 26, 2010

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三副 - のへで

Computational Complexity

Defn: Let $T : \mathbb{N} \to \mathbb{N}$. A TM M is said to have time complexity T(n) if on every input string w, M takes no more than T(|w|) transitions.

Defn: \mathcal{P} is the set of all languages $L \subseteq \{0, 1\}^*$ such that there is a polynomial p(n) and a TM M with time complexity p(n) such that L(M) = L.

Defn: \mathcal{NP} is the set of all languages $L \subseteq \{0, 1\}^*$ such that there is a polynomial p(n) and a nondeterministic TM M with the time complexity p(n) such that L(M) = L.

\mathcal{NP} Classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Defn: A language L is said to be \mathcal{NP} -hard if for every $L' \in \mathcal{NP}, L' \leq_m^p L$.

\mathcal{NP} Classes

Defn: A language L is said to be \mathcal{NP} -hard if for every $L' \in \mathcal{NP}, L' \leq_m^p L$.

 $L_1 \leq^p_m L_2$

Let $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Delta^*$. We say $L_1 \leq_m^p L_2$ if there exists a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, \{q\})$ with polynomial running time complexity such that

- $\Delta \subseteq \Gamma$;
- on every input, M halts on an ID qy for some $y \in \Delta^*$; and

うして ふゆう ふほう ふほう ふしつ

• if $q_0x \vdash^*_M qy$, then $x \in L_1$ iff $y \in L_2$

\mathcal{NP} Classes

Defn: A language L is said to be \mathcal{NP} -hard if for every $L' \in \mathcal{NP}, L' \leq_m^p L$.

 $L_1 \leq^p_m L_2$

Let $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Delta^*$. We say $L_1 \leq_m^p L_2$ if there exists a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, \{q\})$ with polynomial running time complexity such that

• $\Delta \subseteq \Gamma$;

• on every input, M halts on an ID qy for some $y \in \Delta^*$; and

うして ふゆう ふほう ふほう ふしつ

• if $q_0x \vdash^*_M qy$, then $x \in L_1$ iff $y \in L_2$

Defn: If $L \in \mathcal{NP}$ -hard and $L \in \mathcal{NP}$ then L is said to be \mathcal{NP} -complete.

Boolean Satisfiability (SAT)

- **Input**: A boolean formulat \mathcal{F} consisting of boolean variables and the operators \land , \lor , \neg
- **Question**: Is there an assignment of boolean values to the variables in \mathcal{F} that causes \mathcal{F} to evaluate to **true**

Claim: $L_{SAT} \in \mathcal{NP}$ -complete, where L_{SAT} denotes the language of satisfiable formulas encoded over $\{0, 1\}$

Proof:

- 1. $L_{SAT} \in \mathcal{NP}$.
 - Use a NTM to guess a truth assignment T for a given expression E. If |E| = n then O(n) time suffices on a multitape NTM. Note that there may be as many as 2^n unique truth assignments.
 - Evaluate E for the truth assignment T. Can be done in $O(n^2)$ time on a multitape NTM
- 2. $L_{SAT} \in \mathcal{NP}$ -hard

Proof idea:

- ▶ For each language L in \mathcal{NP} , there is a polynomial p(n) and a nondeterministic TM M with time complexity p(n) such that L(M) = L
- ▶ From $w \in \{0, 1\}^*$, we construct a formula \mathcal{F} that is satisfiable iff there is an accepting computation of M on w
- The time for the construction will be polynomial in p(n)

Construction overview:

- ► We will view a computation as a sequence of IDs $\alpha_0, \ldots, \alpha_{p(n)}$ such that either $\alpha_i \vdash \alpha_{i+1}$ or $\alpha_i = \alpha_{i+1}$.
- ► Each α_i will be of the form $X_{-p_n} \cdots X_0 \cdots X_{p(n)+1}$ where X_j is either a tape symbol or a state.
- We use boolean variable y_{ijA} to denote whether X_j of α_j is A.

▶ \mathcal{F} will constrain the sequence of IDs to be an accepting computation of w.

We will describe a set of formulas, each enforcing certain constraints on the variables y_{ijA} , for $0 \le i \le p(n)$, $-p(n) \le j \le p(n) + 1$, $A \in Q \cup \Gamma$.

 \mathcal{F} will be the conjuction of these formulas.

 α_0 is the initial ID:

 $\blacktriangleright y_{00q_0}$

- y_{0ja_j} for $1 \le j \le n$, where $a_1 \cdots a_n = w$.
- y_{0jB} for $-p(n) \le j < 0, n < j \le p(n) + 1$.

 $\alpha_{p(n)}$ contains a final state

$$\bigvee_{j=-p(n)}^{p(n)+1} \bigvee_{q \in F} y_{p(n)jq}$$

- We still need to enforce that $\alpha_i \vdash \alpha_{i+1}$ or $\alpha_i = \alpha_{i+1}$ for $0 \le i \le p(n)$.
- ▶ For $0 \le i \le p(n)$, $-p(n) \le j \le p(n) + 1$, we construct a formula enforcing one of the following
 - 1. X_{ij} is a state and $X_{i+1,j-1}X_{i+1,j}X_{i+1,j+1}$ results from doing nothing or taking a transition of M from $X_{i,j-1}X_{ij}X_{i,j+1}$ (if j = -p(n) or j = p(n) + 1, this is omitted); or
 - 2. $X_{i,j-1}$, X_{ij} , and $X_{i,j+1}$ are not states, and $X_{i+1,j} = X_{ij}$

Constraint 1 is enforced by the disjunction of the following formulas:

- ► For each $q \in Q$, $X, Y \in \Gamma$, and $(q', Z, R) \in \delta(q, Y)$: $y_{i,j-1,X} \land y_{i+1,j-1,X} \land y_{ijq} \land y_{i+1,j,Z} \land y_{i,j+1,Y} \land y_{i+1,j+1,q'}$.
- ► For each $q \in Q$, $X, Y \in \Gamma$, and $(q', Z, L) \in \delta(q, Y)$: $y_{i,j-1,X} \land y_{i+1,j-1,q'} \land y_{ijq} \land y_{i+1,j,X} \land y_{i,j+1,Y} \land y_{i+1,j+1,Z}$.
- ► For each $q \in Q$, $X, Y \in \Gamma$: $y_{i,j-1,X} \land y_{i+1,j-1,X} \land y_{ijq} \land y_{i+1,j,q} \land y_{i,j+1,Y} \land y_{i+1,j+1,Y}$.

うして ふゆう ふほう ふほう ふしつ

Constraint 2 is enforced by the conjunction of:

- $\blacktriangleright \bigvee_{X \in \Gamma} y_{i,j-1,X};$
- $\bigvee_{X \in \Gamma} (y_{ijX} \land y_{i+1,j,X});$ and
- $\blacktriangleright \bigvee_{X \in \Gamma} y_{i,j+1,X}.$

Conjuncts containing out-of-bounds subscripts are omitted.

▶ The formula can be constructed in polynomial time.

- ▶ The formula is satisfiable iff M has an accepting computation on w
- Therefore, SAT is \mathcal{NP} -hard.