Introduction to SML

Language Paradigms

Amtoft
from Hatcliff
from Leavens

Paradigms

Different ways of expressing computation;
» imperative
» functional
» logic
» ...object-oriented

Others:
dataflow, coordination, algebraic,
graph-based, etc

Note: distinction is sometimes fuzzy!

Introduction to SML

Imperative Paradigm

Amtoft
from Hatcliff
from Leavens

Example: compute m” (n > 0) Paradigms

result = 1;

while n > 0 do
result := result * m;
n :=n—1

end while;

Assessment:

» computation is expressed by repeated modification of
an implicit store (i.e., components command a store
modification),

> intermediate results are held in store

» iteration (loop)-based control

Functional Paradlgm Introduction to SML

Amtoft
from Hatcliff
from Leavens

Example: compute m” (n > 0) Paradigms
fun power (m,n) =
if (n=0)
then 1
else m x power(m,n—1);
Assessment:

> computation is expressed by function application and
composition

» no implicit store

» intermediate results (function outputs) are passed
directly into other functions

» recursion-based control

LOglC Pa rad |gm Introduction to SML

Amtoft
from Hatcliff
from Leavens

Example: compute m” (n > 0)

/% define predicate power(m,n, result) s/ Peradims

power(m,0,1).
power(m,n, result)
<— minus(n,1,n_subl),
power(m, n_subl ,temp_result),
times(m, temp_result , result).
Assessment:

» computation is expressed by proof search, or
alternatively, by recursively defining
relations

» no implicit store

» all intermediate results (i.e., function outputs) are
stored in variables

» recursion-based control

Introductlon to SML Introduction to SML

Amtoft
from Hatcliff
from Leavens

Motivation

SML is an expression-based (functional) language.

1. why SML in CIS5057
2. statements vs. expressions

3. basic SML expressions

» literals, variable references, function calls,
conditionals, ...

4. typing issues

o1

. variables and bindings

(@)

. tuples and lists

Why S M L? Introduction to SML

Amtoft
from Hatcliff
from Leavens

» Well-understood foundations: This is a course Motivation
about the foundations of programming languages,
and the theory/foundations of SML have been
studied more in recent years than almost any other
language.
» Well-designed: Robin Milner, the principal designer

of SML received the Turing Award, in part, because
of his work on SML.

» Advanced features: Many of the features of SML,
such as parametric polymorhism, pattern matching,
and advanced modules are very elegant and do not
appear in other languages like Java, C4++, etc.

Why SML? (continued)

» Very high-level: Using SML lets us describe
language processors very succinctly (much more
concisely than any imperative language).

» Clean: SML is useful for various critical applications
where programs need to be proven correct

» It’s different than Java: At some point in your
career, you will have to learn a new language. This
course prepares you for that by forcing you to learn a
new language (SML) quickly. In addition, compared
to Java, C, etc., SML uses a totally different style to
describe computation. This forces you to think more
deeply (mental pushups!).

» There’s more! There are also several different
concurrent versions of SML, object-oriented
extensions, libraries for various applications, etc.

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Motivation

Statement

» construct evaluated only for its effect
Examples:

m = 5;

n = 2;

result = 1;

while n > 0 do
result := result * m;
n :=n—1

end while;

write result;

Statement-oriented /imperative languages:

» Pascal, C, C++, Ada, FORTRAN,
COBOL, etc

Introduction to SML

Amtoft
from Hatcliff
from Leavens

Statements vs.
Expressions

- Introduction to SML
Expression
Amtoft
from Hatcliff
from Leavens

» construct evaluated to yield value
Statements vs.
Expressions

Examples:
A= 2+ 3; /* rhs is expression x/
power 5 2 /* SML function call x/

a=(b=ct+)+ 1; /% C, C++, Java %/

Pure expressions: no side-effects
Expression-oriented /functional languages:

» Scheme, ML, Lisp, Haskell, Miranda, FP, etc

Basic SML Expressions

> constants (i.e., literals)
» variable references
» function application

» conditional expressions

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Basics

Constants

Integers: 0, 22, 353,...

