TRANSFORMING ANALYSISMODELS
INTO DESIGN MODELSFOR THE
MULTIAGENT SYSTEMSENGINEERING
(MASE) METHODOL OGY

THESIS
Clint H. Sparkman, 1% Lieutenant, USAF

AFIT/GCSENG/01M-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCSEENG/01M-12

TRANSFORMING ANALYSISMODELSINTO DESIGN
MODELS FOR THE MULTIAGENT SYSTEMS

ENGINEERING (MASE) METHODOLOGY

THESIS

Presented to the faculty of the Graduate School of Engineering & Management
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Clint H. Sparkman, B. S.

1% Lieutenant, USAF

March 2001

Approved for public release, distribution unlimited.

AFIT/GCSEENG/01M-12

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the United States Air Force, Department of Defense or United States Government.

AFIT/GCSEENG/01M-12

TRANSFORMING ANALYSISMODELSINTO DESIGN
MODELS FOR THE MULTIAGENT SYSTEMS

ENGINEERING (MASE) METHODOLOGY

THESIS

Clint H. Sparkman, B. S.
1% Lieutenant, USAF

Approved:
v s KQZ{A/ 2/ F2b 5/
Edaij. Scott A. DeLoach (Chairman) date
- -
s - YaiBli Ak
" Dr. Thomas C. Hartrum (Member) date
X e 1/ Al Fea 0l

LtCol. Timothy M. Jacob (Member) date

AFIT/GCSEENG/01M-12

ACKNOWLEDGMENTS

I would first like to thank my Lord and Savior Jesus Christ for giving me the ability and strength
to pursue this goal. Next, | must thank my wife, Casey. Words alone cannot express the love and
admiration | have for her. Her sacrifice and devotion to our family and home allowed me focus on the
work necessary to complete this graduate program, and she was an unwavering reminder of what is truly
important in life. To my advisor, Maj Scott Del.oach, | extend a special thanks for his guidance and for his
insightful and challenging feedback throughout this research. | would also like to thank my committee
members, Lt Col Tim Jacobs and Dr Tom Hartrum, for their assistance during thisthesis. | would also like
to thank my fellow classmates for our discussions that provided insight and focus to my research. More
importantly, their friendship and the laughter we shared made my time here bearable, even enjoyable. They

will never be forgotten.

Clint Houston Sparkman

AFIT/GCSEENG/01M-12

Table of Contents

ACKNOWLEDGMENTS ...ttt sttt sttt ettt se b e s b b et s b e se b ebe e ssebenesbeb et sesbanesens v
TABLE OF FIGURES.ottt bttt b et b et b bt et b b et s ebene e IX
TABLE OF TABLES ...ttt bbbt sb bbbt bt e sttt ne b s X1
ABSTRACT ittt E R e R AR R ettt r e XV
F N = 1S I O TSR T TSP XV
|- INTRODUCTION ...tuvteuieeresesesresesessesessssesesessesesessesesessesesessesesesses s ssesesesses e e sesesesrene e ssesesesreneesrenenesnessnsssesenes 1
I 2 7= o3 o 011 oo [P URURURURSRSN 3

0 = o B 0o o TSROSO 4

L.1.2 APPIYING USE CASES......c.eeuiiiiitisiestesieiet et et sbe et e e e e e tesbesteabesae s e e eseesesteabestesbesaesseseeteanesteabeseenseneans 4

L. L3 REFINING ROIES ...ttt a e et b e e e e e e e st e st sbeebe st e e e e e e eneebesaeseesbeseenseneane 5

1.1.4 Creating AQENT ClaSSES. ..ottt ettt te st e se e e ettt aaestesbeseeee e eseesesbeabeseesseneenseneasesaeseesseseenseneans 6

1.1.5 CONSLruCting CONVEISALIONS.......ccueveriereeeeuieestesiestesteeeeesessestessesseseeesessessessessessessessesessessessessessesseseans 7

1.1.6 ASSEMDBIING AGENE ClASSES......iiiiiteiiieiciei sttt ettt st te st et a e e e e e sestesbestesbeaesseseesessesteabessenseneans 8

1.1.7 SySLOM DEPIOYMENT ...ttt ieee ettt sttt e e e e et e saestesbesee e e e eseesesbeaaeseesseeeneeneebesaeseebeseenseneane 8

=0 < oL I o OSSR 9

L2 PrOBIEIM ... bR bR e bt b e bR e bt re e ene 9

R T oo = 10

LA TRNESIS OVEIVIEIW ...ttt ettt s et e s e bt r e ren et nen e ene s 11

[1. PROBLEM APPROACH. .. .c.ctetttreeresesrestsessesesesseseseseesesessesessssesssesses e saessaessess e ssesssesseseseseesesessesessssesesessesenes 13
2.1 Expanding the ROIE MOGEL...........ooiieeeee e e e e 13

2.2 Transforming Concurrent Tasks to Conversations and COMPONENES..........ccceverererererieeiesreeseenes 15

2.3 MO DEFINITIONScueiteeeieeteeet sttt se et se bbbt b e e bt rene b sreseebesrennene s 18

A N 0= VS £ 1Y, oo (= OSSR 19

A I A D 1= [o | a1 oo L= LSS 21

AFIT/GCSEENG/01M-12

DA I 0 = 0 £ RSP USRT 22

2.3.2.2 COMPONENES. .t euterieete st eteseeeeesbeetesbeeeeabeesesteeseesbeesbesbeeeeabeenbesbeebeaseenbesaeenbesseenbenseeneesseensas 22

2.3.2.3 CONVEISALIONS......cveuieerieereeseeiesrese et sr st ra e ee s e e e st e b e e e r e e e eae s e ne s e nene e nr e nnes 23

AR B = (= I o [S 23
2.3.3. L SEALES ...ttt bbb 25

2.3.3.2 TIANSIHIONS.c.ciireieeieitiees sttt b ettt e n b 26

2.3.3.2.1 Concurrent Task DIAQram........coeeeeeeeeeereieeieseseeieeee st aeseesee e s e snessesaeseeseeseeeens 27

2.3.3.2.2 Component State TabIe.......c.oii i et 28

2.3.3.2.3 Communication Class DiaQramccccueieiiiiienienieieesi et 28

2.3.3.3 ACHONS AN EVENES......ooiiiiiiiieicii et 29

B 4]0 Y 31
I, TRANSFORMATIONS ...eeeitteeeeiuteeeeiuteeeeateesesasseeessseeeeaasseeeaassesasasesesasseessanssessssssessasssesssnnsesessnseseesnseneesnnes 33
IO I o 09T I N\ o 7= 1 o USRS 34
3.2 Generating the AQENt IMOTEL ..ottt ae e e e 35
3.2.1 Determining Protocols for EXternal EVENTS..........cocooiiiioeieeic e s 36

3.2.2 Creating Components for AgentS from TasksS........coceierieieieieiisese et 41

3.2.3 Replicating Protocols BEtWEeen COMPONENTS.........ciiiierierieieeirisiesieseeeeseeessessessesaesseseesessessessessssseses 42

3.2.4 Transforming External Events into Internal EVENES.ccooriiiiineieeeee e 44

3.3 Annotating Component State DiagramS.........cccciveererererieeesesesesteseseeeeseeseessessessesseesesseesseseens 45
3.3. 1 SPIIttiNG TIANSITIONS. .. .cuiitiieeeeeie ettt sttt e et be e et e e e e e e eaeeae st e bese e e eneesesneseesbeneeneenn 46

3.3.2 Determining the ProtocolS fOr TranSitioNS.cciiviierierieieeii et 50

3.3.3 Start Label fOr TranSItioNS........ccceiririreeii ettt 56

3.3.4 ENd LabEl fOr TraNSItiONScoveeiieeiineereireeese e 61

3.3.5 Matching Conversation HaIVES...........coiiiiieieeie ettt se e se e 63

3.3.6 Splitting Transitions with a ReceiveEvent and Multiple Conversation Names..........ccccoceveeerereenenne. 67

3.3.7 Creating CONVEISALIONS.ccuciueieiieieitisiestesietee e e ste e s e saesee e s tesbestessesaeseeseeseaaestesseseesseseeseasestesseseensenen 68

