
A Structured Approach for DevelopingConcurrent Programs in Java�Masaaki MizunoDepartment of Computing and Information SciencesKansas State University, Manhattan, KS 66506masaaki@cis.ksu.eduKeywords: Concurrency, Global invariant, Java multi-threaded programming1 IntroductionIn recent years, concurrent programming has become the norm rather than the exception in manyapplications. In particular, popularity of the Java programming language has accelerated thistrend. Most textbooks on Operating Systems and concurrent programming teach concurrentprogramming by demonstrating solutions for some well-known problems, such as the producer/-consumer, readers/writers, and dining philosophers problems.A more systematic and formal approach to develop concurrent programs is presented in [1, 2].In this approach, for a given problem, we �rst specify a global invariant that implies the safetyproperty1. Then, we develop a so-called coarse-grained solution using the two synchronizationconstructs: < await B ! S > and < S >. Using Programming Logic, the global invariant isformally veri�ed in the coarse-grained solution. Finally, the coarse-grained solution is mechanicallytranslated to a �ne-grained semaphore or monitor program that maintains the global invariant.This approach has many advantages. First, this is a formal approach that enables veri�cationof programs being developed. Second, the most important activity in the programming processlies at a high level; namely, specifying global invariants. Once an appropriate global invariant isspeci�ed, much of the rest of the process is mechanical. Furthermore, global invariants and coarse-grained solutions are platform (synchronization primitive) independent. Thus, if the platform isswitched from a semaphore-based to a monitor-based system, we only need to translate the existingcoarse-grained solution to a monitor-based �ne-grained program.The Java programming language encourages the use of multiple threads. Therefore, as Java'spopularity grows, concurrent programming using Java synchronization primitives will become moreimportant. Java provides monitor-like synchronization primitives. However, these primitives havelimitations. Each Java monitor object can only have one condition variable, which is associatedwith the object itself; all waits and signals (called notify in Java) refer to it. The translation�Due to the strict page limit of the IPL, a part of Section 2 is cut in the version appering in the IPL.1The safety property asserts that the program never enters a bad state.1

to monitor programs presented in [1, 2] assumes multiple condition variables. Even though itis possible to map all condition variables in a translated �ne-grained solution into the uniquecondition variable of a Java monitor, it yields an ine�cient program.Hartley gives an exercise problem to develop a ConditionVariable class and provides enoughhints for it [4]. With this class, we can still use the formal method. However, it yields ine�ciency.A more preferable approach is to develop a direct translation from coarse-grained solutions toe�cient �ne-grained programs in Java synchronization primitives. This paper presents such atranslation that preserves global invariants. The translation uses speci�c noti�cation locks [3] (alsocalled noti�cation objects [4]) and is classi�ed in a design pattern called the speci�c noti�cationpattern [3, 5].The rest of the paper is organized as follows: Section 2 overviews the formal method to developconcurrent programs presented in [1, 2]. Section 3 reviews Java synchronization primitives. Section4 presents our translation from coarse-grained solutions to �ne-grained Java programs. The sectionalso gives correctness argument, an example of the translation, and a remark about performanceof translated programs.2 Formal Approach for Developing Concurrent ProgramsThis section reviews a formal method to develop concurrent programs presented in [1, 2].2.1 Global invariantIn a concurrent program, since there are many possible execution sequences of program statements,the key to developing a proof of such a program is to specify a global invariant that implies thesafety property and holds at every critical assertion[1, 2] in the program.For example, consider the readers/writers problem as follows:RW: Reader processes and writer processes access a shared bu�er. At any point in time, the bu�ercan be accessed by either multiple readers or at most one writer.A simple way to specify this synchronization is to count the number of each kind of processestrying to access the bu�er, and then to contain the values of the counters. Let nr and nw benon-negative integers that respectively count the numbers of readers and writers accessing thebu�er. Then, a global invariant RW that implies the safety property is:RW : (nr = 0 _ nw = 0) ^ nw � 12.2 Coarse-grained solutionLet B be a boolean expression (called a guard) and S be a sequence of statements. The followingtwo types of synchronization constructs are used in a coarse-grained solution2:2Some synchronization problems assume a more general form of coarse grained solutions; h await B1; S1;awaitB2; S2; � � � ; Sn�1; awaitBn; i. However, many problems can be solved in the form of coarse-grained solutionspresented here. 2