Reals: 12.0, 3E-2, 3.14el2
Booleans: true, false

Strings: "KSU", "foo\n"
Characters: #"x", #" A", #"'\n"

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Basics

H Introduction to SML
Example Session
Amtoft
from Hatcliff
from Leavens

— 2

val it =2 int

— it + 1;

val it =3 int

— it

val it =3 : int Basics
— 7234 + 2;

val it = 7232 : int

— 12.0;

val it = 12.0 : real

- 12. + 3.1;

stdln:16.1 Error: syntax error found at DOT
— "KSU";

val it = "KSU" : string

— "foo\n";

val it = "foo\n” : string

= #'x";

val it = #'x" : char

— #'gh”;

Error: character constant not length 1

Arithmetic Operators

Precedence: lowest to highest
> +r -
» x, /, div, mod

>
Also:

» ML is case sensitive (cf. mod)
» associativity and precedence as in other languages
» operators associate to the left

» parentheses are
» needed only to enforce evaluation order,
asinx * (y + z)
» but may be freely added to improve clarity,
asinx + (y * z)

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Basics

String Operators Introduction to SML

Amtoft
from Hatcliff
from Leavens

Concatenation:

— "abra” "cadabra”;

val it = "abracadabra” : string Bocice
_ ”abra” ~ m"mn ~ " Cadabra” ~ ””;

val it = "abracadabra” : string

_ ”abra” ~ (”” ~ 7" Cadabra”) ~ ””;

val it = "abracadabra” : string

1mn

> (empty string) is identity element

» " is associative

Compal’lson Operators Introduction to SML

Amtoft
from Hatcliff
from Leavens

=, <, >, <=, >= <>
Note:
> cannot use = or <> on reals

> to avoid problems with rounding Basics
> use e.g., <= and >= for =

> < means “lexicographically procedes” for characters

and strings

- "a" < "b";

val it = true : bool
- "c" < "b";

val it = false : bool
— "abc" < "achb”;

val it = true : bool

"stuv” < "stu”;

val it = false : bool

Boolean Operators

Introduction to SML
Amtoft

from Hatcliff
from Leavens

not, andalso, orelse

Basics
» behave like C's !, &&, | | — not like Pascal
» not commutative, as “short-circuit” operation

— (1 < 4) orelse ((5 div 0) < 2);
val it = true : bool

— ((5 div 0) < 2) orelse (1 < 4);

X%k €error kx

If-then-else Expressions

Examples:

— if 4 < 3 then "a" else "bcd”;
val it = "bcd” : string

— val t = true;

val t = true : bool

— val f = false;

val f = false : bool

if t = f then (5 div 0) else 6;

val it =6 : int

if t = true then 7 else "foo";

Error: types of rules don't agree...

earlier rule(s): bool — int
this rule: bool —> string
in rule:

false = "foo"

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Basics

Typing |ssues Introduction to SML

Amtoft
from Hatcliff
from Leavens

ML has strong typing:
(strong/weak = how much)

» each value has exactly one type

» for example, 12 is int but not real Typing

» explicit coercions therefore necessary
ML has static typing:
(static/dynamic = when)
» type-checking occurs before programs are run
» thus if x = y then 7 else "foo" is an error
> but it wouldn't be in a dynamically typed language
These concepts are too often mixed up, even in the
Ullman textbook (pages 3 and 143)

Coerclons Introduction to SML

Amtoft
. from Hatcliff
From integers to reals: from Leavens
— real(11);
val it = 11.0 : real
— 5.0 + 11;

Error: operator and operand mismatch
operator domain: real % real
operand : real * int
in ex ion : Typing
pression :
5.0 + 11
— 5.0 + real(11);
val it = 16.0 : real

From reals to integers:

— floor (5.4);
val it =5 : int
— ceil (5.4);

val it =6 : int
— round (5.5);
val it =6 : int
— trunc(75.4);

val it = 7“5 : int

Coercions

Between characters and integers:

— ord(#"0");

val it = 48 : int

— chr(48);

val it = #'0" : char
Between strings and characters:

— str(#"a");

no_n

val it = "a" : string

What about from string to character?

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Typing

Introduction to SML

Identifiers

Amtoft
from Hatcliff
from Leavens

SML has two classes of identifiers:

» alphanumeric (e.g., abc, abc?, A_1)

» symbolic (e.g., +, $$$, %-%)
Alphanumeric ldentifiers: strings formed by

» An upper or lower case letter or the character ’ Environment
(called apostrophe or “prime"), followed by

» Zero or more additional characters from the set
given in (1) plus the digits and the character _
(underscore).