3.3.8 Propagating the Set Of CONVErSatioNS..........ccveiiiiiiiisesieieeee et sne e se e ens 70

3.4 Harvesting the CONVEISALIONScceiierieiesesesesesesteseesesses e estesresseeseeseesessessessesnessesnsessensens 71
3.4.1 Combining CoNVersation ENA SEALEScccririiirierieeeieceie et 72

Vi

AFIT/GCSEENG/01M-12

3.4.2 Preparing Variabl €S and ParamEterSc.ocueieieieiiiesesieieeee sttt st sne st aesaeaens 76

3.4.3 Initiator CONVErsation HAIVESccciiiiiciier e 81

3.4.4 Responder ConVErSatioN HAIVEScoiiiieiiieeie ettt st st se s 85

3.4.5 Moving States and Transitions From Components to CONVErSations...........c.cverereereererereseesiesesseenes 88

.5 SUIMMIBIY ...ttt ettt ettt e a e e e he e she e s he e be e aee s e e saeesaeeebeenbeenbeenbeennenaeesreas 91
[V . DEMONSTRATION ..ttttittetetestesresse st sies s srs st bbb s e s sa e sr e b bt e b e e s e b e s b e e R e e b e s bt eb e e e e renn e e r e b e sb e er e e e enne e 92
4.1 Transformation SYStEM OVEIVIEWcceeeeeereereresieseseereeseeeeseesee e ssesseseessessessessessessessessesssenees 92
4.2 Integration With @gENtTOOLccieiiiiiireeese et sre e eeneas 93
4.2.1 TransfOrmation ClaSSES.........uururrieireirreerr st se e e et r e e b e s ne e nre e renennren 94

A.2.2 MOUE] ClASSES......coueiteiteieiieee et ettt sttt et et et te et steste e e e et ese e st eeeebeae e e eneeseeaeseeebeseenseneesesnesbeabeseensannans 95

E Rl 1] o] = USRS 95
4.3.1 Starting Point — Role Model and Initial Agent ClaSsSeS.......cccciiriieiereenene e 96

4.3.2 Stage One — Creating Agent COMPONENES.........cviiiiiereeieeieestesestesseseeesressessessessessesessesssssessessesseses 100
4.3.2.1 Determining the Protocols for EXternal EVENES.........cccoeveieieiciese e 100

4.3.2.2 Determining the Mode for the SearchRequest Protocolccooeiiieneneneienenc e 102

4.3.2.3 AQENE COMPONENTS.eiiieieetieiie ettt e ettt et e saee b e sheeseesseesbesree e e sseebesbeeeeaneensenaeenneas 103

4.3.3 Stage Two — Annotating Component State Diagrams..........ccuuvveierieeeieeiesese e ssesaessens 105
4.3.3.1 Matching up the First Messages of the COnVersations............ccccuciviivineneeseeresiesesese e 105

4.3.3.2 Annotated Component State DIiagramS........cc.eoveeruirierereerereeeee et see e e eenes 107

4.3.4 Stage Three — Creating CONVEISALIONS.c.couieiirierereeeeestesteseesteseeseeessesaeseesseseeseesessesaessessesesnsanes 109

2L SUIMIMEBIY ...ttt steeee et et saeasbeebeesbeeaeesheesbeeebeeeeeaee e aeeeaeeabe e b e amb e eabeeheesbeesbeeabeansesasesanesneabeanrenns 113
V. CONCLUSIONS AND FUTURE WORKuciiitiieiieeitteesteesiteeseeessteessaeessteessseessssssnsessssessssessssessnsessssessnsessnnes 114
B.L CONCIUSIONS......ccctietieitectteetee st e st e etestesteeeteeebeebesabeesaesbaesbaesbeessesssesaeesaeenbeenbeeabesseesbaesbeesteensesanesnns 114
5.2 FULUrE RESEAICH ATEES ... s 115
5.2.1 Transformation ENNANCEMENLScciiiriirieeiiinsse e 115

5.2.2 Formal Transformations for Mixed-Initiative SyStemS..........coeiereireninese e 117

5.2.3 FOMMEI PrOOF ..ottt et et e 117

B.3 SUMMIBIY ...ttt ettt a e bt e s b e e sbe e ee s ae e eae e sae e bt em b e eabeeaeesheesbeesbeenesnnesns 118

vii

AFIT/GCSEENG/01M-12

V1. BIBLIOGRAPHY ...viiiiiiieiteste sttt sttt s h bt b e e sr bbb e e s e a e b sb e b e a e sa e r e s b sb e sb e e ane e 119
APPENDIX A. BACKGROUNDcoitiitiiiieiieitete st st st sessesassre b sae s aesaesn bbb eeaesaesn e s b sresbe s eane e 121
A.1 Multiagent System MethOdOIOGIES.eeeeeereerere e e re e enaennens 121
A.1.1 Multiagent System Engineering MethodolOgycoueeeeereiiiieneree e e 122

0 I R @ o U1 0o €0 7= | TS 123

A.LL2 APPIYING USE CBSES....ccuiiiiieiiieiieiesit st steste st e sae e st stesbeste st e e e e esestesbestesbesae s eseesesaestessesaensenes 124

A.LL3RENNING ROIES......ccuiiiiiicee ettt b et e e ens 125

A.L1.A Creating AQENt CLASSES. .. .couiiiieeieieii ettt rte ettt sie e see e e e et sresbeseessesee e eneesesaessesseseeneenes 127

A.1.1.5 CONSLIUCLING CONVESALiONS......ccerueiuirterierieaeeieeeeteseesteseeseesesesseseesaeseesseseeneenessesaeseesseseensenes 129

A.1.1.6 ASSEMDBIING AQENE ClASSESvouvevieiiitieiesie ettt b re b e e ens 130

A.LL7 System DEPIOYMENL.....c.iiiiiieiiicieiei ettt ettt te b s re st e e e seebesbesrenbeseeneens 130

A.1.1.8 Transitioning from AnalysiSto design - MaSE..........ccooiiiniiene e 131

Y = = UYL= 1 gTe e (o] oo 1V 132

A.L2.1 ANAlYSIS PhaSe - GaIA.......ccerieieieiiiiisiesie it e steeetsste et ste e e e e s te s b e stesbe e e e eseesesaestesbesaensenes 132

A.L2.2deSIgN PhaSE - GaAIA.......eiiiieieieieiiitisese sttt sttt a e te b s re st e e e e e seetesaesteebesaennenes 133

A.1.2.3 Transitioning from AnalySiSt0 deSigN — Gala........cceiereeriereeieeieere e 134

A L3 MASCOMMONKADS ...ttt s b et b e s b e e e e bt e b e sb e e e e aneensesbeenneaneennenee 134

A.1.3.1 Analysis Phase - MAS-COMMONKADS ..ot 135

A.1.3.2 design Phase - MAS-COMMONKADS.........ooiieiiicese et 136

A.1.3.3 Transitioning from Analysis to design — MAS-CommOonKADScccceoeorieniieneneeene 137

A2 FOrMEl MEINOGS........coveiiirciiiee ettt 137
A.2.1 Transformational PrOgramMIiNGcoeoeeoeeeeeieeeesenee st e e se e e st sae e e e e e ssesaeseesaeseeeenas 138

A.2.2 Formalisms for MUltiagent SYSLEIMS ..o et se e se e 140

AL SUMIMIAY ..ottt h e b e b e e b e et e e ae e eae e ebe e beeab e eaeeeheesbeesbeeabeeabesanesaeesaeanbeenbeans 141
APPENDIX B. FUNCTIONS USED IN THE TRANSFORMATIONS.....ccciiutieeiitieeeeneeeeesueeeesssreeessssesssnsessssnsseessnnes 142
B.1 The iSASSIGNE FUNCLIONccoeieeie ettt ettt se et s aesre e eneenaeeeneas 142

