
Programming in Oz

Wacek Kuśnierczyk
December 10., 2010

1

Lecture Outline

Introduction to Oz
Oz & Mozart
Playing Oz

Programming in Oz: Basics
mdc, the Little Brother

Programming Oz: More Features
Last-Call Optimization and Tail-Recursion
Dataflow Variables
Concurrency, Streams, Synchronization
Lazy Evaluation
Message Passing with Ports
Relational Programming

Advanced Oz

2

Oz & Mozart

What is Oz?

Oz is a programming language

◮ conceived in 1991 by Gert Smolka at Saarland University, and

◮ subsequently developed in collaboration with Seif Haridi and Peter van
Roy at SICS.

Oz is an experimental language and draws from experience in programming
languages such as

◮ Prolog,

◮ Erlang,

◮ LISP/Scheme, etc.

3

Oz & Mozart contd

Why Oz?

Oz is a multiparadigm PL and includes features such as

◮ imperative (stateful) and functional (stateless) programming;

◮ data-driven (eager) and demand-driven (lazy) execution;

◮ relational (logic) programming and constraint-propagation;

◮ concurrent and distributed programming,

◮ object-oriented programming.

This makes Oz an interesting language for teaching and research.

4

Oz & Mozart contd

5

Oz & Mozart contd

Installing Oz

Oz is an interpreted and/or compiled language, implemented in the Mozart
platform. To install Mozart,

◮ go to http://www.mozart-oz.org/download,

◮ choose the installation package relevant for your platform,

◮ follow the instructions.

Mozart is pretty well documented, so you should have no problems.

◮ If all goes well, you should be able to start Mozart and see a message like:

Mozart Compiler 1.4.0 (20090502013126) playing Oz 3

6

http://www.mozart-oz.org/download

Playing Oz

Playing Oz: say ‘Hello!’

◮ open the Oz Programming Interface (OPI);1

◮ type {Browse ’Hello!’} in the program buffer;

◮ type C-. C-b to execute the program.2

If all goes well, a Browser window should pop up with ’Hello!’ written in it.

◮ You’ve executed your first Oz program in the interactive mode.

◮ The syntax {. . . } denotes application of a function.

◮ Browse is a variable with a function value.

◮ ’Hello!’ is an atom (roughly, a constant).

1E.g., type oz & on the command line.
2 ‘C-. . . ’ stands for ‘control and . . . ’. Alternatively, type M-x (Alt-x) followed by

oz-feed-buffer.

7

Playing Oz contd

Oz code can also be compiled into a command-line executables.3

◮ Save the following code into hello.oz.

Example

hello.oz

functor
import

Application
System

define
{System.showInfo "Hello!"}
{Application.exit 0} end

3The compiled code is not native binary, but a shell script-wrapper with embedded
Oz virtual machine bytecode.

8

Playing Oz contd

Playing Oz: say ‘Hello!’ again

◮ compile hello.oz into an executable, and execute it:

$ ozc -x hello.oz
$./hello
Hello!

The ‘binary’ is implicitly executed on the Oz virtual machine, the Oz engine.4

◮ Instead of opening a separate browser window, the output is sent directly
to the standard output stream.

4The Oz VM can also be invoked explicitly as ozengine hello.

9

Playing Oz contd

More on Oz

Concepts, Techniques and Models of Computer Programming, 1st ed.
P. van Roy, S. Haridi, MIT Press 2004

... and online docs.

10

http://www.mozart-oz.org/documentation

Lecture Outline

Introduction to Oz
Oz & Mozart
Playing Oz

Programming in Oz: Basics
mdc, the Little Brother

Programming Oz: More Features
Last-Call Optimization and Tail-Recursion
Dataflow Variables
Concurrency, Streams, Synchronization
Lazy Evaluation
Message Passing with Ports
Relational Programming

Advanced Oz

11

Programming (not specifically in Oz)

Programming today is a race between software engineers striving to

build bigger and better idiot-proof programs, and the Universe trying to

produce bigger and better idiots.

So far, the Universe is winning.

Rick Cook

If debugging is the art of removing bugs, then programming must be

the art of inserting them.

(anonymous)

12

mdc, the Little Brother

Consider the task of implementing a simple, stack-based command line
calculator.

◮ mdc,5 the calculator, will have a simple postfix syntax, and

◮ very limited functionality: basic arithmetic on integers.

