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Paradigms

Different ways of expressing computation;
» imperative
» functional
» logic
» ...object-oriented

Others:
dataflow, coordination, algebraic,
graph-based, etc

Note: distinction is sometimes fuzzy!



Introduction to SML

Imperative Paradigm
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Example: compute m” (n > 0) Paradigms

result = 1;

while n > 0 do
result := result * m;
n :=n—1

end while;

Assessment:

» computation is expressed by repeated modification of
an implicit store (i.e., components command a store
modification),

> intermediate results are held in store

» iteration (loop)-based control



Functional Paradlgm Introduction to SML
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Example: compute m” (n > 0) Paradigms
fun power (m,n) =
if (n=0)
then 1
else m x power(m,n—1);
Assessment:

> computation is expressed by function application and
composition

» no implicit store

» intermediate results (function outputs) are passed
directly into other functions

» recursion-based control



LOglC Pa rad |gm Introduction to SML
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Example: compute m” (n > 0)

/% define predicate power(m,n, result) s/  Peradims

power(m,0,1).
power(m,n, result)
<— minus(n,1,n_subl),
power(m, n_subl ,temp_result),
times(m, temp_result , result).
Assessment:

» computation is expressed by proof search, or
alternatively, by recursively defining
relations

» no implicit store

» all intermediate results (i.e., function outputs) are
stored in variables

» recursion-based control



Introductlon to SML Introduction to SML
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Motivation

SML is an expression-based (functional) language.

1. why SML in CIS5057
2. statements vs. expressions

3. basic SML expressions

» literals, variable references, function calls,
conditionals, ...

4. typing issues

o1

. variables and bindings

(@)

. tuples and lists



Why S M L? Introduction to SML
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» Well-understood foundations: This is a course Motivation
about the foundations of programming languages,
and the theory/foundations of SML have been
studied more in recent years than almost any other
language.
» Well-designed: Robin Milner, the principal designer

of SML received the Turing Award, in part, because
of his work on SML.

» Advanced features: Many of the features of SML,
such as parametric polymorhism, pattern matching,
and advanced modules are very elegant and do not
appear in other languages like Java, C4++, etc.



Why SML? (continued)

» Very high-level: Using SML lets us describe
language processors very succinctly (much more
concisely than any imperative language).

» Clean: SML is useful for various critical applications
where programs need to be proven correct

» It’s different than Java: At some point in your
career, you will have to learn a new language. This
course prepares you for that by forcing you to learn a
new language (SML) quickly. In addition, compared
to Java, C, etc., SML uses a totally different style to
describe computation. This forces you to think more
deeply (mental pushups!).

» There’s more! There are also several different
concurrent versions of SML, object-oriented
extensions, libraries for various applications, etc.
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Motivation



Statement

» construct evaluated only for its effect
Examples:

m = 5;

n = 2;

result = 1;

while n > 0 do
result := result * m;
n :=n—1

end while;

write result;

Statement-oriented /imperative languages:

» Pascal, C, C++, Ada, FORTRAN,
COBOL, etc

Introduction to SML
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Statements vs.
Expressions



- Introduction to SML
Expression
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» construct evaluated to yield value
Statements vs.
Expressions

Examples:
A= 2+ 3; /* rhs is expression x/
power 5 2 /* SML function call x/

a=(b=ct+)+ 1; /% C, C++, Java %/

Pure expressions: no side-effects
Expression-oriented /functional languages:

» Scheme, ML, Lisp, Haskell, Miranda, FP, etc



Basic SML Expressions

> constants (i.e., literals)
» variable references
» function application

» conditional expressions
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Basics



Constants

Integers: 0, 22, 353,...