B.2 The usedINACION FUNCLION ... 142

B.3 The usedINTransition FUNCHION...........oiiiiiiieeiee et ne e 143

B.4 The isNEeded FUNCLION.o et sttt se b s sb e s ee e e e e eneas 143

viii

AFIT/GCSEENG/01M-12

TABLE OF FIGURES
FIGURE 1 — MASE METHODOLOGYettttereeeseestessssesesessssssesssssesesesssssssssssssnesssssesesesssssssssssssessssssssnssssssees 3
FIGURE 2 — SEQUENCE DIAGRAM [5] 1.teutiuieieierie sttt sttt st sttt sttt e e sbe b b sbe e e e eeseesbesaesaesnesneenneneans 4
FIGURE 3 — A ROLE IMODEL[8] ...ctettterieeieeeeie st sttt eieesee e see st sbe et ebe e e eeeseasbesaesaesbesneesseseesbesaesaesbesneenseneans 5
FIGURE 4 — CONCURRENT TASK DIAGRAM ...ttt sttt s 6
FIGURE 5 — AGENT CLASS DIAGRAM ...cutiririttueietetetseseesessesessessesesessssessessssesesssssssssessssssssenssssesessssessnssssesees 7
FIGURE 6 — COMMUNICATION CLASS DIAGRAM ...cvtiiicaceeeeeeteeseresesessesssesssesessssssssessssesesesssssessssssesnssssesees 8
FIGURE 7 — EXPANDED ROLE MODELcutttirestesceeeeteesesesesessssesessseseseseesssssessssssesesssssssssessssssssssssssesesssens 15
FIGURE 8 — MODEL INFLUENCES.......coutittetiiiirestt sttt srssr s sse s nesresr bbb e s saesnesnesneene e s 17
FIGURE 9 — EXAMPLE GRAPHICAL REPRESENTATION OF A TYPEvtiuiiiiiiiiesie s 19
FIGURE 10 — CLASS DIAGRAM OF THE EXPANDED ROLE MODEL IN MASEcoouviriieirerenierene e 19
FIGURE 11 — ROLE TYPE ..tutututuetetstseseeseeeeeesteesesesesesesssesessssesesesssssesssessesesesesssssesssnsssnsnssnsssesesssnsasassssssesesssnens 20
FIGURE 12 — TASK TYPE o.ttututtetetetsereeseeeeeesteesesesesesssstesessssesesesssssssessssesesesesssssesssnsssnsnssnsssesesssnsassssssssesesssens 20
FIGURE 13 — PROTOCOL TYPE....oiiiitiitiiitiieieeite s sre st sr st sr e sn e sr et n e sa s sn bbb 21
FIGURE 14 — CLASS DIAGRAM FOR THE TYPESUSED IN THE DESIGN PHASEOF MASEociiiiiii 21
FIGURE 15 — AGENT TYPE....ciitiitiitiiristisieeie et sr sttt sr e sr bbb s r e r e bbb e n e sn e en b st n e e ne s 22
FIGURE 16 — COMPONENT TYPE......cttuturueteteerereseseseessesessesesesesssssssssessesesesssssssesssssssnssssssssesessssssesssssesesesssnens 22
FIGURE 17 — CONVERSATION TYPE....c.tututurueteerereseesesseesessesesesessssesesssssesesesssssssessssssenssssssssssessssssssssssssesessssens 23
FIGURE 18 — CONVERSATIONHALF TYPEuttirtrttsceeteteesereseseseesesessseseseseessssssssssssesesssssssesessssssesssssssesesssens 23
FIGURE 19 — STATETABLE CLASS DIAGRAM ..ottt s 24
FIGURE 20 — STATETABLE TYPE ...viitiitiiititieieere sttt sr st sr e sr bbb sn e sn e 25
FIGURE 21 — STATE TYPE ...ttt ittt sttt st st r e r e bbb e e sa e sn bbb ne s 25
FIGURE 22 — TRANSITION TYPE.ttttutueueeeteereresesesesseesessesesesessssssssssssesesesssssssessssssnsnssssssesessssssesssssssesesssens 26
FIGURE 23 — TRANSITION WITH TWO SENDEVENTS TO THE SAME AGENT ...vvttirecnceeeeesie e sesene e eseens 27
FIGURE 24 — TWO ORDERINGS FOR RECEIVEEVENTS.viiiitieireeeeteesese st sesesses st 28
FIGURE 25 — ACTION TYPE ...utitiitiitisiesiteiee et sre st st sr bbb sr e s r bbb sa e er e r et 29

AFIT/GCSEENG/01M-12

FIGURE 26 — FUNCTIONCALL TYPE....iitiiiiiiiiesie sttt st 30
FIGURE 27 — PARAMETER TYPE ...ttt sttt s sr et sr et sn e n st 30
FIGURE 28 — RECEIVEEVENT TYPEc.tututuetetetreresereseesteseesesesesesessesesssssesesessssssessssssenssssssssesessssssssssssssesesssens 30
FIGURE 29 — SENDEVENT TYPEuttitutueteteteesereseseseessesessesesesessssssssssssesesesssssssesssssssnesssssssesessssssesssssssesesssens 31
FIGURE 30 — EVENT TYPE ..utututetrtrereesceeeeteteesesesesesesste et ssesesesssssesesesseseseesesesesssssseesssesssesesssssesesssssesessnens 31
FIGURE 31 — THREE STAGES OF THE TRANSFORMATION PROCESS.......cciiiiiiiiriniesieseeeere s s 33
FIGURE 32 — STAGE 1 IN THE TRANSFORMATION PROCESS........ccoiitiiiiiiinieiesre s 36
FIGURE 33 — SENDEVENT WITH MULTIPLE PROTOCOLS.ceitiitiiriniesieeieeeere s sre e 37
FIGURE 34 — EXAMPLE OF TRANSFORMATION L....c.tueitettrireenceeeneseetsesesesesessesesssesesesesssssssssessesssesesssssssesssens 38
FIGURE 35 — EXAMPLE OF TRANSFORMATION 2....c.cutetetteeestsesseseessesesesesessssssssssssesesssssssssessssssesssssssssesssens 39
FIGURE 36 — EXAMPLE OF TRANSFORMATION 3....cucuetettireestseeeeeeessesesesesesssssessssssesesssssssssessssssesssssssssesssens 39
FIGURE 37 — AMBIGUOUS PROTOCOLS FOR SENDEVENTS......oiiiitiiiiiiniieeere st s 40
FIGURE 38 — AMBIGUOUS PROTOCOLS FOR RECEIVEEVENTSccviitiiiiiiiiicre s e 41
FIGURE 39 — ROLE MODEL EXAMPLEcutetetrirestiesceeteteesesesesessesesesssssesesesessssssssssssesenssssssssessssssesssssssesesssens 41
FIGURE 40 — AGENT COMPONENTS CREATED FROM THE ROLES TASKScecuvetiriricneeeeseeieeseseseseseneeeeeeseens 42
FIGURE 41 — AGENT DIAGRAM EXAMPLEvtiiiiiecieteteieireseeseeeeses s sesesessss et sesssssssesessssesesesssssssessnens 43
FIGURE 42 — STAGE 2 IN THE TRANSFORMATION PROCESS........ccciitiiiiiiieieie st 46
FIGURE 43 — EXAMPLE OF SPLITTING A TRANSITIONccuviiiiiiitiirisiesiesiee e sre s sne s 48
FIGURE 44 — EXAMPLE 2 OF SPLITTING A TRANSITIONcoiiiiiitiiriniisiesieeieere s snesne s 49
FIGURE 45 — TRANSITIONS WITH NO EVENTS.....cttutitietirirereceeeseeee e seesseses s sesssses et sesesesssesesssens 54
FIGURE 46 — PROTOCOLS DETERMINED FOR TWO TRANSITIONS.cvveeestaseeeetseseresensssesessessesesesesessessessenens 55
FIGURE 47 — PROTOCOLS DETERMINED FOR ALL TRANSITIONS. .. cvttreteseaeeeestreresesensssesessessesesesesessessesssens 56
FIGURE 48 — EXAMPLE OF TRANSFORMATION 19......ciiiiiiiiiiniinrise et 57
FIGURE 49 — EXAMPLE OF TRANSFORMATION 20.......ccutiiiiiieitisresie s 58
FIGURE 50 — EXAMPLE OF TRANSFORMATION 22.......ccutiiiiiiieitisrisiesiesies s sre s snssnesre s s s 59
FIGURE 51 — EXAMPLE OF TRANSFORMATION 24h.......ccuiuiuririintueeeereetsesesesesssesesssesesesesssssssesessssesesesssssssesssens 61
FIGURE 52 — EXAMPLE OF TRANSFORMATION 25......ccuiutirirentereeeseetsesesesesssesesssesesesssssssssssessesssesesssssesesssens 62