Example

$./mdc -e ’10 1 + p’ # push 10 and 1, add, print
11
$./mdc <<END # likewise, using a two-line here-doc
> 10 1
> + p
> END
11

5 ‘mdc’ stands for ‘mini desktop calculator’, a trivial clone of dc, a standard tool on
many platforms.

13

mdc, the Little Brother contd

mdc programs push numbers on the stack, use arithmetic to combine them,
and use the command p to print the top of the stack.

Running mdc

When called, mdc must perform a number of steps:

◮ read the input (from stdin, a file, or an option string);

◮ lexemize and tokenize the input;

◮ interpret the input, performing

◮ internal operations and IO (output), as necessary.

We shall see how (some of) these steps can be implemented in Oz.

14

mdc, the Little Brother contd

Lexemization

The input is a string, a sequence of characters.

◮ We need to split it up into lexemes.

◮ Assume white space is a separator, everything else is lexemes.6

In our Oz implementation, we will use strings and lists of strings.

Example

input: "10 1 + p"

output: ["10" "1" "+" "p"]

6For your own languages, don’t write syntax specifications like this!

15

mdc, the Little Brother contd

Let’s implement a function that given a string returns a list of lexemes.

Example

mdc-lexemize.oz

fun {Lexemize Input}
[String] = {Module.link [’x-oz://system/String.ozf’]} in
{String.split
{String.strip Input unit} unit} end

Lexemize, a function of a single input (a string),

◮ binds a standard module to the local variable String;

◮ uses from the module to trim and split the string into a list.7

7In both cases, the atom unit means all white space is rubbish.

16

mdc, the Little Brother contd

Tokenization

The input is a list of strings.

◮ We need to classify them as tokens.8

We will represent tokens as records – tagged tuples.

Example

input: ["10" "1" "+" "p"]

output: [int("10") int("1") op("+") cmd("p")]

Each lexeme is wrapped into a record.

◮ The record’s name is a constant representing the token’s class.

8The lexeme-token terminology varies.

17

mdc, the Little Brother contd

Example

mdc-tokenize.oz

fun {Tokenize Lexemes}
case Lexemes of nil then nil
[] Lexeme|Lexemes then Token in

if Lexeme == "p" then Token = cmd(Lexeme)
elseif {Member Lexeme ["+" "-" "*" "/"]}
then Token = op(Lexeme)
else Token = int(Lexeme) end
Token|{Tokenize Lexemes} end end

Tokenize, a function of a list of lexemes,

◮ uses pattern-matching to decompose the input;

◮ classifies and correspondingly wraps the first lexeme;

◮ constructs a list of tokens, calling itself recursively with the rest of
lexemes.9

9The base case being the empty list, of course.

18

mdc, the Little Brother contd

We can simplify the code a little bit by using higher-order programming.

Example

mdc-tokenize.oz

fun {Tokenize Lexemes}
{Map Lexemes
fun {$ Lexeme}

if Lexeme == "p" then cmd(Lexeme)
elseif {Member Lexeme ["+" "-" "*" "/"]} then op(Lexeme)
else int(Lexeme) end end} end

◮ Tokenize maps an anonymous function onto every element in Lexemes.

19

mdc, the Little Brother contd

Parsing, Compilation, Interpretation

The mdc language is trivially simple.

◮ There is virtually no need for parsing.

◮ We can skip compilation and interpret directly the sequence of tokens,
one token at a time.

Example

input: ["10" "1" "+" "p"]

interpretation: push(10)
push(1)
push(add(pop(), pop())
print()

20

mdc, the Little Brother contd

21

mdc, the Little Brother contd

Example

mdc-interpret.oz

proc {Interpret Tokens}
proc {Interpret Stack Tokens}

case Tokens of nil then skip
[] int(Lexeme)|Tokens then

{Interpret {String.toInt Lexeme}|Stack Tokens}
[] op(Lexeme)|Tokens then Int1|Int2|Rest = Stack

Operator = try Number.{String.toAtom Lexeme}
catch _ then Int.’div’ end in

{Interpret {Operator Int2 Int1}|Rest Tokens}
[] cmd("p")|Tokens then Top|_ = Stack in

{Browse Top} {Interpret Stack Tokens} end end in
{Interpret nil Tokens} end

Interpret is a procedure that

◮ iteratively processes a list of tokens,

◮ modifying the stack as necessary;

◮ try ... catch is used to retrieve the appropriate arithmetic function.