Reals: 12.0, 3E-2, 3.14el2
Booleans: true, false

Strings: "KSU", "foo\n"
Characters: #"x", #" A", #"'\n"
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Basics



H Introduction to SML
Example Session
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— 2

val it =2 int

— it + 1;

val it =3 int

— it

val it =3 : int Basics
— 7234 + 2;

val it = 7232 : int

— 12.0;

val it = 12.0 : real

- 12. + 3.1;

stdln:16.1 Error: syntax error found at DOT
— "KSU";

val it = "KSU" : string

— "foo\n";

val it = "foo\n” : string

= #'x";

val it = #'x" : char

— #'gh”;

Error: character constant not length 1



Arithmetic Operators

Precedence: lowest to highest
> +r -
» x, /, div, mod

>
Also:

» ML is case sensitive (cf. mod)
» associativity and precedence as in other languages
» operators associate to the left

» parentheses are
» needed only to enforce evaluation order,
asinx * (y + z)
» but may be freely added to improve clarity,
asinx + (y * z)
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Basics



String Operators Introduction to SML
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Concatenation:

— "abra” "cadabra”;

val it = "abracadabra” : string Bocice
_ ”abra” ~ m"mn ~ " Cadabra” ~ ””;

val it = "abracadabra” : string

_ ”abra” ~ (”” ~ 7" Cadabra”) ~ ””;

val it = "abracadabra” : string

1mn

> (empty string) is identity element

» " is associative



Compal’lson Operators Introduction to SML
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=, <, >, <=, >= <>
Note:
> cannot use = or <> on reals

> to avoid problems with rounding Basics
> use e.g., <= and >= for =

> < means “lexicographically procedes” for characters

and strings

- "a" < "b";

val it = true : bool
- "c" < "b";

val it = false : bool
— "abc" < "achb”;

val it = true : bool

"stuv” < "stu”;

val it = false : bool



Boolean Operators
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not, andalso, orelse

Basics
» behave like C's !, &&, | | — not like Pascal
» not commutative, as “short-circuit” operation

— (1 < 4) orelse ((5 div 0) < 2);
val it = true : bool

— ((5 div 0) < 2) orelse (1 < 4);

X%k €error kx



If-then-else Expressions

Examples:

— if 4 < 3 then "a" else "bcd”;
val it = "bcd” : string

— val t = true;

val t = true : bool

— val f = false;

val f = false : bool

if t = f then (5 div 0) else 6;

val it =6 : int

if t = true then 7 else "foo";

Error: types of rules don't agree...

earlier rule(s): bool — int
this rule: bool —> string
in rule:

false = "foo"

Introduction to SML
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Typing |ssues Introduction to SML
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ML has strong typing:
(strong/weak = how much)

» each value has exactly one type

» for example, 12 is int but not real Typing

» explicit coercions therefore necessary
ML has static typing:
(static/dynamic = when)
» type-checking occurs before programs are run
» thus if x = y then 7 else "foo" is an error
> but it wouldn't be in a dynamically typed language
These concepts are too often mixed up, even in the
Ullman textbook (pages 3 and 143)



Coerclons Introduction to SML
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From integers to reals: from Leavens
— real(11);
val it = 11.0 : real
— 5.0 + 11;

Error: operator and operand mismatch
operator domain: real % real
operand : real * int
in ex ion : Typing
pression :
5.0 + 11
— 5.0 + real(11);
val it = 16.0 : real

From reals to integers:

— floor (5.4);
val it =5 : int
— ceil (5.4);

val it =6 : int
— round (5.5);
val it =6 : int
— trunc(75.4);

val it = 7“5 : int



Coercions

Between characters and integers:

— ord(#"0");

val it = 48 : int

— chr(48);

val it = #'0" : char
Between strings and characters:

— str(#"a");

no_n

val it = "a" : string

What about from string to character?

Introduction to SML
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Typing



Introduction to SML

Identifiers
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SML has two classes of identifiers:

» alphanumeric (e.g., abc, abc?, A_1)

» symbolic (e.g., +, $$$, %-%)
Alphanumeric ldentifiers: strings formed by

» An upper or lower case letter or the character ’ Environment
(called apostrophe or “prime"), followed by

» Zero or more additional characters from the set
given in (1) plus the digits and the character _
(underscore).

