
Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Motivation

If a problem you want to solve has been shown to be
NP-hard, your best bet is

I solve a more restricted version, or

I find an algorithm that computes a good
approximation.

You may have gotten the impression that all
NP-complete problems are created equal.

I it is true that they are equivalent in the sense that
they are equally hard to solve exactly

I but they are not equally hard to approximate.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Absolute and Relative Approximations

We shall aim for algorithms that are guaranteed to
produce a result whose value R is within a certain
proximity of the optimal value B.

The approximation is c-absolute if

B ≥ R ≥ B − c for maximization problems
B ≤ R ≤ B + c for minimization problems

The approximation is ε-relative if

B ≥ R ≥ B(1− ε) for maximization problems
B ≤ R ≤ B(1 + ε) for minimization problems



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Non-approximating Greedy Algorithms

Recall graph coloring: if (u,w) edge then u and w must
have different color.

Problem: find the minimum number of colors needed.

Greedy Strategy: consider the nodes one by one

I assign the current node one of the colors used so far,
if possible

I otherwise, use a new color

Now consider graph with

I nodes labeled 1..2n

I edges connect all odd nodes to all even nodes,
except no edges (1, 2), (3, 4), . . .

There is a trivial 2-coloring. But the greedy strategy will
assign 1,2 the same color which then cannot be reused,
then 3,4 same color which then cannot be reused, etc,
resulting in n colors being used.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Binary Knapsack

I find I to maximize
∑

i∈I vi , given
∑

i∈I wi ≤W

I greedy strategy G0 picks most precious
(value/weight ratio) items until no more space

This is non-approximating, since R = 2 while B = N for
w1 = 1, v1 = 2,w2 = N, v2 = N,W = N

But we can get 0.5-relative (factor 2) by a simple trick:

1. use G0 to produce I0 with value R0

2. return the best of I0 and {M} with VM the highest vi

Proof: assume items are ordered after preciousness, and
that J be smallest with WJ = w1 + . . .+ wJ > W .
Observe that if the capacity had been WJ , G0 would have
yielded the optimal value BJ . Thus

R = max(R0,VM)

≥ max(v1 + . . .+ vJ−1, vJ)

≥ (v1 + . . . vJ)/2 = BJ/2 ≥ B/2



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Traveling Salesman

I We shall see that in the general case, it is NP-hard
to get a c-absolute or ε-relative approximation

But it is often the case that distances form metric:

d(x , y) ≤ d(x , z) + d(z , y)

Then there is a 1-relative approximation:

1. construct (by Kruskal or Prim) minimum spanning
tree T , with cost M. Since removing one edge from
any Hamiltonian cycle is a spanning tree, B ≥ M.

2. traverse T from root through leaves and back to
root, thus visiting each edge twice so cost is 2M.

3. Now make short-cuts when traveling from root to
root, skipping nodes already visited. The resulting
path has cost R ≤ 2M, due to metric property.

We have found a Hamiltonian cycle, with cost R ≤ 2B.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

c-Absolute May Be Hard

Consider again the Traveling Salesman Problem

I assume that we in polynomial time can find a
c-absolute approximation

I then we can also in polynomial time find a round trip
that is exactly optimal (hence P = NP)

For given a distance map D, where we assume all
distances are positive integers, and assume B is the
minimal value of a round trip (Hamiltonian cycle). Then

1. construct a distance map D ′ from D, by multiplying
all distances by c + 1. Thus B ′ = B(c + 1).

2. call our purported approximative algorithm on D ′;
this returns a cycle Q with cost R ′ where

B(c + 1) = B ′ ≤ R ′ ≤ B ′ + c < (B + 1)(c + 1)

3. Return Q which wrt. D has cost R = R ′/(c + 1).

Thus B ≤ R < B + 1 and hence R = B.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

ε-Relative May Be Hard

I assume we in polynomial time can find ε-relative
approximation to traveling salesman problem

I then we can also in polynomial time decide if a
graph has a Hamiltonial cycle (and hence P = NP)

For given G = (V ,E ), we

1. construct distance map d as follows:

d(u,w) = 1 if (u,w) ∈ E
d(u,w) = 2 + bnεc if (u,w) /∈ E

Observe this is in general not a metric.
2. Call our purported approximate algorithm on d ,

returning a cycle with cost R. With B the minimal
cost, we have B ≤ R ≤ B(1 + ε).

Fact: G has Hamiltonial cycle iff R ≤ (1 + ε)n
I if G has Ham. cycle then B = n so R ≤ (1 + ε)n.
I if G does not have a Hamiltonian cycle then

R ≥ B ≥ n + 1 + bnεc > n + εn = (1 + ε)n.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Min-Cluster and Max-Cut

Even problems that appear dual may exhibit vastly
different behavior. Consider Min-Cluster/Max-Cut:

I given complete graph where each edge has a cost

I we must split the nodes into 3 partitions (clusters)

I then some edges will be internal

I while the rest will be cross edges

This setting gives rise to two problems:

I Min-Cluster: minimize the total cost of the
internal edges

I Max-Cut: maximize the total cost of the cross
edges.

Clearly, an exactly solution to one will yield an exact
solution to the other!

I but Max-Cut can approximated efficiently

I while Min-Cluster can not (unless P = NP).



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Min-Cluster: no efficient approximation

I assume that we in polynomial time can find an
ε-relative approximation to Min-Cluster.