22

mdc, the Little Brother contd

Wrap-up

We’ve used some of the basic functionalities in Oz:

◮ list processing,

◮ pattern matching,

◮ higher-order programming,

◮ exceptions.

Let’s compile and execute mdc.10

$ ozc -x mdc.oz
$./mdc -e ’1 2 + p’ # or ./mdc <<< ’1 2 + p’
$./mdc test.mdc # or ./mdc -f test.mdc, or ./mdc < test.mdc
$ echo ’1 2 + p’ | ./mdc

10The file mdc.oz defines an executable functor that imports our partial
implementation files seen on previous slides.

23

Lecture Outline

Introduction to Oz
Oz & Mozart
Playing Oz

Programming in Oz: Basics
mdc, the Little Brother

Programming Oz: More Features
Last-Call Optimization and Tail-Recursion
Dataflow Variables
Concurrency, Streams, Synchronization
Lazy Evaluation
Message Passing with Ports
Relational Programming

Advanced Oz

24

Last-Call Optimization and Tail-Recursion

Last Call-Optimization

Oz supports tail-recursive procedures.

Factorial is defined recursively in terms of itself:

n! =
{

1 if n < 2
n× (n− 1)! otherwise

Example

factorial.oz

fun {Factorial N}
fun {Factorial N F}

if N < 2 then F
else {Factorial N-1 F*N} end end in

{Factorial N 1} end

Factorial runs with O(1) frame stack.11

11And is thus immune to the ‘maximum recursion depth exceeded’ error.

25

Dataflow Variables

Dataflow Variables

Oz variables are not variable. A variable can

◮ be unbound (have no value),

◮ become bound to a particular value for the rest of its lifetime.

In Oz,

◮ variable identifiers are lexically scoped, and

◮ variables are not assigned to, but rather unified.

Example

local X in % X is introduced and is unbound
X = 1 % X is unified with 1
X = 2 % X is already 1, unification failure
... end

26

Dataflow Variables contd

Example

local X Y in % X and Y are introduced and are unbound
X = Y % X is unified with Y, both are still unbound
X = 1 % both X and Y have the value 1
... end

Some operations on unbound variables cause blocking.

Example

local X Y in
X = Y + 1 % can’t bind X until Y is bound; halt
... end

local X in
if X == 0 % can’t test X it is bound; halt
... end

27

Dataflow Variables contd

Unification

When variables are unified, their values

◮ are compared for equality, or

◮ are established, if necessary.

Unification works also on data structures of arbitrary complexity.12

Example

local
X Y
fun {Tree Left Right}

t(l:Left r:Right) end in
t(r:X l:t(l:0 r:1) = {Tree Y t(l:2 r:3)}
% X is t(l:2 r:3), Y is t(l:0 r:1)

end

12We’ve seen it in action while decomposing the stack in mdc.

28

Concurrency, Streams, Synchronization

Concurrency and Synchronization

Unbound variables may be used to synchronize threads of computation.

Let’s have

◮ a producer produce, and

◮ a consumer consume

an infinite stream.13

If the consumer is slower than the producer, the latter will be wasting
resources (time, space, power).

◮ We can solve this roblem by having the producer wait for demand from
the consumer.

13Infinite streams in this context are simply endlessly growing lists.

29

Concurrency, Streams, Synchronization contd

Example

enumerate.oz

fun {Enumerate N}
proc {Iterate N Request|Rest}

Request = N
{Iterate N+1 Rest} end in

thread {Iterate N $} end end

map.oz

fun {Map Stream Function}
fun {Iterate Stream}

Head|Tail = Stream in
{Function Head}|{Iterate Tail} end in

thread {Iterate Stream} end end

Both Enumerate and Map start separate threads of computation, but when
coupled, their progress depends on each other.

30

Concurrency, Streams, Synchronization contd

31

Concurrency, Streams, Synchronization contd

Example

local Integers Squares in
Integers = {Enumerate 0}
Squares = {Map Integers fun {$ N} N*N end} end

1. {Enumerate 0} starts a new thread, but no integers appear until the call
to Map is executed.

2. When Map starts a new thread, it places an unbound variable (a Head) on
the Integers stream, and halts until it becomes bound.