AFIT/GCSEENG/01M-12

FIGURE 53 — EXAMPLE OF TRANSFORMATION 29.......ccuiiiiiiieitisrisie st 64
FIGURE 54 — EXAMPLE OF TRANSFORMATION 30......0ciuiiiiiiiesii st 65
FIGURE 55 — TWO STATE DIAGRAMS ANNOTATED DIFFERENTLYvviriirtureeeetserereenseseseeeessesesesesessessesssnens 66
FIGURE 56 — TRANSITION WITH A RECEIVEEVENT AND MULTIPLE CONVERSATION NAMES.......ccvureeeeeenen. 67
FIGURE 57 — STATE DIAGRAMS AFTER TRANSFORMATION 31L.....utitiiririecneeneetsisesenensssesesee s seseseneeessssenens 68
FIGURE 58 — DUPLICATE CONVERSATIONS BETWEEN AGENTS.....cctiiriiiieresre e 69
FIGURE 59 — STATE DIAGRAMS WITH DIFFERENT ACTIONSIN STATEL.....ooiiiiiiiiiiieeeeene s 70
FIGURE 60 — EXAMPLE OF PROPAGATING THE SET OF CONVERSATIONS......ooiiiriiriieieieseere s sseseene s 71
FIGURE 61 — STAGE 3 IN THE TRANSFORMATION PROCESS........ccututuetrirerettaseetsesesesesensssesessessesesesesessessesssens 72
FIGURE 62 — CONVERSATION WITH MULTIPLE EXIT STATES ...cecvturuetririrereeesesesesesesesesssseseseessesesesessssessessenens 73
FIGURE 63 — STATE DIAGRAM AFTER TRANSFORMATIONS.uuruuteereesesseeeessesesesessssessesessesssesesssssesesssnens 73
FIGURE 64 — STATE DIAGRAM AFTER TRANSFORMATION 33.....cciiiiiiiiiiiieiesre s s 74
FIGURE 65 — STATE DIAGRAM AFTER TRANSFORMATION 34......coiiiiiiiiiiieiesre e s 75
FIGURE 66 — STATE DIAGRAM AFTER TRANSFORMATION 35......ocuutrirererenenseneeesesesesensssesessessesesesesssssssssseens 76
FIGURE 67 — STATE DIAGRAM BEFORE TRANSFORMATION 37uvtiiireencaeeneneneneseensesesesaessenesesessssessesssens 78
FIGURE 68 — STATE DIAGRAM AFTER TRANSFORMATION 37curuueuirereecaeeeeetsesesesensssesesaessesesesesssssssssssens 78
FIGURE 69 — STATE DIAGRAM AFTER TRANSFORMATION 39.....cciiiiiiiiiiiiie e s 79
FIGURE 70 — STATE DIAGRAM AFTER TRANSFORMATION 43.......coiiiiiiiiiieiesie e s 81
FIGURE 71 — STATE DIAGRAM BEFORE TRANSFORMATION 44......ccuiiuiiiiiiiienie ittt 83
FIGURE 72 — STATE DIAGRAM AFTER TRANSFORMATION 44h.......cuiuiuiirinintncneeseetnenesesensesesesaessesesesesessessessenens 83
FIGURE 73 — STATE DIAGRAM BEFORE TRANSFORMATION 44h.......cucuiiririintaeeeeeteenerenensssesesaessenesesesessesssssenens 84
FIGURE 74 — STATE DIAGRAM AFTER TRANSFORMATION 44h.......curuiuiirinenecaeeeeeenesesesensssesesaessesesesesessessesseens 84
FIGURE 75 — STATE DIAGRAM BEFORE TRANSFORMATION 45......cuiiiiiiiiiiieniesrese e s 85
FIGURE 76 — STATE DIAGRAM AFTER TRANSFORMATION 45.......ociiiiiiiiiicienie s s 85
FIGURE 77 — STATE DIAGRAM BEFORE TRANSFORMATION 4B.......cueiuiiiiiiiieniisrisre s 87
FIGURE 78 — STATE DIAGRAM AFTER TRANSFORMATION 46.......cuuiuririreecneenentsenesesenessesesaeeseseseseseaseesesseens 87
FIGURE 79 — STATE DIAGRAM BEFORE TRANSFORMATION 4B.......cucuiirireeneneeseeenererenenessesesaeeseseseseseasessessenens 87

Xi

AFIT/GCSEENG/01M-12

FIGURE 80 — STATE DIAGRAM AFTER TRANSFORMATION 46........cciiiiiiiiiiiieniisresie s s 87
FIGURE 81 — THREE STAGES OF THE TRANSFORMATION PROCESS.......ccoiiiiiintiiriniesiesieseeie s s 93
FIGURE 82 — TRANSFORMATION MENU IN AGENTTOOL -...uvuveuteerereetreseresesessesesssesesesenssssssssessesesesesssssssessssens 94
FIGURE 83 — ROLE IMODELetttieesteeteieteesesesesessesee et esesesesssssssssssseseseesssssesesssseesssssssesesssssessssssesessens 96
FIGURE 84 — FULFILLSEARCHREQUEST TASK FOR THE MANAGER ROLE.......cccuetrurireeneenereeieeseneneseseeseeeeesenens 97
FIGURE 85 — BID TASK FOR THE BIDDER ROLEctiuiiuiiiiiiiiesie sttt s 98
FIGURE 86 — SEARCH TASK FOR THE SEARCHER ROLEc.coiiitiiriiiiiiiie et 99
FIGURE 87 — INITIAL AGENT CLASS DIAGRAMoctiitiiiiiiiiieie sttt 99
FIGURE 88 — AMBIGUOUS PROTOCOLS DIALOG ...c.eeeeteireeseeseseeeeesesesesessessessesssesesssssssssessssssesssssssesesssens 100
FIGURE 89 — FIRST PROTOCOL DECISIONueutittateeeetetsesesesessesesesseesesesesessssssssssssesenssssssesesssssssnsnssssesesssens 101
FIGURE 90 — SECOND PROTOCOL DECISIONcttutueetetirereesseseseeeeeseresesessssesssssssesenssssssssessssssesssssssesesnsens 102
FIGURE 91 — DIALOG TO CHOOSE A PROTOCOL 'S MODEccvviuiiriiiiiiieiieeeie st 103
FIGURE 92 — MOBILESEARCHER AGENT' S BID COMPONENTcoiviiviiiieieieeresie s sre s 104
FIGURE 93 — MOBILESEARCHER AGENT'S SEARCH COMPONENTcttatreereeenerereenesseseeeessesesesessessesesssens 104
FIGURE 94 — FIRST EVENT MATCH DECISION ...cttututeteteirireeseeseseeeeesesesesessssesssssssesesssssssssessssesesssssssesesssens 106
FIGURE 95 — SECOND EVENT MATCH DECISION ...cuuvttiirecaceseeeeeeesesesesessesesssesesesesssssssssessesesesssssssesesssens 106
FIGURE 96 — THIRD EVENT MATCH DECISIONcoiviiiiiiiciiiiciesie st 107
FIGURE 97 — ANNOTATED FULFILLSEARCHREQUESTS COMPONENT ...vtiiiiiiiitttriiee e s s ssiisreeseesssssssrssseessennns 108
FIGURE 98 — ANNOTATED BID COMPONENTcoittitiitiriieiieneere st st sse e sre s sresne e sne s 109
FIGURE 99 — AGENT CLASS DIAGRAM WITH CONVERSATIONSvveiiereneeseesseseresenssssseseessesesesessessesessssens 110
FIGURE 100 — FULFILLSEARCHREQUESTS COMPONENT AFTER STAGE THREEcvturereeeeerererenenceseeeeeneens 110
FIGURE 101 — BID COMPONENT AFTER STAGE THREEcettutetereeteererereeseeseessesesesesssssssssessesesesesssssesessssens 111
FIGURE 102 — INITIATOR HALF OF CONVERSATIONL3-1 ..ottt 112
FIGURE 103 — RESPONDER HALF OF CONVERSATIONL3-1oiiiiiiiiiiiicieeeie s 112
FIGURE 104 — PHASES IN THE MASE METHODOLOGYoooviiiiiiiiriniiiieieeeeie st e 123
FIGURE 105 — GOAL HIERARCHY DIAGRAM [5] c.viiviitiiieiereesiesieseseseeseeseesiestestesse e esae e esesnesnesne e eneenenneas 124
FIGURE 106 — SEQUENCE DIAGRAM [5] uveutiiiiiiriestistiseeieseesestesteste s e eseeseessestestessesneeseeneenseseessessessssssensnnes 125

