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Randomized Turing Machines



Quicksort

A RTM M does as follows on input w where |w| = m:
1. Use about O(log m) new random bits on Tape 2 to pick a

random number n between 1 . . .m. The nth symbol in w is
the pivot p.

2. Put p on Tape 3.
3. Scan w, copying each symbol x to Tape 4 if x ≤ p.
4. Scan w, copying each symbol y to Tape 5 if y > p.
5. Overwrite w on Tape 1 with contents of Tape 4 and then 5,

placing a marker between them.
6. If either or both sublists have more than one element,

recursively sort them by the same algorithm.

Running time is in O(n log n)



Language of Randomized Turing Machines

I Each “branch” of a RTM has a probability
I On a given input w, a RTM M :

I may have different runtime behavior
I may not halt

I Each input w to M has some probability of acceptance
I Time and space complexity can be measured using the

worst case computation branch



Example Probability Calculation

00 01 10 11 B0 B1
→ q0 q100RS q301SR q210RS q311SR

q1 q100RS q4B0SS
q2 q210RS q4B0SS
q3 q300RR q311RR q4B0SS q4B1SS
∗q4
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q0
0 0 0 0 B
0 1 1 0 1
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Example Probability Calculation
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Example Probability Calculation

00 01 10 11 B0 B1
→ q0 q100RS q301SR q210RS q311SR

q1 q100RS q4B0SS
q2 q210RS q4B0SS
q3 q300RR q311RR q4B0SS q4B1SS
∗q4

Heterogeneous Input w (both 0’s and 1’s)

I if first random bit is 0 then w is never accepted
I Otherwise the probability of acceptance is 2−|w|

1

2
2−|w| = 2−(|w|+1)



Example Probability Calculation

00 01 10 11 B0 B1
→ q0 q100RS q301SR q210RS q311SR

q1 q100RS q4B0SS
q2 q210RS q4B0SS
q3 q300RR q311RR q4B0SS q4B1SS
∗q4

Conclusion: We can compute a probability of acceptance of
any given string by any given RTM.



RP Random Polynomial

A language L is said to be in RP if it is accepted by a RTM M
such that on input w:

1. If w 6∈ L, then the probability that M accepts w is 0.
2. If w ∈ L, then the probability that M accepts w is at least

1/2.
3. There exits a polynomial T (n) where n = |w| such that all

runs of M halt after at most T (n) steps.

Polynomial-time Monte-Carlo TMs
The class of languages for which membership can be determined
in polynomial time by a RTM with no false acceptances and less
than half of the rejections are false rejections
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Recognizing Languages in RP

I In general, if we want a probability of false negatives less
than c > 0, we must run the test log2(1/c) times.

I Repeating the tests will take polynomial time as c is a
constant and one run of a RTM takes polynomial time

Theorem 11.16: If L is in RP, then for any constant c > 0, no
matter how small, there is a polynomial-time randomized
algorithm that renders a decision whether its given input w is in
L, makes no false-positive errors, and makes false-negative
errors with probability no greater than c.
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ZPP Zero-Error, Probabilistic, Polynomial

I ZPP is based on a RTM that always halts, and has an
expected time to halt that is some polynomial in the length
of the input.

I Similar to the definition of P except ZPP allows the TM
to involve randomness, and the expected running time
rather than worst-case is measured

I Defn: Las-Vegas Turning Machines are TMs that always
give the correct answer, but whose running time varies
depending on the values of some random bits.

I A language L ∈ ZPP if it’s accepted by a Las-Vegas Turing
Machine with a polynomial expected running time.
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Relationship between RP and ZPP

If L ∈ ZPP, then so is L
I Assume M is a polynomial-expected-time Las-Vegas TM

such that L ∈ L(M)

I L ∈ L(M ′) such that all accepting states in M are changed
to halting without acceptance states in M ′ and all
non-accepting halting states in M are changed to accepting
and halt states in M ′.



Relationship between RP and ZPP

Theorem 11.17: ZPP = RP ∩ co-RP

Proof: RP ∩ co-RP ⊆ ZPP

Suppose L ∈ RP ∩ co-RP. Therefore L and L have
Monte-Carlo TM’s S and T , each with a polynomial running
time. Assume p(n) bounds the running time of both machines.
We design a Las-Vegas TM M for L as follows:

1. Run S on the input; if it accepts, then M accepts and halts.
2. If not, run T on the input. If it accepts, then M halts

without accepting. Otherwise, M returns to step (1)



Relationship between RP and ZPP

I Clearly M accepts w if w ∈ L and rejects w only if w 6∈ L.
I The expected running time of round one is 2p(n). Step (1)

has a 50% chance of leading to acceptance and Step (2) has
a 50% chance of leading to rejection so the expected
running time of M is no more than

2p(n) +
1

2
2p(n) +

1

4
2p(n) +

1

8
2p(n) + · · · = 4p(n)



Relationship to classes P and NP

Proof: Assume L ∈ ZPP and show L ∈ RP and L ∈ co-RP.

We construct a Monte-Carlo TM M2 as follows:
I M2 simulates S for 2p(n) steps.
I If S accepts then so does M2; otherwise M2 rejects.

Observations:
I Suppose w 6∈ L. Then S will not accept w nor will M2.
I Suppose w ∈ L. Then S will eventually accept w but not

necessarily within 2p(n) steps.
I However the probability of S accepting w within 2p(n)

steps is at least 1/2 and therefore the probability of M2

accepting w is at least 1/2.
I Thus M2 is polynomial-time-bounded Monte-Carlo TM, so

L ∈ RP.



Relationship to classes P and NP

Theorem 11.18: P ⊆ ZPP
Proof: Any deterministic, polynomial-time bounded TM is also
a Las-Vegas, polynomial-time bounded TM, that happens not to
use its ability to make random choices



Relationship to classes P and NP

Theorem 11.19: RP ⊆ NP
Proof: Suppose we have a polynomial-time-bounded
Monte-Carlo TM M1 for a language L. When M1 examines a
random bit, M2 non-deterministically chooses both possible
values for the bit and writes it to its own tape which simulates
the random tape of M1. M2 accepts whenever M1 accepts and
does not accept otherwise.

Suppose w ∈ L. Since the chance M1 accepts w is 50%, there
must exist a sequence of random bits that leads to acceptance of
w. M2 will eventually choose this sequence and therefore also
accepts when M1 does. Thus w ∈ L(M2).

However, if w 6∈ L then there are no sequece of random bits that
lead to acceptance in M1 and therefore no sequence of choices of
M2 will lead to acceptance. Therefore w 6∈ L(M2).



Relationship to classes P and NP


