Outline

Functions on Lists

Amtoft
from Hatcliff from Leavens

A recursive function
follows the structure of inductively-defined data.

With lists as our example, we shall study

Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

1. inductive definitions (to specify data)
2. recursive functions (to process data)
3. frequent function templates

Specifying Types/Sets

Extensional

$$
\begin{gathered}
\{n \mid n \text { is a multiple of } 3\} \\
\{p \mid p \text { has red hair }\}
\end{gathered}
$$

- defined by giving characteristics
- no info about how to generate elements

Intensional Let S be the smallest set of natural numbers satisfying

1. $0 \in S$,
2. $x+3 \in S$ whenever $x \in S$.

- defined inductively
- describes how to generate elements

Why require smallest solution?

Let S be a set of natural numbers satisfying

1. $0 \in S$,
2. $x+3 \in S$ whenever $x \in S$.

Which sets satisfy this specification?

- $\{0,3,6,9, \ldots\}$
- $\{0,1,3,4,6,7,9,10, \ldots\}$
- ...

By choosing the smallest solution, we

- get exactly those elements explicitly generated by the specification
- we can give a derivation showing why each element belongs in the set.

Specifications

Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Derivation of Set Elements

Let S be the smallest set of natural numbers satisfying

1. $0 \in S$,
2. $x+3 \in S$ whenever $x \in S$.

Example:

- $0 \in S$ (by rule 1)
- $3 \in S$ (by rule 2)
- $6 \in S$ (by rule 2)
- $9 \in S$ (by rule 2)

Non-example:

- 10

Letting set be defined as the smallest gives us constructive information about the set.

BNF Inductive Specifications

Amtoft
Integer lists:
<int-list> $::=\mathrm{nil} \mid<i n t>:$ <int-list>
Inductive Definitions
Specifications
Derivations
Example:

$$
1:: 2:: 3:: \text { nil } \equiv[1,2,3]
$$

Derivation:

| | nil is an <int-list> |
| :--- | :--- |\quad (by rule 1)

(by rule 1)
$\Rightarrow 3::$ nil is an <int-list>
(by rule 2)
$\Rightarrow 2$:: 3 :: nil is an <int-list>
(by rule 2)

Note:

- recursion in grammar
- each use of : : increases list length by 1

Approximating Recursion

Grammar:

<int-list> ::= nil | <int> :: <int-list>
We write a family of functions list_sum_i, with i the length of the argument:
fun list_sum_0(Is) $=0$;
fun list_sum_1 (Is) =

$$
\text { hd (Is })+ \text { list_sum_0 (tI (Is)) }
$$

```
Inductive Definitions
```

Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists
fun list_sum_2 (Is) =

$$
\text { hd (Is })+ \text { list_sum_1 (tl(Is)) }
$$

fun list_sum_3(Is) =

$$
h d(I s)+\text { list_sum_2 }(t \mid(I s))
$$

- list_sum_3 ([1,2,3]);
val it $=6$: int

Putting It Together

fun list_sum_0(ls) $=0$;
fun list_sum_1 (Is) =

$$
h d(I s)+\text { list_sum_0 (tI (Is)) }
$$

fun list_sum_2(Is) =

$$
\text { hd (ls })+ \text { list_sum_1 }^{(t I(I s)) ; ~}
$$

Inductive Definitions
Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists
fun list_sum_3(Is) =

$$
\text { hd (Is })+ \text { list_sum_2 (tI (Is)) }
$$

Recursive function:
fun list_sum (Is) =
if ls = nil
then 0
else hd(ls) + list_sum(tl(ls));

Using Patterns

For the grammar
<int-list> $::=$ nil $\mid<i n t>::<i n t-l i s t>$
we wrote

$$
\begin{aligned}
& \text { fun list_sum }(I s)= \\
& \text { if Is }=\text { nil } \\
& \text { then } 0 \\
& \text { else hd }(\text { Is })+\text { list_sum }(\mathrm{tI}(\mid s)) \text {; }
\end{aligned}
$$

but the correspondence is clearer by the ML patterns

$$
\begin{aligned}
& \text { fun list_sum (Is) }
\end{aligned}=\begin{aligned}
& \text { case Is of } \\
& \text { nil } \Rightarrow 0 \\
& \mid(n:: n s) \Rightarrow n+\text { list_sum }(n s)
\end{aligned}
$$

or even better

$$
\begin{aligned}
& \text { fun list_sum (nil) }=0 \\
& \quad \begin{array}{l}
\text { list_sum }(\mathrm{n}:: \mathrm{ns})
\end{array}=\mathrm{n}+\text { list_sum(ns); }
\end{aligned}
$$

Recursion Template

Amtoft
from Hatcliff from Leavens

Data Structure directs Function Structure

Grammar:
<int-list> $::=n i l \mid<i n t>::<i n t-l i s t>$
Template:

```
fun list_rec(nil)=
    list_rec(n::ns) = .... list_rec(ns)
```

Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Key points:

- for each case in BNF there is a case in function
- recursion occurs in function exactly where recursion occurs in BNF
- we may assume function "works" for sub-structures of the same type

More Examples

Add one to each element of list:
fun list_inc(nil) = nil
list_inc(n::ns) $=(n+1):$: list_inc(ns);
Select those elements greater than five:

$$
\begin{aligned}
& \text { fun gt_five(nil) = nil } \\
& \text { gt_five(n::ns) = } \\
& \text { if } \mathrm{n}>5 \\
& \text { then } n:: g t \text { five(} n s \text {) } \\
& \text { else gt_five(ns); }
\end{aligned}
$$

Append two lists:
fun append (nil, I2) $=12$
append(n::ns, 12) $=\mathrm{n}:$: append(ns, 12);

