
Language Classes Based on Randomization

Jason Belt CIS 890

November 2, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Randomized Turing Machines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Quicksort

A RTM *M* does as follows on input *w* where |w| = m:

- 1. Use about $O(\log m)$ new random bits on Tape 2 to pick a random number n between $1 \dots m$. The n^{th} symbol in w is the pivot p.
- 2. Put p on Tape 3.
- 3. Scan w, copying each symbol x to Tape 4 if $x \leq p$.
- 4. Scan w, copying each symbol y to Tape 5 if y > p.
- 5. Overwrite w on Tape 1 with contents of Tape 4 and then 5, placing a marker between them.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

6. If either or both sublists have more than one element, recursively sort them by the same algorithm.

Running time is in $O(n \log n)$

Language of Randomized Turing Machines

- ▶ Each "branch" of a RTM has a probability
- On a given input w, a RTM M:
 - ▶ may have different runtime behavior
 - ▶ may not halt
- Each input w to M has some probability of acceptance
- Time and space complexity can be measured using the worst case computation branch

ション ふゆ マ キャット マックシン

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三副 - のへで

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00 RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三副 - のへで

~				1	
q_0	0	1	1	0	1

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00 RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00 RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00 RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	q_100RS				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

	00	01	10	11	B0	B1
$\rightarrow q_0$		q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

Homogeneous Input w (0^i or 1^i)

 $\frac{1}{2} + \frac{1}{2}2^{-i} = \frac{1}{2} + 2^{-(i+1)}$

・ロト ・ 日 ・ モー・ モー・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00 RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

Heterogeneous Input w (both 0's and 1's)

- ▶ if first random bit is 0 then w is never accepted
- Otherwise the probability of acceptance is $2^{-|w|}$

$$\frac{1}{2}2^{-|w|} = 2^{-(|w|+1)}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

	00	01	10	11	B0	B1
$\rightarrow q_0$	$q_1 00 RS$	q_301SR	$q_2 10 RS$	$q_3 11 SR$		
q_1	$q_1 00 RS$				q_4B0SS	
q_2			$q_2 10 RS$		q_4B0SS	
q_3	q_300RR			$q_3 11 RR$	q_4B0SS	q_4B1SS
$*q_4$						

Conclusion: We can compute a probability of acceptance of any given string by any given RTM.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

\mathcal{RP} Random Polynomial

A language L is said to be in \mathcal{RP} if it is accepted by a RTM M such that on input w:

- 1. If $w \notin L$, then the probability that M accepts w is 0.
- 2. If $w \in L$, then the probability that M accepts w is at least 1/2.
- 3. There exits a polynomial T(n) where n = |w| such that all runs of M halt after at most T(n) steps.

うして ふゆう ふほう ふほう ふしつ

\mathcal{RP} Random Polynomial

A language L is said to be in \mathcal{RP} if it is accepted by a RTM M such that on input w:

- 1. If $w \notin L$, then the probability that M accepts w is 0.
- 2. If $w \in L$, then the probability that M accepts w is at least 1/2.
- 3. There exits a polynomial T(n) where n = |w| such that all runs of M halt after at most T(n) steps.

Polynomial-time Monte-Carlo TMs

The class of languages for which membership can be determined in polynomial time by a RTM with no false acceptances and less than half of the rejections are false rejections

Recognizing Languages in \mathcal{RP}

▶ In general, if we want a probability of false negatives less than c > 0, we must run the test $\log_2(1/c)$ times.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Recognizing Languages in \mathcal{RP}

▶ In general, if we want a probability of false negatives less than c > 0, we must run the test $\log_2(1/c)$ times.

うして ふゆう ふほう ふほう ふしつ

▶ Repeating the tests will take polynomial time as *c* is a constant and one run of a RTM takes polynomial time

Recognizing Languages in \mathcal{RP}

- ▶ In general, if we want a probability of false negatives less than c > 0, we must run the test $\log_2(1/c)$ times.
- Repeating the tests will take polynomial time as c is a constant and one run of a RTM takes polynomial time

Theorem 11.16: If L is in \mathcal{RP} , then for any constant c > 0, no matter how small, there is a polynomial-time randomized algorithm that renders a decision whether its given input w is in L, makes no false-positive errors, and makes false-negative errors with probability no greater than c.

► *ZPP* is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.

