Language Classes Based on Randomization

Jason Belt
CIS 890

November 2, 2010

Randomized Turing Machines

Scratch tape(s)

Quicksort

A RTM M does as follows on input w where $|w|=m$:

1. Use about $O(\log m)$ new random bits on Tape 2 to pick a random number n between $1 \ldots m$. The $n^{\text {th }}$ symbol in w is the pivot p.
2. Put p on Tape 3.
3. Scan w, copying each symbol x to Tape 4 if $x \leq p$.
4. Scan w, copying each symbol y to Tape 5 if $y>p$.
5. Overwrite w on Tape 1 with contents of Tape 4 and then 5 , placing a marker between them.
6. If either or both sublists have more than one element, recursively sort them by the same algorithm.

Running time is in $O(n \log n)$

Language of Randomized Turing Machines

- Each "branch" of a RTM has a probability
- On a given input w, a RTM M :
- may have different runtime behavior
- may not halt
- Each input w to M has some probability of acceptance
- Time and space complexity can be measured using the worst case computation branch

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$		
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$	
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$
$* q_{4}$						

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{0}	0	0	0	0	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{1}	0	0	0	0	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{1}	0	0	0	0	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{1}	0	0	0	0	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{1}	0	0	0	0	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{4}	0	0	0	0	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
	1	1	1	1	B		
q_{0}	1	1	1	0	1		
	0						

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
	1	1	1	1	B		
q_{2}	1	1	1	0	1		
	0						

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
	1	1	1	1	B		
q_{2}	1	1	1	0	1		
	0						

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
	1	1	1	1	B		
q_{2}	1	1	1	0	1		
	0						

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
	1	1	1	1	B		
q_{2}	1	1	1	0	1		
	0						

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{4}	1	1	1	1	B		
	0	1	1	0	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{0}	1	0	1	B	B		
	1	1	0	1	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{3}	1	0	1	B	B		
	1	1	0	1	1		

Example Probability Calculation

	00	01	10	11	$B 0$	B1
$\rightarrow q_{0}$	$q_{1} 00$ RS	$q_{3} 01 S R$	$q_{2} 10$ RS	$q_{3} 11 S R$		
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$	
q_{2}			$q_{2} 10 \mathrm{RS}$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$
$*_{4}$						
1	0118					
$q_{3} 1$	101	1				

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$
$\rightarrow q_{0}$	$q_{1} 00 \mathrm{RS}$	$q_{3} 01 S R$	$q_{2} 10 \mathrm{RS}$	$q_{3} 11 S R$		
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$	
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$
$*_{4}$						
1	0118	B				
$q_{3} 1$	101	1				

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
	q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{3}	1	0	1	B	B		
	1	1	0	1	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$	
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$			
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$		
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$		
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$	
$* q_{4}$							
q_{4}	1	0	1	B	B		
	1	1	0	1	1		

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$		
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$	
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$
$* q_{4}$						

Homogeneous Input $w\left(0^{i}\right.$ or $\left.1^{i}\right)$

$$
\frac{1}{2}+\frac{1}{2} 2^{-i}=\frac{1}{2}+2^{-(i+1)}
$$

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$		
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$	
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$
$* q_{4}$						

Heterogeneous Input w (both 0's and 1's)

- if first random bit is 0 then w is never accepted
- Otherwise the probability of acceptance is $2^{-|w|}$

$$
\frac{1}{2} 2^{-|w|}=2^{-(|w|+1)}
$$

Example Probability Calculation

	00	01	10	11	$B 0$	$B 1$
$\rightarrow q_{0}$	$q_{1} 00 R S$	$q_{3} 01 S R$	$q_{2} 10 R S$	$q_{3} 11 S R$		
q_{1}	$q_{1} 00 R S$				$q_{4} B 0 S S$	
q_{2}			$q_{2} 10 R S$		$q_{4} B 0 S S$	
q_{3}	$q_{3} 00 R R$			$q_{3} 11 R R$	$q_{4} B 0 S S$	$q_{4} B 1 S S$
$* q_{4}$						

Conclusion: We can compute a probability of acceptance of any given string by any given RTM.

$\mathcal{R P}$ Random Polynomial

A language L is said to be in $\mathcal{R} \mathcal{P}$ if it is accepted by a RTM M such that on input w :

1. If $w \notin L$, then the probability that M accepts w is 0 .
2. If $w \in L$, then the probability that M accepts w is at least $1 / 2$.
3. There exits a polynomial $T(n)$ where $n=|w|$ such that all runs of M halt after at most $T(n)$ steps.

$\mathcal{R P}$ Random Polynomial

A language L is said to be in $\mathcal{R} \mathcal{P}$ if it is accepted by a RTM M such that on input w :

1. If $w \notin L$, then the probability that M accepts w is 0 .
2. If $w \in L$, then the probability that M accepts w is at least $1 / 2$.
3. There exits a polynomial $T(n)$ where $n=|w|$ such that all runs of M halt after at most $T(n)$ steps.

Polynomial-time Monte-Carlo TMs

The class of languages for which membership can be determined in polynomial time by a RTM with no false acceptances and less than half of the rejections are false rejections

Recognizing Languages in $\mathcal{R} \mathcal{P}$

- In general, if we want a probability of false negatives less than $c>0$, we must run the test $\log _{2}(1 / c)$ times.

Recognizing Languages in $\mathcal{R P}$

- In general, if we want a probability of false negatives less than $c>0$, we must run the test $\log _{2}(1 / c)$ times.
- Repeating the tests will take polynomial time as c is a constant and one run of a RTM takes polynomial time

Recognizing Languages in $\mathcal{R} \mathcal{P}$

- In general, if we want a probability of false negatives less than $c>0$, we must run the test $\log _{2}(1 / c)$ times.
- Repeating the tests will take polynomial time as c is a constant and one run of a RTM takes polynomial time

Theorem 11.16: If L is in $\mathcal{R} \mathcal{P}$, then for any constant $c>0$, no matter how small, there is a polynomial-time randomized algorithm that renders a decision whether its given input w is in L, makes no false-positive errors, and makes false-negative errors with probability no greater than c.