Xii

AFIT/GCSEENG/01M-12

FIGURE 107 — A ROLE IMODEL [8] .. vettteueeieiteriesiestesiesteee et sttt se e be e sbesbe e sses s aseseesbesaesneeneeneaneas 126
FIGURE 108 — SAMPLE TASK INIMASEttt sttt b et sae e sbe e sbeesbe s be e e e 126
FIGURE 109 — AGENT CLASS DIAGRAMooiiiiirieitistesieeieesees st sre st st ss s snesnesbe e see s ennesresnesnesneeneennennas 128
FIGURE 110 — COMMUNICATION CLASS DIAGRAMccutiuiiiiteriesrestesieeseeseessesse st sse e eseessessessesnessesseeneensennes 129
FIGURE 111 — DEPLOYMENT DIAGRAM [8] ..uveieiiiiiiiiieieieseesesieste st s e esee e te e e s e esee e enaessesnesnesseeneenennens 131
FIGURE 112 — ABSTRACT ANALYSISHIERARCHY [15] ..cuiiiiiirie sttt s 132
FIGURE 113 — TYPICAL TRANSFORMATION SYSTEM [11] ..ueiiiiiiiiiisieieeiee et s 139
TABLE OF TABLES
TABLE 1 — RULES FOR DETERMINING A TRANSITION’S SET OF PROTOCOLS.......ceiteeiiierieesieeieeseesieesieesieeeens 51

Xiii

AFIT/GCSEENG/01M-12

ABSTRACT

Agent technology has received much attention in the last few years because of the advantages that
multiagent systems have in complex, distributed environments. For multiagent systems are to be effective,
they must be reliable, robust, and secure. AFIT's Agent Research Group has developed a complete-
lifecycle methodology, caled Multiagent Systems Engineering (MaSE), for analyzing, designing, and
developing heterogeneous multiagent systems. However, developing multiagent systems is a complicated
process, and there is no guarantee that the resulting system meets the initial requirements and will operate

reliably with the desired behavior.

The purpose of this research was to develop a semi-automated formal transformation system for
the MaSE methodology, as one part of formal agent synthesis, that derives the system design based on the
analysis. Since each transform in the transformation system preserves correctness, the designer can be sure
that the resulting system design is correct with respect to the system specification. A secondary goal of this

research was to devel op a proof-of-concept module for agentTool that implements the transforms.

Xiv

TRANSFORMING ANALYSISMODELSINTO DESIGN
MODELS FOR THE MULTIAGENT SYSTEMS

ENGINEERING (MASE) METHODOLOGY

|. Introduction

A software engineer just received the requirements for a new computer system needed to support
changing mission requirements in the midst of a hostile contingency. The requirements for the system
include components working cooperatively in a distributed heterogeneous environment, adapting to
changing conditions, and using various types of media to communicate. The warfighters must have the
system by tomorrow morning for mission success. The software engineer takes the requirements, and
through some interaction with the user develops a formal specification for a multiagent system, taking
advantage of some pre-existing components in a stored knowledge base. After developing the system
specification, the code for the system is automatically generated and a reliable and secure system is

operationally deployed ahead of schedule.

Thisisjust an example of what could be reality in the near future with the use of software tools
that generate executable code automatically from a high-level graphical specification of the system. This
type of next-generation technology could be the determining factor in whether or not our military can
remain the most advanced and dominant military in the world throughout the next several decades.
Documents such as Joint Vision 2010 [1] and Air Force 2025 [2] clearly detail the Air Force's need for
distributed C°| applications to achieve information superiority in the 21% Century. If warfighters are going
to trust computer systems in an increasingly complex information environment, then those systems must be

reliable, robust, and secure. This thesis merges two enabling technologies, agent technology and formal

methods, that can be used together in order to develop reliable distributed systems that operate in complex

and dynamically changing environments.

Agent technology has received much attention in the last few years because of advantages that
agent systems have in complex, distributed environments. As agent technology has matured and become
more accepted in the software industry, agent-oriented (A Q) software engineering has become an important
topic for software system developers who wish to develop practical and reliable agent-based systems. For
agents to be useful in complex, distributed environments, they must work in cooperation with other agents,
which is the domain of multiagent systems [3]. Engineering multiagent systems presents some unique
challenges that are not found in Object-Oriented Software Engineering. Sycara [4] attempts to capture

some of these challenges:

1. How to decompose problems and allocate tasks to individual agents.

2. How to coordinate agent control and communications

3. How to make multiple agents act in a coherent manner.

4. How to makeindividual agents reason about other agents and the state of coordination.

5. How to reconcile conflicting goals between coordinating agents.

6. How to engineer practical multiagent systems.

Methodologies for AO software engineering attempt to provide a solution to the sixth challenge
and provide aframework for solving the first five. There are currently only afew AO software engineering
methodologies for multiagent systems, and many of those are still under development. Additionally, most
of the existing methodologies lack specific guidance on how to transform the specification of the system to

the corresponding design.

The focus of this thesisis to mature an existing AO software engineering methodology developed
at AFIT by applying formal methods to produce a transformation system that semi-automatically derives
the system design from the analysis. A transformation can be thought of as a function, where a model or
properties of a model are taken as input and the result is either a modified or an entirely new model. In

order to accomplish this, the relationships between the different models and the points at which design

decisions are made must be identified. The result is a more completely defined and robust methodology

that has precisely defined steps for designing a multiagent system based on the analysis specification.

1.1 Background

At AFIT, recent effort has focused around developing and maturing a methodology for devel oping
multiagent systems, called Multiagent Systems Engineering (MaSE), that is intended to cover the complete
life cycle of amultiagent system. A full description of MaSE can be found in Appendix A, aswell as[3, 5-
8]. This section presents a short overview of MaSE in order to provide the foundation of the problem

being addressed in this thesis.

The MaSE methodology consists of the seven steps depicted in Figure 1. The boxes represent the
different models used in the steps and the arrows indicate the flow of information between the models.
While similar to the waterfall approach, MaSE is also intended to be applied iteratively. The first three

steps represent the analysis phase of the methodology, while the last four steps represent the design phase.

Require-
ments
Goal)
Hierarchy Capturing Goals
Sequence
Diagrams
v & v
Concurrent .
[Tasks Roles] Refining Roles
|
Agent Creating Agent
Classes Classes

Conver- Constructing
[sations Conversations
Y .

Agent Assembling
Architectue Agent Classes

v ¥

Deployment Syst Desi

Diagrams ystem Design

Figure 1 — MaSE Methodology

Applying Use
Cases

<+— ufiseaq —————>4—— sisAflepuyy —»

1.1.1 Capturing Goals

The first step in MaSE is Capturing Goals, where the system analyst takes the system
requirements and develops a Goal Hierarchy Diagram, which is a structured set of system-level goals.
Goals embody what the system is trying to achieve, and generally remain constant throughout the rest of
the analysis and design process. After roles have been identified, the analyst will assign each role a set of
goals. Intuitively, if all of the system requirements have been embodied as goals and all of the goals are

being fulfilled by roles (which are later played by agents), the system should meet the initial requirements.