3. Enumerate reactivates, binds the Request variable, and proceeds with
the rest of Integers—which is unbound and halts Enumerate again.

4. With Head bound, Map reactivates, places {Function Head} on the
output stream Squares, and places a new request on Integers.

5. GOTO 3

32

Concurrency, Streams, Synchronization contd

Infinite streams can be useful for generating. . . further infinite streams.

Being One’s Own Tail

Everyone knows what a Fibonacci number is.14

What is the infinite stream of Fibonacci numbers?

◮ It is the first two numbers followed by the stream of Fibonacci numbers
added to itself left-shifted by one.

This trivially translates to code. . .

Example

fibs.oz

Fibs = 1|1|{Add Fibs {Drop Fibs 1}}

14If you don’t, it is the sum of the previous two Fibonacci numbers, save for the first
two 1’s.

33

Concurrency, Streams, Synchronization contd

34

Concurrency, Streams, Synchronization contd

We only need Add and Drop for this to work.

Example

add.oz

fun {Add Stream1 Stream2}
case Stream1#Stream2 of (Head1|Tail1)#(Head2|Tail2)
then thread Head1+Head2 end|{Add Tail1 Tail2} end end

drop.oz

fun {Drop _|Tail N}
if N == 1 then Tail
else {Drop Tail N-1} end end

◮ Add decomposes the streams into their heads and tails, adds the former
(in a separate thread!)15 and places on top of the recursively computed
sum of the latter.

◮ Drop recursively skips elements from the stream, as needed.

15Yes, it can add streams of yet unbound variables.

35

Lazy Evaluation

Actually, we do not need all this hassle to implement infite streams.

◮ Guess what, it suffices to be lazy.

Example

fibs-lazy.oz

Fibs = local fun lazy {Fibs PrePrevious Previous}
Current = PrePrevious + Previous in
Current|{Fibs Previous Current} end in

1|1|{Fibs 1 1} end

◮ Fibs is a local function that, given two numbers, lazily places their sum
on top of the result of a call to itself.

◮ Fibs produces, in principle, and endless stream—but only as much of it
as needed.16

16The core issue is to define ‘needed’.

36

Lazy Evaluation contd

37

Message Passing with Ports

The style of communication between consumer and producer we’ve seen
previously was inconvenient:

◮ explicitly adding unbound variables to the stream is both cumbersome
and error-prone;

◮ only one producer can be extending a particular stream.17

Message Passing

Ports provide a convenient abstraction for asynchronous between-thread
communication via message passing.

◮ A port is bound to a stream.

◮ Any thread can send a message to the port.

◮ Messages sent to a port are placed on the stream in a partially specified
order.

17There are workarounds, but they’re even more cumbersome.

38

Message Passing with Ports contd

Example

receive.oz

proc {Receive Messages React}
thread {ForAll Messages React} end end

Receive is a procedure that

◮ given a (potentially infinite) stream of messages,

◮ applies a particular procedure to the messages, one by one, in a
dedicated thread.

Example

{Receive Messages
proc {$ Message}

{Browse received(Message.content)} end}

39

Message Passing with Ports contd

Example

spam.oz

proc {Spam Port Message}
proc {Repeat}

{Delay {OS.rand} mod 1000}
{Send Port Message}
{Repeat} end in

thread {Repeat} end end

Spam is a procedure that

◮ given a port and a message,

◮ repeatedly sends the message to the port, in random intervals, in a
dedicated thread.

Example

{Spam Port msg(priority:urgent content:’end the lecture’)}

40

Message Passing with Ports contd

Example

filter.oz

fun {Filter Messages Pass}
fun {Filter Message|Messages}

if {Pass Message} then Message|{Filter Messages}
else {Filter Messages} end end in

thread {Filter Messages} end end

Filter is a procedure that

◮ given a stream of messages and a Boolean test function,

◮ filters out those messages that do not pass the test.

Example

{Filter Messages
fun {$ Message}

case Message of msg(priority:Priority ...)
then Priority /= urgent end end}

41

Message Passing with Ports contd

We can actually ship unbound variables, data, and procedure objects between
different Oz processes.