1. hSi: S is executed atomically.2. hawaitB ! Si: If B is true, S is executed atomically. If B is false, the executing processis delayed until a later time when B is true; at which point, S is executed atomically. Nointerleaving occurs between the �nal evaluation of B and the execution of S.For hawaitB ! Si, the following formal semantics is given.Await Rule: fP^BgSfQgfPg<awaitB!S>fQgThe following code presents a coarse-grained solution for the readers/writers problem.Reader Processesa1 hawait nw = 0! nr := nr + 1ia2 Read from the bu�era3 hnr := nr � 1iWriter Processesb1 hawait nw = 0 andnr = 0! nw := nw + 1ib2 Write to the bu�erb3 hnw := nw � 1i2.3 Translation to �ne-grained programOnce the above coarse grained solution is obtained, we can obtain a �ne-grained semaphore ormonitor program by applying a translation. For example, we show a translation of the aboveprogram to a monitor program with the Signal and Continue discipline3 and a broadcast signalstatement (signal all()). We code the body of each atomic construct h: : :i in a separate monitorfunction within the same monitor. Let RWMonitor be a monitor that implements the above syn-chronization. We code the bodies of statements on lines a1, a3, b1, and b3 in functions startRead(),�nishRead(), startWrite(), and �nishWrite() in RWMonitor, respectively. We associate one condi-tion variable with each guard in an await statement. Construct hawaitB ! Si is translated tothe following while statement:while not B do cB :wait() od; S; ;where cB is a condition variable associated with guard B. Let rc and wc be condition variablesassociated with the await statements in a1 and b1, respectively.Finally, in each function, if execution of any statement may potentially change some guard Bto true, we add cB .signal() or cB .signal all() after the statement, where cb is a condition variableassociated with guard B.The following program may be obtained from the above coarse-grained solution by applyingthe translation:3The Signal and Continue discipline means that a signaling process continues and an awaken process waits.3

monitor RWMonitorc1 varc2 int nr = 0; nw = 0;c3 Condition cr; cw;c4 function startRead() fc5 while (nw > 0) do cr.wait() od;c6 nr := nr + 1;c7 gc8 function �nishRead() fc9 nr := nr � 1;c10 cw.signal all();c11 gc12 function startWrite() fc13 while (nw > 0ornr > 0) do cw.wait() od;c14 nw := nw + 1c15 gc16 function �nishWrite() fc17 nw := nw � 1;c18 cr.signal all(); cw.signal all();c19 gThe above program satis�es the requirementRW of the readers/writers problem. It can be tuned toimprove its e�ciency. For example, since at most one waiting writer can leave function startWrite(),cw.signal all() on lines c10 and c18 may be replaced by cw.signal(). Furthermore, a waitingwriter can leave startWrite() only when nr = 0 (and nw = 0, which is guaranteed in function�nishRead()); thus, line c10 can be further replaced byc10' if (nr = 0) cw.signal();3 Java Synchronization PrimitivesThis section reviews the Java synchronization primitives.3.1 PreliminariesEach Java object has a lock to form a critical section. If obj is a reference to some object, obj canbe used to protect a critical section as follows:e1 synchronized (obj) f critical section gIf all critical sections are in methods in the same object, we can use \this" for a synchronizationobject. 4

If the entire body of a method is a synchronized block on \this," we have the following rule:f1 type method name (� � �) ff2 synchronized (this) ff3 body of the methodf4 gf5 gmay be written as:g1 synchronized type method name (� � �) fg2 body of method nameg3 gThus, the monitor concept may be implemented in Java by adding synchronized for all methodsin which only one thread should be executing at a time.Unfortunately, each Java monitor has just one condition variable, which is associated with theobject itself; all wait, notify, and notifyAll operations refer to it. The translation from coarse-grained solutions to �ne-grained monitor programs presented in [1, 2] assumes multiple conditionvariables. It is still possible to associate all the hawaitBi ! Sii statements with the uniquecondition variable of \this" object. However, a signal on any condition variable must be translatedto notifyAll(), and the resulting code will be ine�cient.3.2 Speci�c noti�cation locksCargill devised a design pattern called a speci�c noti�cation which uses objects somewhat likecondition variables [3, 5]. Such objects are called speci�c noti�cation locks [3] or noti�cationobjects [4].Using a speci�c noti�cation lock obj, two methods within the same object, say method1 andmethod2, can synchronize with each other as follows, where condition() is assumed to be a syn-chronized method [4]:in method1 in method2h1 synchronized (obj) f h7 synchronized (obj) fh2 if (! condition()) h8 if (condition()) obj.notify()h3 try f obj.wait(); h9 � � �h4 g catch(InterruptedException e) f g h10 gh5 some statementh6 gDo speci�c noti�cation locks work exactly the same way as condition variables? In the aboveexample, the if statement on line h2 and the following statement on line h5 are executed atomicallyonly with respect to statements in synchronized blocks on obj, but not with respect to statementsoutside synchronized blocks on obj. Therefore, even though condition() is checked on line h8 before5

