Cook's Theorem

Jason Belt
CIS 890

Lecture material adapted from Dr. Howell's CIS 770 lecture notes

October 26, 2010

Computational Complexity

Defn: Let $T: \mathbb{N} \rightarrow \mathbb{N}$. A TM M is said to have time complexity $T(n)$ if on every input string w, M takes no more than $T(|w|)$ transitions.

Defn: \mathcal{P} is the set of all languages $L \subseteq\{0,1\}^{*}$ such that there is a polynomial $p(n)$ and a TM M with time complexity $p(n)$ such that $L(M)=L$.

Defn: $\mathcal{N P}$ is the set of all languages $L \subseteq\{0,1\}^{*}$ such that there is a polynomial $p(n)$ and a nondeterministic TM M with the time complexity $p(n)$ such that $L(M)=L$.

$\mathcal{N P}$ Classes

Defn: A language L is said to be $\mathcal{N} \mathcal{P}$-hard if for every $L^{\prime} \in \mathcal{N} \mathcal{P}, L^{\prime} \leq_{m}^{p} L$.

$\mathcal{N P}$ Classes

Defn: A language L is said to be $\mathcal{N} \mathcal{P}$-hard if for every $L^{\prime} \in \mathcal{N} \mathcal{P}, L^{\prime} \leq_{m}^{p} L$.
$L_{1} \leq_{m}^{p} L_{2}$
Let $L_{1} \subseteq \Sigma^{*}, L_{2} \subseteq \Delta^{*}$. We say $L_{1} \leq_{m}^{p} L_{2}$ if there exists a TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B,\{q\}\right)$ with polynomial running time complexity such that

- $\Delta \subseteq \Gamma$;
- on every input, M halts on an ID $q y$ for some $y \in \Delta^{*}$; and
- if $q_{0} x \vdash^{*} q y$, then $x \in L_{1}$ iff $y \in L_{2}$

$\mathcal{N P}$ Classes

Defn: A language L is said to be $\mathcal{N} \mathcal{P}$-hard if for every $L^{\prime} \in \mathcal{N} \mathcal{P}, L^{\prime} \leq_{m}^{p} L$.
$L_{1} \leq{ }_{m}^{p} L_{2}$
Let $L_{1} \subseteq \Sigma^{*}, L_{2} \subseteq \Delta^{*}$. We say $L_{1} \leq_{m}^{p} L_{2}$ if there exists a TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B,\{q\}\right)$ with polynomial running time complexity such that

- $\Delta \subseteq \Gamma$;
- on every input, M halts on an ID $q y$ for some $y \in \Delta^{*}$; and
- if $q_{0} x \vdash^{*} q y$, then $x \in L_{1}$ iff $y \in L_{2}$

Defn: If $L \in \mathcal{N} \mathcal{P}$-hard and $L \in \mathcal{N} \mathcal{P}$ then L is said to be $\mathcal{N} \mathcal{P}$-complete.

Boolean Satisfiability (SAT)

Input: A boolean formulat \mathcal{F} consisting of boolean variables and the operators \wedge, \vee, \neg
Question: Is there an assignment of boolean values to the variables in \mathcal{F} that causes \mathcal{F} to evaluate to true

Claim: $L_{S A T} \in \mathcal{N} \mathcal{P}$-complete, where $L_{S A T}$ denotes the language of satisfiable formulas encoded over $\{0,1\}$

Cook's Theorem: SAT $\in \mathcal{N} \mathcal{P}$-complete

Proof:

1. $L_{S A T} \in \mathcal{N P}$.

- Use a NTM to guess a truth assignment T for a given expression E. If $|E|=n$ then $O(n)$ time suffices on a multitape NTM. Note that there may be as many as 2^{n} unique truth assignments.
- Evaluate E for the truth assignment T. Can be done in $O\left(n^{2}\right)$ time on a multitape NTM

2. $L_{S A T} \in \mathcal{N} \mathcal{P}$-hard

Proof idea:

- For each language L in $\mathcal{N} \mathcal{P}$, there is a polynomial $p(n)$ and a nondeterministic TM M with time complexity $p(n)$ such that $L(M)=L$
- From $w \in\{0,1\}^{*}$, we construct a formula \mathcal{F} that is satisfiable iff there is an accepting computation of M on w
- The time for the construction will be polynomial in $p(n)$