1.1.2 Applying Use Cases

Applying Use Cases is the next step in MaSE, where use cases are devel oped and then restructured
as Sequence Diagrams. Uses Cases are defined from the system requirements and are a narrative
description of a sequence of events that capture desired system behavior. Use Cases can be extracted from
the requirements specification, user stories, or any other available source. Each Use Case should describe a
particular instance of how the system will be used. Those sequences of interactions are then captured in the
more structured representation of a Sequence Diagram. Sequence Diagrams, as shown in Figure 2, capture
a sequence of messages between the different roles being played in the system. Sequence Diagrams
provide a high-level view of how different roles interact to accomplish their goals, and are useful when

constructing the tasks that each role has.

FileModifiedDetector GileNotifieD deinNotifi% (User]

FileViolation

-

RequestNotification
-

Notify

Acknowledge

NotificationComplete
-

Reported

Figure 2 — Sequence Diagram [5]

1.1.3 Refining Roles

The next step is Refining Roles, where the analyst determines which roles will be played in the
system and defines what tasks will be accomplished by each role. The Sequence Diagrams along with the
Goal Hierarchy Diagram give the analyst insight into what roles should be played in the system. Each
participant in the Sequence Diagrams is a candidate to become arole. Roles are defined much like an actor
in a play, or a position in an organization (President, Vice President, Manager, etc). Each role must be
responsible for accomplishing one or more goals in the Goa Hierarchy Diagram, and there must be at least

one role responsible for each goal .

In Refining Roles, a Role Model is used to graphically depict the roles in the system and the
communication paths between those roles. Role Maodels can also enable the reuse of roles from previous
systems. The basic idea is that patterns of agent roles are constructed, labeled, and archived. When a new
system is developed, the patterns are recognized and a Role Model can be re-applied from an archive,
resulting in a collection of agent roles that satisfy a subset of the system goals. As shown in Figure 3, the

arrows on Role Models are paths of communication connecting roles, and the dots indicate multiplicity.

Client | ™| Medisor _.
Figure 3— A Role Modéel[8]

As part of defining the roles, the analyst also defines the tasks that each role has. Tasks describe
the behavior that a role must exhibit in order to accomplish its goal and are specified graphically using a
finite state automaton as shown in Figure 4. A single role may have multiple concurrent tasks that define
the complete behavior of the role. As a minimum, the messages in the sequence diagrams should also be
messages being passed within atask. Concurrent tasks can be used to implement complex communication
protocols such as Contract Net, Dutch Auction, etc. [9]. Thisis a very important part of the analysis as it
allows the user to define how the system components will coordinate and interact with each other, which is
the strength of multiagent systems. These tasks also lay the foundation for conversations between agent

classes in the design phase of MaSE.

deregister 1

removeSourceisource, Iist)|

receive{deragister fcendiacknpwledge, 15)

receivalredgi (source), I5)

fsendiacknopwledge, 15)

register |

addSource{source, Iist}l|

Figure 4 — Concurrent Task Diagram

One important property of atask isthat they are able to communicate with multiple tasks in order
to accomplish their goals. The tasks can belong to the same role, or they may belong to a different role.
Tasks that belong to the same role can coordinate with each other through internal events. In order for a
task to communicate to a task of another role, events that represent external communication are specified
using send and receive events. These events are defined to send and retrieve messages from an implied
message-handling component of the agent. In Figure 4, the receive(register(source), IS event on the
transition from the idle state to the register state is an example of a receive event, and the
send(acknowledge, |S) event on the transition from the register state to the idle state is an example of a send

event.

1.1.4 Creating Agent Classes

Creating Agent Classesisthefirst step in the MaSE design phase. Agent classes are defined from
roles and an Agent Class Diagram is produced, as shown in Figure 5, that depicts the agent classes and the
conversations between them. In order to ensure that all system goals are being met, each role must be
played by at least one agent class. Thus the roles are the traceable link from the goals in the analysis phase
to the agents in the design phase. In general, there is a one-to-one mapping from roles to agents, where

each role becomes an agent class. There may be some instances however where the designer decides to

either combine multiple rolesinto an agent class, or alow arole to be played by more than one agent class.
This is done either to share the capabilities and responsibilities of arole, or for performance enhancements
by reducing communication overhead. Inan Agent Class Diagram, each rectangle represents an agent class
and a directed line represents a conversation between the agent classes. The arrows on the lines indicate

the initiator and responder in the conversation.

InfarmationSource

Lserinterface RequestPlan ProdigyManager

GetGaallnfo

GetBtatelnfo

InformationManager

SourceStatelnfa

SourcePackagelnfoHigh

SourcePackagelnfolll

Figure 5 — Agent Class Diagram

1.1.5 Constructing Conver sations

Constructing Conversations is the next step defined in MaSE, where the details of each
conversation are defined from the tasks and sequence diagrams. Conversations are detailed coordination
protocols between two agents and consist of two Communication Class Diagrams, one each for the initiator
and responder. Conversations are at the heart of any multiagent system, as they detail how the different
agents will communicate with each other. Like tasks, Communication Class Diagrams are described by
finite state automaton that define the states and transitions for each half of a conversation. One example of
a Communication Class Diagram is shown in Figure 6. Conversations are defined to be point-to-point
communication between just two agents. Therefore, every event within the Communication Class Diagram

is defined to be a message to or from the other agent instance participating in the conversation.

Conversations do not allow for communication with multiple agents simultaneously or for internal events

to be exchanged with components internal to the agent.

*nlanipdckages)
| gquerslser query(question) [| “planipackages) deselectPackages |

waitingFarPlan

|inf0 = guenllseriguestion) packages = deselectPackages) |

[chioice == rejeef]*replan

| revievePlan |

|ch0ice = displavPlan(plan)|

[choice == actept]*accept

Figure 6 — Communication Class Diagram
1.1.6 Assembling Agent Classes

In Assembling Agent Classes, the internal components of an agent are defined. Robinson [10]
details how to assemble agents from a set of standard or user-defined architectures. Each agent component
is defined using an architectural modeling language combined with the Object Constraint Language. This
allows the user to define attributes and functions that belong to the agent. Each component can also have a
finite state automaton defining the dynamic characteristics of the component. The events passed within a
component’s dynamic model are limited to internal events with other components that belong to that agent.
In the design phase, external communication is defined strictly through conversations, so there are no

external send or receive events with other agents in the component’ s dynamic model.

1.1.7 System Deployment

The final step defined in MaSE is System Deployment. In this step, the designer develops a

Deployment Diagram, which provides all of the detailed information necessary to deploy the system.

Deployment Diagrams define system parameters such as the actual number, types, and locations of the
agents within the system. Three dimensional boxes represent agents, and lines connecting them represent
conversations between those agents. A dashed-line box indicates that agents are housed on the same

physical platform.

1.1.8 agentT ool

In addition to the MaSE methodology, AFIT has developed a CASE tool named agentTool that
serves as a validation platform and a proof of concept for MaSE. agentTool has a graphical user interface
that allows a user to develop a multiagent system using the analysis and design models as defined in MaSE.
agentTool is aso able to generate Java code for a system based on the design models. Currently, the code
generator is able to generate code for two different frameworks, agentMom and Carolina, but work is
currently being done to integrate agentTool with the AFIT Wide Spectrum Object Modeling Environment

that islooking at the more general code generation problem [11].

1.2 Problem

One main goal of AFIT’s Agent Research Group has been to define a methodology specifically for
formal agent system synthesis. To accomplish such a goal, the analysis models must be transformed into
the design models, and then the design models must undergo another series of transformations that produce
executable code. If each step in the transformation process preserves correctness, then the system engineer
is guaranteed that the executable code is at least correct with respect to the analysis. A transformation
system should also be able to provide traceability from the system requirements through the development
process to the final executable code. In doing so, the system developer is able to verify that all of the
system requirements have been fulfilled. Furthermore, if the system engineer is able to adequately
decompose the problem and capture the system behavior in the analysis phase then there is hope that

undesirable system behavior, to which multiagent systems are prone, can be avoided.