a thread waiting on obj is woken up by obj.notify(), the condition may no longer hold by the timethe woken thread executes statement h5. This is true even if the if construct on line h2 is replacedby a while construct. If we make method1 and method2 synchronized methods, deadlock willresult. This is because obj.wait() releases only a lock on obj but does not release a lock on this.In a general monitor environment, if method1 and method2 are both monitor functions and objis a condition variable, then statements h2 and h5 are executed atomically. Therefore, if the ifconstruct on line h2 is replaced by a while construct, the condition checked at h2 holds at thebeginning of h54.4 Translation from Coarse-Grained Solution to Java Pro-gramHartley gives an exercise problem to develop a ConditionVariable class, which may be used insynchronized methods [4]. Using the class, the existing translation can be used to obtain Javaprograms from coarse-grained solutions. However, the implementation of ConditionVariable isine�cient because a signal operation on an instance of ConditionVariable is implemented by no-tifyAll() on the object that encapsulates the instance. Our approach is to develop a direct trans-lation from coarse-grained solutions to e�cient Java monitor programs. The translation is anapplication of speci�c noti�cation locks.4.1 TranslationIn a coarse-grained solution, there are two types of synchronization constructs: hawaitBi ! Siiand hSji. For each appearance of such constructs in a coarse-grained solution, we de�ne anindependent method in a Java class.1. For each hawaitBi ! Sii, de�ne one public (non-synchronized) method and one privatesynchronizedmethod, and declare one private speci�c noti�cation lock (instance variable) ofclassObject. Letmethodi, checkBSi, and oi be the public method, the private synchronizedmethod, and the speci�c noti�cation lock, respectively.We have the following declaration for oi:j1 private Object oi = new Object();Public method methodi is de�ned as:k1 public void methodi() fk2 synchronized (oi) fk3 while (! checkBSi())k4 try f4If the monitor employs the Signal and Wait (SW) or the Signal and Urgent Wait (SU) discipline, because of thecheck on line h8, the condition holds at h5 even with the if construct on line h2 [1].6

k5 oi.wait();k6 g catch (InterruptedException e)fgk7 gk8 gPrivate synchronized method checkBSi is de�ned as:m1 private synchronized boolean checkBSi() fm2 if (Bi) fm3 Si; return true;m4 g else return false;m5 g2. For each hSji, de�ne a public (non-synchronized) method, say methodj , as follows:n1 public void methodj() fn2 synchronized (this) fn3 Sj ;n4 gn5 g3. In each public method methodi and methodj , if execution of any statement may potentiallychange some guard Bk from false to true, add either of the following two statements at theend of the method (outside any synchronized block).p1 synchronized (ok) fok.notifyAll();gp2 synchronized (ok) fok.notify();g,where ok is a speci�c noti�cation lock associated with hawaitBk ! Ski. If more than onethread may leave the construct hawaitBk ! Ski when Bk becomes true, notifyAll shouldbe issued; otherwise, notify should be issued.Note that in the case of methodi, synchronized method checkBSi, not methodi, may changeBk. However, a notify statement should be placed in methodi, not in checkBSi. This is becausecheckBSi is a synchronized method and executed within a synchronized block on oi. Therefore,if another synchronized block on ok is placed in checkBSi, it may result in deadlock.4.2 CorrectnessWe argue the correctness of a translated program with respect to preservation of a global invariantand deadlock freedom.Preservation of Global Invariant: 7

Let GI be a global invariant in the coarse-grained solution. First, note that in a translated program,assignment statements may be found only in Si and Sj and they are executed inside synchornizedblocks on this (lines m3 and n3).[1] Translation of hawaitBi ! Sii: When a thread enters methodi, it immediately executescheckBSi. Since checkBSi is a synchronized method on this, it is executed atomically withrespect to any assignment statement. If Bi does not hold when the thread enters checkBSi,checkBSi returns false so that the thread waits on oi:wait() and does not leave methodi. Onthe other hand, if Bi holds, the thread executes Si and checkBSi returns true to leave the whilestatement (line k3) and methodi. Since fGI ^ BigSifGIg holds in the coarse-grained solution, itis clear that if GI holds before methodi, it holds after methodi.[2] Translation of hSji: fGIgSjfGIg holds in the coarse-grained solution, and Sj is executedatomically with respect to any assignment statement in the translated program; therefore, if GIholds before methodj , it holds after methodj .From [1] and [2], GI is a monitor invariant of the translated program.Deadlock Freedom:[1] In methodi, checkBSi is called inside a synchronized block on oi. This guarantees atomicexecution of the statements checkBSi (line k3) and oi.wait() (line k5) with respect to execution ofoi.notifyAll() (line p1) (or oi.notify() (line p2)). Therefore, it is not possible to have a situationin which after one thread executes checkBSi (which returns false) but before it executes oi.wait(),another thread executes oi.notify() (or oi.notifyAll()). Note that if such a situation occurs, thenoti�cation signal (oi.notify()) would be lost and a deadlock might result.[2] Inmethodi andmethodj , (a) execution of a synchronized block (on oi (lines k2-k7) and on this(lines n2-n4), respectively) and (b) possible execution of ok.notifyAll() (line p1) or ok.notify()(line p2) are not atomic. Therefore, after a thread, say Ti, executes lines k2-k7 (or lines n2-n4) butbefore it executes line p1 (or p2), another thread, say Tj , may execute ok.wait() or ok.notify().However, such an interleaving execution will not cause any problem.[3] The nesting level of synchronized blocks is at most two (this occurs when the body of checkBSiis executed). The order of nesting is always a synchronized block on a speci�c noti�cation lockbeing outside and a synchronized block on this being inside. Furthermore, oi.wait() is executedwithin a sole synchronized block on oi. Therefore, deadlock will never occur due to nestedsynchronized blocks.4.3 ExampleThe following Java code is obtained by applying the above translation to the readers/writerscoarse-grained solution described in Section 2:class RWMonitor fq1 private int nr = 0;q2 private int nw = 0; 8

