Can We Represent Infinite Lists?

Certain collections are infinite, like the set of all natural
numbers. We may try

fun all_numbers n =
n :: (all_.numbers (n+1))
which has type

int —> int list
but
all _numbers 1

does not terminate and hence produces no result.

Lazy Evaluation

Amtoft

Motivation

Conversions to/from

Merging Lazy Lists

Primes

Giving Change

Lazy Evaluation Ley Bvaluation

Amtoft

Motivation

Key idea: Merging Lazy Lists

» evaluate lists one element at a time

Primes

Giving Change

» generate an element only when needed
» the list tail is thus not fully evaluated yet
We may thus attempt

fun all_numbers n =
n :: (fn () = all_numbers (n+1))

but this is not quite type correct.

Lazy Evaluation

Lazy Lists

Amtoft

datatype 'a lseq =

Nil Lazy Lists
| Cons of 'a % (unit —> 'a Iseq)
We define hd, t1 with types
hd: 'a Iseq —> 'a tl: "a lseq —> 'a lIseq

exception Empty

fun hd Nil = raise Empty
| hd (Cons (x,-)) = x
fun tl Nil = raise Empty

] tl (Cons (-,sf)) = sf ()
We can now define a sequence containing all numbers:

fun numbers n =
Cons(n, fn () => numbers (n+1))
fn int — int Iseq

Converting a List to a Lazy List

We want functionality
'a list —> 'a lseq
which can be accomplished by

fun list2lseq [] = Nil
| list2lseq (x::xs) =

Cons (x,fn () = list2lseq

Lazy Evaluation

Amtoft

Conversions to/from
Standard Lists

Higher-Order Functions

Merging Lazy Lists

Primes
Giving Change

Extracting a List from a Lazy List

» we cannot extract all elements

» but would like to extract first n elements
We thus aim at functionality
int — 'a Iseq —> 'a list
which can be accomplished by

fun take 0 Is = []
| take n Nil = raise Empty
| take n (Cons(x,sf)) =

x :: (take (n—=1) (sf ()))
Running
take 7 (numbers 2)

thus gives us

[2,3,4,5,6,7,8]

Lazy Evaluation

Amtoft

Conversions to/from
Standard Lists

Higher-Order Functions

Merging Lazy Lists

Primes
Giving Change

Lazy Evaluation

Map for Lazy Sequences

Amtoft

Recall that map has type

('a—> 'b) = "a list —> 'b list

We want to define 1map with type Higher-Order Functions
('a—> 'b) — "a Iseq —> 'b lIseq

which can be accomplished by

fun Imap f Nil = Nil
| Imap f (Cons(x,sf)) =
Cons(f(x),

fn () = Imap f (sf ()))

We can now run

take 7
(Imap (fn (x) = x x 2)
(numbers 1));

[2,4,6,8,10,12,14] : int list

Fllter for I_azy Sequences Lazy Evaluation

Amtoft

Similarly, we want to define 1filter with type

('"a = bool) — 'a Iseq — 'a lIseq

which can be accomplished by Higher-Order Functions
fun Ifilter p Nil = Nil
| Ifilter p (Cons(x,sf)) =

if p(x)

then Cons(x, fn () =

Ifilter p (sf ()))
else Ifilter p (sf ())

We can now run

take 7
(Ifilter (fn x = x mod 3 = 0)
(numbers 1));

[3.6,9,12,15,18,21]

Non-Fair Merge

Recall the append function
fun append(nil ,Is) = 1Is
| append(n::ns,ls) = n::append(ns,Is);
We may want to define
fun lappend Nil Is = Is
| lappend (Cons(x,sf)) Is =

Cons (x, fn () =

lappend (sf ()) Is)

'a lseq —> 'a Iseq —> 'a lIseq
but when running

take 7
(lappend (numbers 100)
(numbers 1));
the second list is ignored:

[100,101,102,103,104,105,106]

Lazy Evaluation

Amtoft

Merging Lazy Lists

Fair Merge Lazy Evaluation

Amtoft
Instead, we repeatedly swap the two lists:

fun interleave Nil Is = Is
| interleave (Cons(x,sf)) Is =
Cons(x, fn () =
interleave Is (sf ()))

Merging Lazy Lists

which still has type
'a Iseq —> 'a lseq —> "a lseq
and when running

take 7
(interleave (numbers 100)
(numbers 1));

we do get the desired alternation:

[100,1,101,2,102,3,103]

Sieve of Eratosthenes

Lazy Evaluation

Amtoft

val primes =

let fun sieve (Cons(p,sf)) = let

fun p_not_div x = (x mod p > 0)
in Cons(p, fn () =

sieve (Ifilter G
p_not_div
(sf ())))
end in sieve (numbers 2) end
— primes;
val it = Cons (2,fn) : int Iseq

— take 10 primes;

val it = [2,3,5,7,11,13,17,19,23,29]
int list

GiVing Change Laz||y Lazy Evaluation

Amtoft

fun mk_change coin_vals amount = let
(+ sol is solution currently built;
sf () builds rest of solutions x)
fun chg - 0 sol sf = Cons(sol, sf)
| chg [] n - sf = sf ()
| chg (cvl::cvs) n sol sf =
if n <0 then sf ()

Giving Change

else chg (cvl::cvs) (n — cvl)
(cvl::sol)
(fn () =

chg cvs n sol sf)
in chg coin_vals amount []
(fn () = Nil)
end

int list —> int —> int list Iseq

Lazy Evaluation

Example Changes, |

Amtoft

val cgl = mk_change [5,2] 16
We can extract two solutions: o

take 2 cgl;

[[2,2,2,5,5],[2,2,2,2,2,2,2,2]]
but is there a third?

take 3 cgl;

uncaught exception Empty

Example Changes, Il

val cg2 = mk_change [25,10,5,1] 46
displays the first solution:

Cons ([1,10,10,25],fn) : int list Iseq
We can see that there are 39 solutions:

— take 39 cg2;
val it = [[1,10,10,25],[1,5,5,10,25],..]

but not 40 solutions:

— take 40 cg2;
uncaught exception Empty

Lazy Evaluation

Amtoft

	Motivation
	Lazy Lists
	Conversions to/from Standard Lists
	Higher-Order Functions
	Merging Lazy Lists

	Larger Examples
	Primes
	Giving Change

