\V

Lecture 2

CIS 208
Wednesday, January 18, 2005

N

‘Why declare at beginning?

#Q0riginal compilers were one-pass.

#No look-ahead.

N

Scanf

In <stdio.h>

Formatted Console Input

'Plugs’ in input into memory.

N

Scanf

int scanf(const Char *control_string,...,);

Returns # of successfully assigned values

N

Control_string

Much like printf

format specifiers - page 500

Must exactly match.

N

char a, b;
int j,k;
scanf("%c%c%d%d"”,&a, &b, &j,&k);

N

& operator

‘address of * operator

+ &a read as ‘address of variable a’
or ‘memory location of variable a’

represents a memory location

value determined at runtime

prints as a large number

scanf cont...

N

Data plugged into memory location

Waits until enough data in stream.

Must give address

OR ELSE.....

scanf : electric boogaloo

N

#white spaces are characters
m includes \t, \n

#If user types in 1 character, then
presses enter, there are actually 2
characters in the input stream.

N

Stream Buffering

Left over input, waiting...

Scanf will gather next time.

Must clear out the buffer

N

Flushing out the stream

#Remove extra data in input stream.

#Best way:

while (getc(stdin) = "\n");

#gets all extra characters in stream,
stops when it reads a new line (enter)

Scanf_example

N

Date Types

#5 Fundamental Types

char, int, float, double, void

type size range

char 8 0 to 256

int 16 -32,767 to 32767
float 32 Six digits of precision

double 64 Ten digits of precision.

Modifiers

N

#signed, unsigned, long, short

#short depends on machine word size

#char is inherently unsigned
= everything else is signed by default

ascii values

N

#characters have numerical value

A =65 B=66,C =6/, etc
a=97,b=98, c =99, etc

See the pattern/advantage?

Ascii Arithmetic

N

#Addition and Subtraction apply to chars.

char xy = 'B’;

Xy = Xy + 32;
printf("%c\n",xy);
Xy = Xy —1;
printf("%c\n",xy);

N

Explicit Casting

#Switch one fundy type into another

int a; int a;
float b; char b;
b = (float) a; a = (int) b;

#Data and precision can be |ost.

N

Variable declarations

3 places
= Inside functions: local variables
= in def. of function param.: Formal params.

m outside all functions: global variable

N

what knows what?

#local: only known to code segment that
declares it

#param: only known to function that
declares it

#global: known to everyone, even other
files

N

L ocal examination

#|ocal variables declared at start of code
segment

#code segments defined by { }

#|ocal vars. not known outside of
segment

N

void f(void) {
int I;

[=10;

int j;

}-=-20;

’

code segments

void f(void){
int I;
I =10;
{int j;

j =207}
}

void f(void){
int I;

I =10;
{int j;

j = 20;}
[=7;

’

N

Variable types cont.

const : constant variable. Can’t change,ever

extern: global variable declared in another file

register : puts value in a register. Why?

static

N

#static label further alters variables
» only known to declared block

= static local : value is known to local only
* remains in persistent memory
+ values bridge function calls

static example

N

void foo(int i) {
static int a;

if (i==0)a=0;
else --a;

return a;

¥

N

static global

#global to all functions in file

#Not known to other files.

N

Control flow

#Most important: No Booleans

#0 is false and non-zero is true.

flow constructs

#if — else

#while
s do —while

#for
Same as java

N

if - else

if (expression)
{ commands} //if expression =0

else { }

#As in java, single commands don't need
brackets

N

int (j < k)
=1}
else {j = 2;}

int (j < k)

elsej = 2;

N

for loops

#same as java

#may have multiple parts in each section

= US€ cOmma as separator

#some sections can be skipped

N

for loops cont.

for j = 1,k =2; j +k < 10; ++k, ++j)

section 2 can't have multiple parts, use || or &&

for(;j < k;)

N

more loop stuff

#infinite loop
for(;;)

#break; stops current loop and fails test

#continue; stops current iteration of
loop.

assignment 1

