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Quicksort

A RTM M does as follows on input w where |w| = m:

1. Use about O(log m) new random bits on Tape 2 to pick a
random number n between 1...m. The n'" symbol in w is
the pivot p.

Put p on Tape 3.

Scan w, copying each symbol x to Tape 4 if x < p.

Scan w, copying each symbol y to Tape 5 if y > p.

AN

Overwrite w on Tape 1 with contents of Tape 4 and then 5,
placing a marker between them.

6. If either or both sublists have more than one element,
recursively sort them by the same algorithm.

Running time is in O(n log n)



v

v

v

Language of Randomized Turing Machines

Each “branch” of a RTM has a probability
On a given input w, a RTM M:

» may have different runtime behavior
» may not halt

Each input w to M has some probability of acceptance

Time and space complexity can be measured using the
worst case computation branch



Example Probability Calculation
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Example Probability Calculation
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Heterogeneous Input w (both 0’s and 1’s)

» if first random bit is 0 then w is never accepted

» Otherwise the probability of acceptance is 2~ 1%

1
Lotwl — 9—(wl+1)
2
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Conclusion: We can compute a probability of acceptance of
any given string by any given RTM.



RP Random Polynomial

A language L is said to be in RP if it is accepted by a RTM M
such that on input w:
1. If w ¢ L, then the probability that M accepts w is 0.
2. If w € L, then the probability that M accepts w is at least
1/2.
3. There exits a polynomial 7'(n) where n = |w| such that all
runs of M halt after at most 7'(n) steps.



RP Random Polynomial

A language L is said to be in RP if it is accepted by a RTM M
such that on input w:

1. If w ¢ L, then the probability that M accepts w is 0.

2. If w € L, then the probability that M accepts w is at least
1/2.

3. There exits a polynomial 7'(n) where n = |w| such that all
runs of M halt after at most 7'(n) steps.

Polynomial-time Monte-Carlo TMs

The class of languages for which membership can be determined
in polynomial time by a RTM with no false acceptances and less
than half of the rejections are false rejections
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» In general, if we want a probability of false negatives less
than ¢ > 0, we must run the test log,(1/c) times.
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Recognizing Languages in RP

» In general, if we want a probability of false negatives less
than ¢ > 0, we must run the test log,(1/c) times.

> Repeating the tests will take polynomial time as ¢ is a
constant and one run of a RTM takes polynomial time

Theorem 11.16: If L is in RP, then for any constant ¢ > 0, no
matter how small, there is a polynomial-time randomized
algorithm that renders a decision whether its given input w is in
L, makes no false-positive errors, and makes false-negative
errors with probability no greater than c.
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ZPP Zero-Error, Probabilistic, Polynomial

ZPP is based on a RTM that always halts, and has an
expected time to halt that is some polynomial in the length
of the input.

Similar to the definition of P except ZPP allows the TM
to involve randomness, and the expected running time
rather than worst-case is measured

Defn: Las-Vegas Turning Machines are TMs that always
give the correct answer, but whose running time varies
depending on the values of some random bits.

A language L € ZPP if it’s accepted by a Las-Vegas Turing
Machine with a polynomial expected running time.



Relationship between RP and ZPP

If L € ZPP, then so is L

» Assume M is a polynomial-expected-time Las-Vegas TM
such that L € L(M)

» L € L(M’) such that all accepting states in M are changed
to halting without acceptance states in M’ and all
non-accepting halting states in M are changed to accepting
and halt states in M’.



Relationship between RP and ZPP

Theorem 11.17: ZPP = RP Nco-RP
Proof: RPNco-RP C ZPP

Suppose L € RP Nco-RP. Therefore L and L have
Monte-Carlo TM’s S and T, each with a polynomial running
time. Assume p(n) bounds the running time of both machines.
We design a Las-Vegas TM M for L as follows:

1. Run S on the input; if it accepts, then M accepts and halts.

2. If not, run 7" on the input. If it accepts, then M halts
without accepting. Otherwise, M returns to step (1)



Relationship between RP and ZPP

» Clearly M accepts w if w € L and rejects w only if w & L.

» The expected running time of round one is 2p(n). Step (1)
has a 50% chance of leading to acceptance and Step (2) has
a 50% chance of leading to rejection so the expected
running time of M is no more than

2p(n) + 52p(n) + {20(n) + 32p(n) + -+ = dp(n)



Relationship to classes P and NP

Proof: Assume L € ZPP and show L € RP and L € co-RP.

We construct a Monte-Carlo TM My as follows:
» My simulates S for 2p(n) steps.

» If S accepts then so does Ms; otherwise My rejects.

Observations:
» Suppose w & L. Then S will not accept w nor will M.

> Suppose w € L. Then S will eventually accept w but not
necessarily within 2p(n) steps.

» However the probability of S accepting w within 2p(n)
steps is at least 1/2 and therefore the probability of My
accepting w is at least 1/2.

» Thus M> is polynomial-time-bounded Monte-Carlo TM, so
L eRP. O



Relationship to classes P and NP

Theorem 11.18: P C ZPP

Proof: Any deterministic, polynomial-time bounded TM is also
a Las-Vegas, polynomial-time bounded TM, that happens not to
use its ability to make random choices O



Relationship to classes P and NP

Theorem 11.19: RP C NP

Proof: Suppose we have a polynomial-time-bounded
Monte-Carlo TM M for a language L. When M; examines a
random bit, My non-deterministically chooses both possible
values for the bit and writes it to its own tape which simulates
the random tape of M;. Ms accepts whenever M; accepts and
does not accept otherwise.

Suppose w € L. Since the chance M; accepts w is 50%, there
must exist a sequence of random bits that leads to acceptance of
w. My will eventually choose this sequence and therefore also
accepts when M; does. Thus w € L(Ma).

However, if w ¢ L then there are no sequece of random bits that
lead to acceptance in M7 and therefore no sequence of choices of
My will lead to acceptance. Therefore w ¢ L(Ma).



Relationship to classes P and NP