The problem being addressed by this research is the development of formal user-assisted
transformations for transitioning from analysis models to design models within the MaSE methodol ogy.
Feasibility is demonstrated by developing and integrating the appropriate software components in AFIT' s

agentTool.

While the basic concepts of roles and tasks are defined in MaSE, exactly how a designer should
transform them into agent classes, conversations, and internal agent components has not fully been
explored. It is clear that roles are related to agent classes and the tasks that the roles perform are then
related to the conversations between those agent classes. Similarly, tasks are aso related to agent class
components and the transformation process may be able to derive some high-level definitions of those
components from the tasks. There is strong indication that much of the transformation process can be
automated, with little user input. The main focus of this research is defining exactly what those

transformations are and what is the most suitable way to implement them.

One difficulty in this transformation process revolves around the user being able to determine
when coordination between two tasks is external communication and when it isinternal to arole. In order
to facilitate this transformation system and overcome this problem, this research will also focus on how a
user should specify coordination protocols. A protocol defines a communication pattern designed to
accomplish coordination between roles, or more specificaly between tasks performed by those roles.
Although protocols can be described through concurrent tasks [9], there may be another way to capture
those protocols at a higher level of abstraction that would help determine the properties of the protocol and

the tasks associated with it, which could be necessary information required for the transformation process.

1.3 Scope

This research effort will focus on defining the transformations that translate analysis models into
design models for the MaSE methodology. Particular attention is given to defining protocols and

concurrent tasks and their relation to conversations and agent components. Sufficiently complex examples

10

of multiagent systems that require open system protocols such as Contract Net, Dutch Auction, English

Auction, etc. are used for demonstration purposes as well as several simple agent systems.

The following are assumptions concerning the transformations being presented in this thesis:

The user has a good understanding of the MaSE methodology. This research will not
address how to determine goals, transform goals to roles, which protocols should be used
for a given system specification, which tasks need to be defined based on roles, or when

to combine multiple roles into a single agent class.

Transformations start with user-defined roles, tasks, and protocols so it is assumed that
those models have been defined correctly. If there is deadlock within the tasks, then

there will also be a deadlock situation in the resulting conversations.

The transformations should use the current models and their semantics. The semantics of
the models will only be changed when there is ambiguity or inconsistency in the current
definition of the semantics.

The transformations should not limit the design to a single platform or multiagent
framework. For example, a developer should be able to deploy the resulting design using

both agentMom and Carolina.

The transformations should preserve correctness, but they do not need to create optimal
solutions. If optimality is desired, then either another set of optimizing transformations

could be applied, or the user could manually manipulate the modes for optimization.

1.4 ThesisOverview

The remainder of this document is organized as follows. Chapter 2 describes the approach taken
for defining the relationships between the analysis and design model within MaSE, and presents the types
that are used to formally define the transformations. Chapter 3 presents the actual transformations as a
three stage process and describes each transformation using a predicate logic statement. Chapter 4
describes how the transformations were demonstrated by implementing the transformations as a component

of agentTool. Chapter 5 discusses conclusions reached during this study and possible future research.

11

Appendix A has further background information that may assist the reader in understanding this thesis, and

Appendix B presents functions used to define the transformations in Chapter I11.

12

I'1. Problem Approach

A formal transformation system can be defined as a series of small steps that manipulate one
model into an aternative representation. Each transformation must be deterministic in its execution and
should not introduce inconsi stencies between the two models. This chapter describes the approach taken to
define a formal transformation system that takes analysis models and produces the corresponding design
models within the context of the MaSE methodology. Specifically, this chapter explains the relationship
between the models in the MaSE analysis and design phases, and presents an expanded Role Model in the
analysis phase and a new organizational structure for agents and their components and conversations in the

design phase.

Before formal transformations can be defined over the MaSE analysis and design models, each
model that is involved in the transformations must be formally defined and the semantics of the models
clarified. The models must have precise semantics so that the transformations can manipulate the models
with predictable behavior. The details of the models presented in this chapter also include attributes
defined specificaly for the transformations in Chapter 111, and have no meaning outside of the context of
the transformations. Those attributes are not discussed in this chapter because they are not relevant to how
the analysis models relate to the design models. They will be explained as they are introduced in Chapter

2.1 Expanding the Role M oddl

The first step in defining a transformation system is to determine which parts of the initial model
map to which parts in the resulting model. The MaSE methodology makes it clear that the roles that an
agent class plays, in conjunction with the communication paths between the roles tasks, determine the
conversations each agent class will have. However, further investigation proved this level of detail to be
insufficient. When an agent class plays more than one role, it may be the case that some of the

communication between the roles that was specified as external communication between the roles can now

13

be internal communication within the agent. Additionally, communication between tasks of the same role
is not necessarily internal communication, but could in fact be external communication. The analysis
models in MaSE do not specifically deal with role instances and multiplicity. That is something typically
|eft to the design phase. However, the analyst may decide while developing the roles and their concurrent
tasks that multiple instances of a single role will need to cooperatively work together in order to achieve
some goa. In such a case, the communication being specified is externa communication between the

different role instances.

This deficiency led to an expanded view of the role model, as shown in Figure 7, that allows for a
more detailed representation of the properties associated with roles and their tasks. As in the traditional
Role Model, roles are depicted as rectangles. In the new Role Model, the goalsthat arole is responsible for
are listed under the role. This alows the analyst to ensure that all of the goals from the Goa Hierarchy
Diagram have been assigned to arole. Next, since roles may have one or more concurrent tasks associated
with them, each task that arole has is denoted by an oval attached to the role. The lines between the tasks
denote communication protocols that occur between the tasks. The protocols represent events that pass
back and forth between the tasks, although which events are not specifically determined before the
transformation process begins. The arrows indicate which task is the initiator and which task is the
responder in the protocol, with the arrow pointing from initiator to responder. Solid lines indicate peer-to-
peer communication, which is external communication either between two tasks of different roles, or
between two tasks of different instances of the same role. External protocols involve messages being
passed between roles and will become messages in a conversation between the agent classes that play those
roles. Conversely, dashed lines denote communication between two tasks that belong to the same role
instance. Roles are not allowed to share or duplicate atask. If the analyst finds that two roles should have
the same task, then further role decomposition needs to take place. Shared tasks should be placed under a
separate role, and those roles can then be combined back together into a single agent class in the design

phase.

14

) Broker
goall goal3

.~ Request Searcher ~ Start Bidding]
RequestSearch ManageSearch »FindSearcher)————-—-—- RequestBids
! I
Found Searcher
Searcher
goa 4
Start Search Contract Net

Figure 7 — Expanded Role Model

2.2 Transforming Concurrent Tasksto Conver sations and Components

The next step in defining how to transform the analysis models into the design models was to
determine the relationship between concurrent tasks and agent conversations and components. When
examining how the Role Model mapped into the Agent Class Diagram, some interesting discoveries were
made. First, when two roles are combined into a single agent class, the designer must determine whether
the inter-role protocols should remain as external communication or if the communication that the protocol
represents is now internal communication within the agent class. Since external protocols represent
messages that will pass between the agents, they will become one or more conversations. The reason they
may not be a single conversation is because the communication between the agents may not be continuous.
There could be other coordinating communication that must take place internally, or with other agents.
However, internal protocols (either initially defined or changed when roles are combined) will not result in
conversations that represent that communication. Secondly, if more than one agent class plays a role, then
for each external protocol that involves that role, conversations will be created for each agent class that
plays that role. This means that there will be multiple instances of the same conversation between different

agentsin the system.

15

From experience using the MaSE methodology to develop several projects, concurrent tasksin the
analysis phase do an excellent job in sufficiently capturing the coordination between the system roles.
However, after transitioning to the design phase some of that coordination information was lost. Even if
the roles mapped one-to-one into agents, when conversations were created from the tasks, there seemed to
be nothing left that tied the conversations together to coordinate their execution. This was problematic
when generating executable code from the design models. The programmer was left looking back to the

concurrent task modelsin the analysis phase to figure out how the conversations should be coordinated.