Example

server.oz

fun {Server Handle Ticket}
Requests Port = {NewPort Requests} in
{Pickle.save
{Connection.offerUnlimited Port}
Ticket}

server(start:proc {$}
thread {ForAll Requests Handle} end end) end

Server

◮ creates a stream and a port,

◮ opens up access to the port through a connection,

◮ returns a (wrapped) procedure that will spawn a thread for handling the
arriving messages.

42

Message Passing with Ports contd

Example

client.oz

fun {Client Generate Ticket}
Port = {Connection.take

{Pickle.load Ticket}}
proc {Loop}

{Send Port {Generate}}
{Loop} end in

client(start:proc {$}
thread {Loop} end end) end

Client

◮ accesses a port through a connection,

◮ creates a procedure that will repetitively send messages to the port,

◮ returns a (wrapped) procedure that will spawn a thread for actually
sending the messages.

43

Message Passing with Ports contd

Example

{{Server
proc {$ msg(Request Process Response)}

{Browse request(Request)}
Response = {Process Request} end

Ticket}.start}
{{Client

proc {$}
Response in
{Browse response(Response)}
msg({OS.rand} mod 100 fun {$ N} N mod 10 Response) end

Ticket}.start}

◮ The client sends messages containing a number, a function, and an
unbound variable.

◮ The server applies the function to the number and binds the variable to
the result.

44

Relational Programming

Consider the problem of appending one list to another.

Example

append.oz

proc {Append Front Rear Whole}
case Front of nil then Whole = Rear
[] Head|Tail then WholeTail in

Whole = Head|WholeTail
{Append Tail Rear WholeTail} end end

Does it work relationally?

Example

{Browse {Append [1 2] [3 4] $}} % [1 2 3 4]
{Browse {Append [1 2] $ [1 2 3 4]}} % [3 4]
{Browse {Append $ [3 4] [1 2 3 4]}} % ?

45

Relational Programming

Consider the problem of appending one list to another.

Example

append.oz

proc {Append Front Rear Whole}
case Front of nil then Whole = Rear
[] Head|Tail then WholeTail in

Whole = Head|WholeTail
{Append Tail Rear WholeTail} end end

Does it work relationally?

Example

{Browse {Append [1 2] [3 4] $}} % [1 2 3 4]
{Browse {Append [1 2] $ [1 2 3 4]}} % [3 4]
{Browse {Append $ [3 4] [1 2 3 4]}} % ?

◮ In the last case, pattern matching blocks over the unbound variable
Front.

45

Relational Programming contd

However, instead of the blocking pattern matching, we can

◮ make perform a series of unifications in different search spaces, and

◮ choose the ones that succeed.

Example

append-or.oz

proc {Append Front Rear Whole}
or Front = nil

Rear = Whole
[] Head FrontTail WholeTail in

Front = Head|FrontTail
Whole = Head|WholeTail
{Append FrontTail Rear WholeTail} end end

{Browse {Append $ [3 4] [1 2 3 4]}} % [1 2]

46

Relational Programming contd

We can have even more fun with Append if we replace or with choice.

Example

{Browse
{SolveAll
fun {$}

Front Rear in
{Append Front Rear [1 2 3 4]}
sol(Front Rear) end}

% [sol(nil [1 2 3 4])
% sol([1] [2 3 4])
% sol([1 2] [3 4])
% sol([1 2 3] [4])]
% sol([1 2 3 4] nil)]

◮ Much like Prolog, no?

47

Lecture Outline

Introduction to Oz
Oz & Mozart
Playing Oz

Programming in Oz: Basics
mdc, the Little Brother

Programming Oz: More Features
Last-Call Optimization and Tail-Recursion
Dataflow Variables
Concurrency, Streams, Synchronization
Lazy Evaluation
Message Passing with Ports
Relational Programming

Advanced Oz

48

Advanced Oz

We have barely touched the surface, there’s a lot more!

◮ finite domain constraint programming;

◮ distributed programming;

◮ object-oriented programming;

◮ shared-state sequential and concurrent programming;

◮ system programming; etc.

Check out the docs, have fun.

49

Since we’re here...

Thank you!

50

	Introduction to Oz
	Oz & Mozart
	Playing Oz

	Programming in Oz: Basics
	mdc, the Little Brother

	Programming Oz: More Features
	Last-Call Optimization and Tail-Recursion
	Dataflow Variables
	Concurrency, Streams, Synchronization
	Lazy Evaluation
	Message Passing with Ports
	Relational Programming

	Advanced Oz