I then 3-Col ∈ P and hence P = NP
For given G = (V ,E ), we

1. construct costs c as follows:

c(u,w) = 1 if (u,w) /∈ E
d(u,w) = n2(1 + ε) if (u,w) ∈ E

2. Call our purported approximate algorithm on d ,
returning a partitioning with cost R. With B the
minimum cost (sum of internal edges), we have
B ≤ R ≤ B(1 + ε).

Fact: G has 3-coloring iff R < n2(1 + ε).
I A 3-coloring induces partitioning where all internal

edges have cost 1. Then B < n2 so R < n2(1 + ε).
I if no 3-coloring exists one internal edge has cost

n2(1 + ε), and hence R ≥ B ≥ n2(1 + ε).



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Max-Cut can be efficiently approximated

Max-Cut has a 1
3 -relative approximation:

1. consider each node u in turn
so as to place it in a cluster

2. consider the edges from u to the nodes previously
considered

3. add u to the cluster that causes the sum of the
internal edges to decrease least.

We infer that of the total cost C , at most one third will
come from internal edges. With R the sum of cross edges
in the resulting cluster, we thus have

R ≥ 2

3
C ≥ 2

3
B = (1− 1

3
)B



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Binary Knapsack, Revisited

The simple greedy algorithm

I prioritizes after value/weight ratio

I can be arbitrarily imprecise

I but we can get a 0.5-relative approximation if we,
whenever our selection is less valuable than the
single most valuable item, take that item instead

I Can we get higher precision?

Idea: to get a 1
k -relative approximation, we

1. generate all k-element subsets that fit;

2. for each such subset J, build a solution by running
the simple greedy algorithm with J as initial value

3. pick the best such solution



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Polynomial Approximation Scheme

Recall our algorithm feeds all possible k-element subsets
as initial values to the simple greedy strategy, and picks
the best such solution. With R the value of that solution,
and B the optimal value, one can prove

R >
Bk

k + 1
>

B(k − 1)

k
= B(1− 1

k
)

and hence we have a 1
k -relative approximation.

I When k = 1, we have the expected R > B/2.

But running time is in Θ(nk+1), so our high precision
comes with a cost!

I This is a polynomial approximation scheme

I but we would rather like a fully polynomial
approximation scheme.

A fully polynomial approximation scheme achieves
1
k -relative approximation in time polynomial in n and in k .



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Employing Dynamic Programming

We shall now construct a fully polynomial approximation
scheme for the binary knapsack problem. First recall the
dynamic programming algorithm for computing a table
from which we can find an exact optimal solution:

the entry V [i ,w ] denotes the maximum value
we can get from items 1 . . . i and weight limit w

and is computed as follows:

I if w = 0 or i = 0 then 0

I else if w < wi then V [i − 1,w ]

I else max(V [i − 1,w ],V [i − 1,w − wi ] + vi ).

Running Time is in Θ(nW ).

I W may be exponential in size of input

Key to approximation: make the table smaller.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Twisting Dynamic Programming

To cut down the size of the dynamic programming table:
I divide numbers by big constant, ignoring remainders
I but dangerous to mess with weights, as rounding off

may render a feasible solution infeasible, or vice versa
I rather mess with the values

We therefore reformulate dynamic programming so that it
constructs a table indexed by values:

an entry C [i , v ] denotes the minimum weight
needed to get at least value v from items {1..i}

Then the optimal value can be found as the largest v such
that C [n, v ] ≤W . Each entry is computed as follows:

I if v ≤ 0 then 0
I else if i = 0 then ∞
I else min(C [i − 1, v ],C [i − 1, v − vi ] + wi )

This runs in time O(nV ), where V is an upper bound of
the optimal solution.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

A Fully Polynomial Approximation Scheme

Let I be optimal solution of the problem, with value B.

1. Use cheap greedy algorithm to find R0 such that

B/2 ≤ R0 ≤ B.

2. Split into two cases:

R0 < 2nk: Then just apply dynamic programming,
creating a table W [0..n, 0..V ] to compute the
solution exactly.
As 2R0 ≥ B, we can pick V = 2R0, and hence
achieve a running time in O(nR0) ⊆ O(n2k).

R0 ≥ 2nk: see next page.



Approximate Algorithms

Amtoft

Introduction

Fixed Precision

Hardness Results

Surprising Asymmetry

Poly-Approx Schemes

Fully Poly-Approx
Scheme

Fully Polynomial Approximation, part II

When R0 ≥ 2nk, with d = bR0

nk
c we let

v ′i = bvi

d
c for i ∈ I

and hence dv ′i ≤ vi < dv ′i + d . We now apply dynamic
programming on this reduced problem, giving an optimal
solution I ′ with value B ′.
Let R be the value of I ′ wrt. the original values. Then

R =
∑
i∈I ′

vi ≥ d
∑
i∈I ′

v ′i ≥ d
∑
i∈I

v ′i

>
∑
i∈I

(vi − d) ≥ B − dn

≥ B − R0

k
≥ B − B

k
= B(1− 1

k
).

The algorithm runs in time O(n
R0

d
) ⊆ O(n2k) (as case 1)


	Introduction
	Fixed Precision
	Hardness Results
	Surprising Asymmetry
	Poly-Approx Schemes
	Fully Poly-Approx Scheme