q3 private Object or = new Object();q4 private Object ow = new Object();q5 public void startRead() fq6 synchronized (or) fa7 while (!checkRead())q8 try for.wait();q9 g catch(InterruptedException e)fgq10 gq11 gq12 private synchronized boolean checkRead() fq13 if (nw == 0) fq14 nr := nr + 1; return true;q15 g else return false;q16 gq17 public void �nishRead() fq18 synchronized (this) fq18 nr := nr � 1;q20 gq21 synchronized (ow) fow.notify(); gq22 gq23 public void startWrite() fq24 synchronized (ow) fq25 while (!checkWrite())q26 try fow.wait();q27 g catch(InterruptedException e)fgq28 gq29 gq30 private synchronized boolean checkWrite() fq31 if ((nw == 0)&& (nr == 0)) fq32 nw := nw + 1; return true;q33 g else return false;q34 gq35 public void �nishWrite() fq36 synchronized (this) fq37 nw := nw � 1;q38 gq39 synchronized (or) for.notifyAll(); gq40 synchronized (ow) fow.notify(); gq41 gg 9

Since �nishRead() decrements variable nr, the writers' condition to proceed ((nw == 0)&& (nr ==0)) may become true. Therefore, ow.notify() is added on line q21 in �nishRead(). Similarly, thedecrement of nw in function checkWrite() may change both the readers' condition ((nw == 0))and the writers' codition to true. Therefore, or.notifyAll() (on line q39) and ow.notify() (on lineq40) are added in �nishWrite(). Note that since multiple readers may become active, notifyAll()is called on or. On the other hand, at most one writer can become active; therefore, notify() iscalled on ow.4.4 PerformanceGiven a coarse-grained solution, at least three approaches exist to obtain Java programs:[1] apply the translation to a monitor program presented in [1, 2],[1-a] using only one condition variable (all the threads sleep on the condition variableassociated with \this"),[1-b] using Hartley's condition variable class, and[2] apply the translation presented in this section.We have the following comparison:1. When only one process needs to be awaken, programs obtained by [1-a] and [1-b] always issuenotifyAll, whereas a program obtained by [2] uses notify.2. When one condition may become true, programs obtained by [1-a] and [1-b] wake up allwaiting threads, whereas a program obtained by [2] wakes up only threads waiting on thecondition.From the above comparison, it is expected that programs obtained by [2] will outperform programsobtained by [1-a] and [1-b] in many applications.5 ConclusionA formal and systematic method to develop concurrent programs is presented in [1, 2]. In themethod, we �rst specify a global invariant. Then, we develop a coarse-grained solution in whichthe global invariant holds at every critical assertion. Finally, we translate the coarse-grainedsolution to a �ne-grained program.Since Java synchronization primitives do not allow multiple condition variables within a moni-tor, the above translation cannot be used to produce e�cient Java programs. This paper presenteda translation from a coarse-grained solution to a �ne-grained Java program. The translation usesspeci�c noti�cation locks. With the translation, we can use the formal method to develop e�cientJava concurrent programs. 10

AcknowledgmentI would like to thank the anonymous referees and the communicating editor, Professor G.R. An-drews, for their valuable and constructive comments.References[1] G.R. Andrews. Concurrent Programming, Principles and Practice. Benjamin/Cummings Pub-lishing Co., 1991.[2] A.J. Bernstein and P.M. Lewis. Concurrency in Programming and Database Systems. Jonesand Bartlett, 1993.[3] T. Cargill. Speci�c noti�cation for java thread synchronization. In International Confer-ence on Pattern Languages of Programming, 1996. http://www.sni.net/ cargill/jgf/9809-/Speci�cNoti�cation.html.[4] S.J. Hartley. Concurrent Programming - The Java Programming Language. Oxford UniversityPress, 1998.[5] D. Lea. Concurrent Programming in Java, Design Principles and Patterns. Addison WesleyPublishing Co., 1997.

11