Symbolic Identifiers: strings composed of

+-/x<>=1Q#$% & ~"\NI|7:



Variables

Consider from Pascal: A := B + 2;
» B is a variable reference (contrast with A)
» a memory location is associated with A

> a stored value (e.g., 5) is associated
with B
Pascal, C, Java, Fortran, etc:

memory cell <loc>

<var> — <value>

____4_

» variables bind to locations
» there is a level of indirection
» two mappings

> environment: maps variables to locations
» store: maps locations to values

Introduction to SML
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Environment



Variables

SML: variables bound to values

vVVvYy Vv VYy

<var> — <value>

variables bind directly to values
there is no indirection

a binding cannot be modified (!!)
no assignment (!!)

one mapping

> environment: maps variables to values

Introduction to SML
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Environment



Top-level Environment Inroduction to SML
froﬁml-:gg:liff
from Leavens

var value

— val a = 2; | } I

val a =2 : int | a ‘ 2 |

— val b = 3; | % I

val b =3 : int | b ‘ 3 | .
— val ¢ =a + b; } | | Environment
val ¢ =5 : int | ¢ ‘ 5 |

— val a=c¢+ 2 | | ,

val a =7 int | a ‘ 7 |

— val ¢ =c¢c + 2; | % I

val ¢ =7 int | ¢ ‘ 7 |




Introduction to SML
Tuples
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’Tuple: fixed-size ordered collection of two or more values.

— val t = (1, "a", true);

val t = (1,"a” ,true) : int * string % bool

— #3(t);

val it = true : bool

— val s = (4, t); _

val s = (4,(1,"a”,true)) c Tuples and Lists
int = (int % string * bool)

— #2(#2(s));

val it = "a"” : string

- (4);

val it =4 : int

- O

val it = () : unit

— #2 t;

val it = "a"” : string

— #4(t);

stdln:16.1—-16.6 Error:



H Introduction to SML
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’ ML lists are lists of values of the same type.

Example session:

- [1.,2,3];

val it = [1,2,3] : int list

- [(1,2),(2,3).(3.4)]; _

val it = [(1,2),(2,3),(3,4)] . Tuples and Lists
(int x int) list

~ ["a"];

val it = ["a”] : string list

— ["a" ,2];

... Error: operator and operand don’'t agree...
- [[1].[2] . [3]];

val it = [[1],[2],[3]] : int list list

- [

val it =[] : 'a list



Polymorphic List Operations

empty list []

head hd
tail tl
append @
cons e
Example session:

— val Is = [1,2,3];
val Is = [1,2,3]
— hd(Is);
val it =1 int
— hd(["a”,"b","c"
val it = "a" :
— tl(tl(ls));
val it = [3] int
— tI(tl(ls)) @ Is;
val it = [3,1,2,3]
— 30 Is;
Error:
I's;
[3,1,2,3]

’a list

’a list —
’a list —
’a list *
)a*

’a
’a list
’a list —
’a list —

’a
’a list

int list

)

string
list

int list

- 3
val

it = int list

Introduction to SML
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list

Tuples and Lists

operator and operand don't agree



Strings s |_|sts Introduction to SML
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Example session:

— explode (" abcd");
val it = [#"a" #"b" #"c",#"d"] : char list
— implode([#" " ,#"0" . #"0"]);

val it = "foo" : String Tuples and Lists
— implode(explode(”abcd”));
val it = "abcd” : string

— explode (implode([#" " ,#" 0" ,#"0"]));
val it = [#"f",#" 0" #"0"] : char list



Exa m pIeS Introduction to SML
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— "abc” " implode([#" ", #" 0" ,#"0"]) "~ "bar”;
val it = "abcfoobar” : string
— ([4.5].[2] . [ord(#" c")]);
val it = ([4.,5].[2].[99])
int list = int list % int list
— "abc” > "foo";
val it = false : bool
— 7 :: b;
stdIn:37.1-37.7 Error:
operator and operand don't agree [literal]
— ["a" ,"b" #"c”,"d" ];
stdln:1.1—-30.2 Error: operator and operand
don’'t agree [tycon mismatch]
— 20 + (if #c” <#°C" then 5 else 10);
val it = 30 : int
- (0.0 101.01): ’

unit * unit x unit list * 'a list

Tuples and Lists



Summary

ML is an expression-based (functional) language with
strong static typing.

Next lecture: user-defined functions
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Tuples and Lists
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