$\mathcal{Z P P}$ Zero-Error, Probabilistic, Polynomial

- $\mathcal{Z P P}$ is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.

$\mathcal{Z P P}$ Zero-Error, Probabilistic, Polynomial

- $\mathcal{Z P P}$ is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.
- Similar to the definition of \mathcal{P} except $\mathcal{Z P P}$ allows the TM to involve randomness, and the expected running time rather than worst-case is measured

$\mathcal{Z P P}$ Zero-Error, Probabilistic, Polynomial

- $\mathcal{Z P P}$ is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.
- Similar to the definition of \mathcal{P} except $\mathcal{Z P \mathcal { P }}$ allows the TM to involve randomness, and the expected running time rather than worst-case is measured
- Defn: Las-Vegas Turning Machines are TMs that always give the correct answer, but whose running time varies depending on the values of some random bits.

$\mathcal{Z P P}$ Zero-Error, Probabilistic, Polynomial

- $\mathcal{Z P P}$ is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.
- Similar to the definition of \mathcal{P} except $\mathcal{Z P P}$ allows the TM to involve randomness, and the expected running time rather than worst-case is measured
- Defn: Las-Vegas Turning Machines are TMs that always give the correct answer, but whose running time varies depending on the values of some random bits.
- A language $L \in \mathcal{Z P P}$ if it's accepted by a Las-Vegas Turing Machine with a polynomial expected running time.

Relationship between $\mathcal{R P}$ and $\mathcal{Z P P}$

If $L \in \mathcal{Z P} \mathcal{P}$, then so is \bar{L}

- Assume M is a polynomial-expected-time Las-Vegas TM such that $L \in L(M)$
- $\bar{L} \in L\left(M^{\prime}\right)$ such that all accepting states in M are changed to halting without acceptance states in M^{\prime} and all non-accepting halting states in M are changed to accepting and halt states in M^{\prime}.

Relationship between $\mathcal{R P}$ and $\mathcal{Z P P}$

Theorem 11.17: $\mathcal{Z P \mathcal { P }}=\mathcal{R} \mathcal{P} \cap \operatorname{co}-\mathcal{R} \mathcal{P}$
Proof: $\mathcal{R P} \cap \mathrm{co}-\mathcal{R} \mathcal{P} \subseteq \mathcal{Z P P}$
Suppose $L \in \mathcal{R} \mathcal{P} \cap \operatorname{co}-\mathcal{R} \mathcal{P}$. Therefore L and \bar{L} have Monte-Carlo TM's S and T, each with a polynomial running time. Assume $p(n)$ bounds the running time of both machines. We design a Las-Vegas TM M for L as follows:

1. Run S on the input; if it accepts, then M accepts and halts.
2. If not, run T on the input. If it accepts, then M halts without accepting. Otherwise, M returns to step (1)

Relationship between $\mathcal{R P}$ and $\mathcal{Z P P}$

- Clearly M accepts w if $w \in L$ and rejects w only if $w \notin L$.
- The expected running time of round one is $2 p(n)$. Step (1) has a 50% chance of leading to acceptance and Step (2) has a 50% chance of leading to rejection so the expected running time of M is no more than

$$
2 p(n)+\frac{1}{2} 2 p(n)+\frac{1}{4} 2 p(n)+\frac{1}{8} 2 p(n)+\cdots=4 p(n)
$$

Relationship to classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

Proof: Assume $L \in \mathcal{Z P P}$ and show $L \in \mathcal{R P}$ and $L \in \operatorname{co}-\mathcal{R P}$.
We construct a Monte-Carlo TM M_{2} as follows:

- M_{2} simulates S for $2 p(n)$ steps.
- If S accepts then so does M_{2}; otherwise M_{2} rejects.

Observations:

- Suppose $w \notin L$. Then S will not accept w nor will M_{2}.
- Suppose $w \in L$. Then S will eventually accept w but not necessarily within $2 p(n)$ steps.
- However the probability of S accepting w within $2 p(n)$ steps is at least $1 / 2$ and therefore the probability of M_{2} accepting w is at least $1 / 2$.
- Thus M_{2} is polynomial-time-bounded Monte-Carlo TM, so $L \in \mathcal{R} \mathcal{P}$.

Relationship to classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

Theorem 11.18: $\mathcal{P} \subseteq \mathcal{Z P P}$
Proof: Any deterministic, polynomial-time bounded TM is also a Las-Vegas, polynomial-time bounded TM, that happens not to use its ability to make random choices

Relationship to classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

Theorem 11.19: $\mathcal{R} \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
Proof: Suppose we have a polynomial-time-bounded
Monte-Carlo TM M_{1} for a language L. When M_{1} examines a random bit, M_{2} non-deterministically chooses both possible values for the bit and writes it to its own tape which simulates the random tape of $M_{1} . M_{2}$ accepts whenever M_{1} accepts and does not accept otherwise.

Suppose $w \in L$. Since the chance M_{1} accepts w is 50%, there must exist a sequence of random bits that leads to acceptance of $w . M_{2}$ will eventually choose this sequence and therefore also accepts when M_{1} does. Thus $w \in L\left(M_{2}\right)$.

However, if $w \notin L$ then there are no sequece of random bits that lead to acceptance in M_{1} and therefore no sequence of choices of M_{2} will lead to acceptance. Therefore $w \notin L\left(M_{2}\right)$.

Relationship to classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