- ► *ZPP* is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.
- ▶ Similar to the definition of *P* except *ZPP* allows the TM to involve randomness, and the expected running time rather than worst-case is measured

- ► *ZPP* is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.
- ▶ Similar to the definition of *P* except *ZPP* allows the TM to involve randomness, and the expected running time rather than worst-case is measured
- ▶ **Defn:** Las-Vegas Turning Machines are TMs that always give the correct answer, but whose running time varies depending on the values of some random bits.

- ► *ZPP* is based on a RTM that always halts, and has an expected time to halt that is some polynomial in the length of the input.
- ▶ Similar to the definition of *P* except *ZPP* allows the TM to involve randomness, and the expected running time rather than worst-case is measured
- ▶ **Defn:** Las-Vegas Turning Machines are TMs that always give the correct answer, but whose running time varies depending on the values of some random bits.
- A language L ∈ ZPP if it's accepted by a Las-Vegas Turing Machine with a polynomial expected running time.

Relationship between \mathcal{RP} and \mathcal{ZPP}

If $L \in \mathcal{ZPP}$, then so is \overline{L}

- ► Assume M is a polynomial-expected-time Las-Vegas TM such that $L \in L(M)$
- ▶ $\overline{L} \in L(M')$ such that all accepting states in M are changed to halting without acceptance states in M' and all non-accepting halting states in M are changed to accepting and halt states in M'.

Relationship between \mathcal{RP} and \mathcal{ZPP}

Theorem 11.17: $ZPP = RP \cap co-RP$

Proof: $\mathcal{RP} \cap \operatorname{co-}\mathcal{RP} \subseteq \mathcal{ZPP}$

Suppose $L \in \mathcal{RP} \cap \text{co-}\mathcal{RP}$. Therefore L and \overline{L} have Monte-Carlo TM's S and T, each with a polynomial running time. Assume p(n) bounds the running time of both machines. We design a Las-Vegas TM M for L as follows:

1. Run S on the input; if it accepts, then M accepts and halts.

2. If not, run T on the input. If it accepts, then M halts without accepting. Otherwise, M returns to step (1)

Relationship between \mathcal{RP} and \mathcal{ZPP}

- Clearly M accepts w if $w \in L$ and rejects w only if $w \notin L$.
- ► The expected running time of round one is 2p(n). Step (1) has a 50% chance of leading to acceptance and Step (2) has a 50% chance of leading to rejection so the expected running time of M is no more than

$$2p(n) + \frac{1}{2}2p(n) + \frac{1}{4}2p(n) + \frac{1}{8}2p(n) + \dots = 4p(n)$$

うして ふゆう ふほう ふほう ふしつ

Proof: Assume $L \in \mathcal{ZPP}$ and show $L \in \mathcal{RP}$ and $L \in \text{co-}\mathcal{RP}$.

We construct a Monte-Carlo TM M_2 as follows:

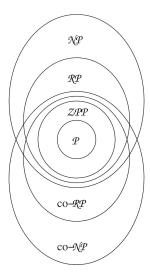
- M_2 simulates S for 2p(n) steps.
- If S accepts then so does M_2 ; otherwise M_2 rejects.

Observations:

- Suppose $w \notin L$. Then S will not accept w nor will M_2 .
- ▶ Suppose $w \in L$. Then S will eventually accept w but not necessarily within 2p(n) steps.
- However the probability of S accepting w within 2p(n) steps is at least 1/2 and therefore the probability of M_2 accepting w is at least 1/2.
- ► Thus M_2 is polynomial-time-bounded Monte-Carlo TM, so $L \in \mathcal{RP}$.

Theorem 11.18: $\mathcal{P} \subseteq \mathcal{ZPP}$

Proof: Any deterministic, polynomial-time bounded TM is also a Las-Vegas, polynomial-time bounded TM, that happens not to use its ability to make random choices


▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Theorem 11.19: $\mathcal{RP} \subseteq \mathcal{NP}$

Proof: Suppose we have a polynomial-time-bounded Monte-Carlo TM M_1 for a language L. When M_1 examines a random bit, M_2 non-deterministically chooses both possible values for the bit and writes it to its own tape which simulates the random tape of M_1 . M_2 accepts whenever M_1 accepts and does not accept otherwise.

Suppose $w \in L$. Since the chance M_1 accepts w is 50%, there must exist a sequence of random bits that leads to acceptance of w. M_2 will eventually choose this sequence and therefore also accepts when M_1 does. Thus $w \in L(M_2)$.

However, if $w \notin L$ then there are no sequece of random bits that lead to acceptance in M_1 and therefore no sequence of choices of M_2 will lead to acceptance. Therefore $w \notin L(M_2)$.