Inductive Definitions

Specifications

Derivations
Recursive Functions

Patterns

Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Map

Functions on Lists

Amtoft
from Hatcliff from Leavens
Adding one to each element of list:
$\begin{array}{ll}\text { fun list_inc(nil) }=n i l \\ \mid & \text { list_inc(n::ns) }=(n+1): \text { : list_inc(ns); }\end{array}$
Generalization: apply arbitrary function to each element
fun list_map f nil = nil
list_map f (n::ns) =

$$
f(n):: \text { list_map f ns; }
$$

Type of list_map:
fn : ('a -> 'b) -> 'a list -> 'b list

Instantiation: add one to each element
val my_list_inc $=$ list_map $(\mathbf{f n} x \Rightarrow x+1)$;
Instantiation: square each element
val square_list $=$ list_map $(\mathbf{f n} x \Rightarrow x * x)$;

Filter

Selecting only the elements greater than five:

Amtoft
from Hatcliff from Leavens

Inductive Definitions
Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Type of list_filter:
('a -> bool) -> 'a list -> 'a list

Instantiation: select those greater than five val my_gt_five $=$ list_filter (fn $n=n>5)$;
Instantiation: select the even elements
val evens $=$ list_filter $(\mathbf{f n} n \Rightarrow n \bmod 2=0)$;

Foldr

Amtoft
from Hatcliff from Leavens

$$
\begin{aligned}
& \text { fun list_sum(nil) }=0 \\
& \text { list_sum (n::ns) }=n+\text { list_sum (ns) }^{\text {n }}
\end{aligned}
$$

Generalization: fold in arbitrary way
fun foldr fenil $=e$
foldr fe $(x:: x s)=f(x,(f o l d r f e x s))$
Type of foldr:
('a * 'b -> 'b) -> 'b -> 'a list -> 'b

Instantiation: my_addlist
fun my_addlist $x s=$ foldr op+ 0 xs
Instantiation: my_identity
fun my_identity $x s=$ foldr op:: nil xs
Instantiation: my_append
fun my_append $x s$ ys $=$ foldr op:: ys xs

Foldl

Functions on Lists

Amtoft
from Hatcliff from Leavens

Recall foldr, processing input from right:

```
fun foldr fenil \(=e\)
    foldr fe \((x:: x s)=f(x,(f o l d r f e x s))\)
    ('a * 'b \(\rightarrow\) 'b) \(\rightarrow\) 'b \(\rightarrow\) 'a list \(\rightarrow\) 'b
```

Now consider foldl, processing input from left:
fun foldl f e nil $=e$

$$
\text { foldl fe }(x:: x s)=\text { foldl } f(f(x, e)) \text { xs }
$$

Inductive Definitions
Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Type of foldl:
('a * 'b -> 'b) -> 'b -> 'a list -> 'b

Example instantiation:
foldl op:: nil xs
which reverses a list.

List Representation of Sets

Amtoft
from Hatcliff from Leavens
Sets may be represented as lists

+ easy to code
? with or without duplicates
- not optimal for big sets

Testing membership:

- member $[3,6,8] 4$;
val it $=$ false : bool
- member [3,6,8] 6;
val it = true : bool
Coding member:
fun member nil $x=$ false member (y::ys) $x=$
if $x=y$ then true
else member ys x;

Equality Types

fun member nil $x=$ false member (y::ys) $x=$
if $x=y$ then true
else member ys x;
Type of member:
member $=\mathbf{f n}:$ ''a list \rightarrow ''a \rightarrow bool
Here double primes denotes an equality type.

- member $[\mathbf{f n} x \Rightarrow x+2$, $\mathbf{f n} x \Rightarrow x+1$]
(fn $x=x+1$);
.. Error: operator and operand don't agree
[equality type required] operator domain: ''Z list operand:
(int \rightarrow int) list
because functions cannot be tested for equality

Set Operations

Intersection:

```
fun intersect([],ys) = []
    intersect(x::xs,ys) =
        if member ys }
    then x :: intersect(xs,ys)
    else intersect(xs,ys);
```

Type of intersection:
'’a list * ''a list -> ''a list

Inductive Definitions
Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Union, with type
''a list * ''a list -> ''a list
fun union $([], y s)=y s$
union (x::xs,ys) =
if member ys x
then union ($x s, y s$)
else $x:$ union (xs,ys);

Removing Duplicates

with type ''a list -> ''a list

Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

Association Lists

Amtoft
from Hatcliff from Leavens

We often want to associate keys with values. One way to do so is to maintain a list of pairs (key,value).

+ easy to code
- not optimal for big sets

We want to write a lookup function
Input an association list, and a key
Output the value corresponding to the key

Inductive Definitions
Specifications
Derivations
Recursive Functions
Patterns
Typical Templates
Map
Filter
Fold
Representing Sets
Equality Types
Assocation Lists

```
fun lookup \(((y, v):: d s) x=\)
    if \(x=y\) then \(v\)
    else lookup ds \(x\)
    lookup nil \(x=\) ???
```


Variants of Lookup

We may need to go for some rather arbitrary value that from Hatcliff from Leavens signals unsuccessful search:
fun lookup ($(y, v):: d s) x=$ if $x=y$ then v else lookup as x
lookup nil $x={ }^{\sim} 1$
Type of lookup:
('aa * int) list -> 'aa -> int

We thus lose some polymorphism. Instead, we may write
fun lookup n il $x=$ NONE
lookup ($(y, v):: d s) x=$
if $x=y$ then SOME v
else lookup ids x
Type of lookup:

$$
\text { (''a * 'b) list } \rightarrow \text { ''a } \rightarrow \text { 'b option }
$$