Symbolic Identifiers: strings composed of

+-/x<>=1Q#$% & ~"\NI|7:

Variables

Consider from Pascal: A := B + 2;
» B is a variable reference (contrast with A)
» a memory location is associated with A

> a stored value (e.g., 5) is associated
with B
Pascal, C, Java, Fortran, etc:

memory cell <loc>

<var> — <value>

____4_

» variables bind to locations
» there is a level of indirection
» two mappings

> environment: maps variables to locations
» store: maps locations to values

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Environment

Variables

SML: variables bound to values

vVVvYy Vv VYy

<var> — <value>

variables bind directly to values
there is no indirection

a binding cannot be modified (!!)
no assignment (!!)

one mapping

> environment: maps variables to values

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Environment

Top-level Environment Inroduction to SML
froﬁml-:gg:liff
from Leavens

var value

— val a = 2; | } I

val a =2 : int | a ‘ 2 |

— val b = 3; | % I

val b =3 : int | b ‘ 3 | .
— val ¢ =a + b; } | | Environment
val ¢ =5 : int | ¢ ‘ 5 |

— val a=c¢+ 2 | | ,

val a =7 int | a ‘ 7 |

— val ¢ =c¢c + 2; | % I

val ¢ =7 int | ¢ ‘ 7 |

Introduction to SML
Tuples
Amtoft
from Hatcliff
from Leavens

’Tuple: fixed-size ordered collection of two or more values.

— val t = (1, "a", true);

val t = (1,"a” ,true) : int * string % bool

— #3(t);

val it = true : bool

— val s = (4, t); _

val s = (4,(1,"a”,true)) c Tuples and Lists
int = (int % string * bool)

— #2(#2(s));

val it = "a"” : string

- (4);

val it =4 : int

- O

val it = () : unit

— #2 t;

val it = "a"” : string

— #4(t);

stdln:16.1—-16.6 Error:

H Introduction to SML
Lists

Amtoft
from Hatcliff
from Leavens

’ ML lists are lists of values of the same type.

Example session:

- [1.,2,3];

val it = [1,2,3] : int list

- [(1,2),(2,3).(3.4)]; _

val it = [(1,2),(2,3),(3,4)] . Tuples and Lists
(int x int) list

~ ["a"];

val it = ["a”] : string list

— ["a" ,2];

... Error: operator and operand don’'t agree...
- [[1].[2] . [3]];

val it = [[1],[2],[3]] : int list list

- [

val it =[] : 'a list

Polymorphic List Operations

empty list []

head hd
tail tl
append @
cons e
Example session:

— val Is = [1,2,3];
val Is = [1,2,3]
— hd(Is);
val it =1 int
— hd(["a”,"b","c"
val it = "a" :
— tl(tl(ls));
val it = [3] int
— tI(tl(ls)) @ Is;
val it = [3,1,2,3]
— 30 Is;
Error:
I's;
[3,1,2,3]

’a list

’a list —
’a list —
’a list *
)a*

’a
’a list
’a list —
’a list —

’a
’a list

int list

)

string
list

int list

- 3
val

it = int list

Introduction to SML

Amtoft
from Hatcliff
from Leavens

list

Tuples and Lists

operator and operand don't agree

Strings s |_|sts Introduction to SML

Amtoft
from Hatcliff
from Leavens

Example session:

— explode (" abcd");
val it = [#"a" #"b" #"c",#"d"] : char list
— implode([#" " ,#"0" . #"0"]);

val it = "foo" : String Tuples and Lists
— implode(explode(”abcd”));
val it = "abcd” : string

— explode (implode([#" " ,#" 0" ,#"0"]));
val it = [#"f",#" 0" #"0"] : char list

Exa m pIeS Introduction to SML

Amtoft
from Hatcliff
from Leavens

— "abc” " implode([#" ", #" 0" ,#"0"]) "~ "bar”;
val it = "abcfoobar” : string
— ([4.5].[2] . [ord(#" c")]);
val it = ([4.,5].[2].[99])
int list = int list % int list
— "abc” > "foo";
val it = false : bool
— 7 :: b;
stdIn:37.1-37.7 Error:
operator and operand don't agree [literal]
— ["a" ,"b" #"c”,"d"];
stdln:1.1—-30.2 Error: operator and operand
don’'t agree [tycon mismatch]
— 20 + (if #c” <#°C" then 5 else 10);
val it = 30 : int
- (0.0 101.01): ’

unit * unit x unit list * 'a list

Tuples and Lists

Summary

ML is an expression-based (functional) language with
strong static typing.

Next lecture: user-defined functions

Introduction to SML
Amtoft

from Hatcliff
from Leavens

Tuples and Lists

	Paradigms
	Motivation
	Statements vs. Expressions
	Basics
	Typing
	Environment
	Tuples and Lists