Cook's Theorem: $S A T \in \mathcal{N} \mathcal{P}$-complete

Construction overview:

- We will view a computation as a sequence of IDs $\alpha_{0}, \ldots, \alpha_{p(n)}$ such that either $\alpha_{i} \vdash \alpha_{i+1}$ or $\alpha_{i}=\alpha_{i+1}$.
- Each α_{i} will be of the form $X_{-p_{n}} \cdots X_{0} \cdots X_{p(n)+1}$ where X_{j} is either a tape symbol or a state.
- We use boolean variable $y_{i j A}$ to denote whether X_{j} of α_{j} is A.
- \mathcal{F} will constrain the sequence of IDs to be an accepting computation of w.

Cook's Theorem: $S A T \in \mathcal{N} \mathcal{P}$-complete

We will describe a set of formulas, each enforcing certain constraints on the variables $y_{i j A}$, for $0 \leq i \leq p(n)$,
$-p(n) \leq j \leq p(n)+1, A \in Q \cup \Gamma$.
\mathcal{F} will be the conjuction of these formulas.
α_{0} is the initial ID:

- $y_{00 q_{0}}$
- $y_{0 j a_{j}}$ for $1 \leq j \leq n$, where $a_{1} \cdots a_{n}=w$.
- $y_{0 j B}$ for $-p(n) \leq j<0, n<j \leq p(n)+1$.
$\alpha_{p(n)}$ contains a final state

$$
\bigvee_{j=-p(n)}^{p(n)+1} \bigvee_{q \in F} y_{p(n) j q}
$$

Cook's Theorem: $S A T \in \mathcal{N} \mathcal{P}$-complete

- We still need to enforce that $\alpha_{i} \vdash \alpha_{i+1}$ or $\alpha_{i}=\alpha_{i+1}$ for $0 \leq i \leq p(n)$.
- For $0 \leq i \leq p(n),-p(n) \leq j \leq p(n)+1$, we construct a formula enforcing one of the following

1. $X_{i j}$ is a state and $X_{i+1, j-1} X_{i+1, j} X_{i+1, j+1}$ results from doing nothing or taking a transition of M from $X_{i, j-1} X_{i j} X_{i, j+1}$ (if $j=-p(n)$ or $j=p(n)+1$, this is omitted); or
2. $X_{i, j-1}, X_{i j}$, and $X_{i, j+1}$ are not states, and $X_{i+1, j}=X_{i j}$

Cook's Theorem: $S A T \in \mathcal{N} \mathcal{P}$-complete

Constraint 1 is enforced by the disjunction of the following formulas:

- For each $q \in Q, X, Y \in \Gamma$, and $\left(q^{\prime}, Z, R\right) \in \delta(q, Y)$:

$$
y_{i, j-1, X} \wedge y_{i+1, j-1, X} \wedge y_{i j q} \wedge y_{i+1, j, Z} \wedge y_{i, j+1, Y} \wedge y_{i+1, j+1, q^{\prime}}
$$

- For each $q \in Q, X, Y \in \Gamma$, and $\left(q^{\prime}, Z, L\right) \in \delta(q, Y)$:

$$
y_{i, j-1, X} \wedge y_{i+1, j-1, q^{\prime}} \wedge y_{i j q} \wedge y_{i+1, j, X} \wedge y_{i, j+1, Y} \wedge y_{i+1, j+1, Z}
$$

- For each $q \in Q, X, Y \in \Gamma$:

$$
y_{i, j-1, X} \wedge y_{i+1, j-1, X} \wedge y_{i j q} \wedge y_{i+1, j, q} \wedge y_{i, j+1, Y} \wedge y_{i+1, j+1, Y}
$$

Cook's Theorem: $S A T \in \mathcal{N} \mathcal{P}$-complete

Constraint 2 is enforced by the conjunction of:

- $\bigvee_{X \in \Gamma} y_{i, j-1, X}$;
- $\bigvee_{X \in \Gamma}\left(y_{i j X} \wedge y_{i+1, j, X}\right)$; and
- $\bigvee_{X \in \Gamma} y_{i, j+1, X}$.

Conjuncts containing out-of-bounds subscripts are omitted.

- The formula can be constructed in polynomial time.
- The formula is satisfiable iff M has an accepting computation on w
- Therefore, SAT is $\mathcal{N} \mathcal{P}$-hard.