The problem was that the finite state diagram that represented the task could include coordination
with multiple tasks, both externally with many different roles as well as internally, while the conversations
extracted from the tasks only dealt with the external communication between two agents at time. The parts
that contained the coordination between the conversations were being discarded, and MaSE gave no
guidance for recapturing the missing pieces. As a matter of fact, al interna events within the concurrent
task diagrams were not being captured anywhere in the design phase. The approach taken to resolve this
problem is that when a role is played by an agent class, a component is created in that agent’s internal
architecture for each of the role’s tasks. The conversations can then be harvested from the component’s
state diagram and replaced with an action on a transition that represents the execution of the conversation.
The component’s own state diagram then retains the coordination that was previously missing, including
passing internal events with other components of that agent class, as well as how the different

conversations fit together.

This change led to a slightly different model of the relationship between an agent, its components,
and its conversations. Since concurrent tasks are assumed to execute under their own thread of control and
tasks now correspond to components, to maintain the analysis phase semantics the components must also
execute under their own thread of control. Furthermore, if the conversations are harvested from
components, then the conversations will logically belong to components, not directly to agents. Figure 8
illustrates how the models in the analysis phase translate to the models in the design phase as well as the

relationship between the design models.

16

Deals with both
external and
internal
coordination
behavior

Role

Coordinate
conversations &
with other
components

Only for external
communication Agent
with another
\ Component2
i
Convl-1| |Convl-2| .~ |Conv2-1 Conv2-2|

Figure 8 — Model Influences

This thesis does not propose that this is the only way to model the organizational structure of
agents, components, and conversations in the design phase. Rather it is an attempt to capture al of the
information that is present in the analysis models and retain the same basic idea of a conversation, which is
independent of the multiagent framework in which it will be implemented. Some multiagent frameworks,
such as Carolina [12], do not require that the conversations be broken out from the components. All of the
external messaging could be captured adequately in the finite state automaton from the task due to the way
in which messaging is accomplished within the Carolina framework. However, agentMom [13] is a
multiagent framework that has a predefined class explicitly for implementing conversations. In agentMom,
conversations operate under their own thread of control and a separate socket connection is established for

the communication of each conversation. Therefore, the communication which conversations represent

17

(peer-to-peer) should be modeled independently from the internal events and messages that belong to other

conversations.

One side-effect of this approach is that the conversations that are harvested from the tasks may be
small pieces that fit together to form the overall communication that takes place between two agents. The
reason that this communication will be broken up into multiple pieces is because there is other unrelated
communication, either internal events or communication with another agent, that must take place in-
between the different pieces. An aternative approach would be to capture al of the communication with
another agent as a single conversation and allow the agent to somehow communicate with the conversation
when other events that are unrelated to the conversation occur, such as internal events or communication
with other agents. Doing so would alter the definition of a conversation within the context of MaSE so that
this agent-to-conversation communication could take place. The approach that was chosen in this thesis
seemed to be the most straightforward while still retaining the fundamental definitions of the modelsin the

methodology.

2.3 Model Definitions

In order to define the models used in the transformations in Chapter 111, each type in the models
will be defined using an object format as demonstrated in Figure 9. Square brackets [and] denote that the
attribute is a sequence of the type, while curly brackets { and } are similarly used to represent sets. In
addition to defining the object types, graphical class diagrams using the Unified Modeling Language
(UML) syntax are provided to give the reader a more complete picture of how the types in the models fit
together. In general, a class in the class diagram is represented by a single type that will be used in the
transformations. Aggregate components in the class diagrams become an attribute for the type that

represents the parent class in the aggregate relationship.

18

TypeName

attributeA: AType
attributeB: BType

Figure 9 — Example Graphical Representation of a Type

2.3.1 AnalysisModels

The Role Model and The Concurrent Task Models are the only models in the analysis phase of
MaSE used in the transformation process. The UML class diagram in Figure 10 shows the classes used to
defined the Role Model and Concurrent Task Models. The type StateTable, which is a component of the
type Task is not defined in this section. Since the Tasks, Components, and Conversations all use a

StateTable to represent their dynamic properties, the StateTable is discussed at length in Section 2.3.3.

Role Protocol
name : String name : String
goals : {Goal} mode : "internal" | "external"
9 A0
tasks responder |
initiator
0..* 1 \
Task ‘

name : String | 1

/

stateTable

1
State Table

Figure 10 — Class Diagram of the Expanded Role Model in MaSE
The first model of interest in the analysis phase of MaSE is the Role Model. Role Models
describe the roles in the system, the tasks they have, and the protocols that capture the communication
paths between the tasks. A Role (Figure 11) is defined by its name, the set of goals it is responsible for,
and a set of tasks that define how the role will accomplish its goals. Each role in the system has a name

that uniquely identifiesit from any other role in the system.

19

Role

name: String
goals: { Goal}
tasks: { Task}

Figure 11 — Role Type
A Task (Figure 12) is defined by its name and a state table (equivalent to a state diagram) that is
used to describe the behavior of that task. Tasks must also have a name which uniquely identifies it from
other tasks within the system. As previoudly stated, atask can not be duplicated within the analysis phase.
If athe analyst feels like a task will need to be shared by more than one agent class later in the design
phase, then a separate role should be created to perform the task. That role and its tasks can then be played

by multiple agent classes.

Task

name: String
stateTable: StateTable

Figure 12 — Task Type

A protocol (Figure 13) is defined by the name of that protocol, the initiator and responder tasks,
and the mode, that specifies whether the protocol isinternal or external communication. Multiple protocols
in the Role Model may have the same name. A protocol simply represents a sequence of events being
passed between entities, roles in the analysis phase and then the agents that play those roles in the design
phase. Since the communication patterns are captured with the state diagrams in the tasks, the protocols
more precisely capture the events being passed between the tasks of the roles, and likewise between the
agent components and conversations. The attributes initComp and respComp point to the agent

components created that implement the tasks from the Role Model.

20

Protocol

name: String

initiator: Task
responder: Task

mode: String
initComp: Component
respComp: Component

Figure 13 — Protocol Type

2.3.2Design Models

This section defines the types that make up the design models of MaSE, which include the Agent
Class Diagram, the Component State Diagrams, and the Communication Class Diagrams. The UML class
diagram in Figure 14 shows the types used to define these models. Again, since the StateTable typeis also

used in the tasks defined in the analysis phase, Section 2.3.3 is devoted to their explanation.

Role .
—1..* roles Agent conversations
name : String e
. name : String

goals : {Goal} <P 0..*
components Conversation
name : String
1.* -

Protocol initComp Component \

name : String - \
o[" 0..1 [name : Strin \
mode : "intemal" | "external 9 L \

initi responder
<f 0.1 |n|t\|ator p

respComp stateTable convs \

\
1 0.* \\ 1

StateTable | 1 . Table .| ConversationHalf 1
conuD : String

Figure 14 — Class Diagram for the Types Used in the Design Phase of MaSE
The first model in the design phase of MaSE is the Agent Class Diagram. The Agent Class
Diagram simply depicts the agent classes in the system, the roles those agents play, and the conversations
between the agents. Based on the discussion in Section 2.2, the way the pieces of the Agent Class Diagram

fit together is a bit more complicated.

21

2.3.2.1 Agents

An agent type represents the agents defined in the Agent Class Diagram. An agent type (Figure
15) is defined by its name, the roles it plays, the components it has, and the conversations it participates in.

Each agent type has a name that uniquely identifiesit from any other agent in they system.

Agent

name: String

roles: { Role}

components. { Component}
conversations: { Conversation}

Figure 15 — Agent Type
2.3.2.2 Components

Component types (Figure 16) are defined by their name, a state table, and a set of conversation
halves. If a component is created from a task during the transformation process, its name comes from the
task that it was created to implement. Therefore, while there may be multiple agent classes that have
components with the same name, no agent class will have two components that are named the same. A
component’s state table will initially be the same as the state table of the task it was created from, but after
the transformation process it will only contain internal events and actions that the component must perform.

The convs attribute is the set of ConversationHalfs that are extracted from the state table of the component.

Component

name: String
stateTable: StateTable
convs: { ConversationHalf}

Figure 16 — Component Type

22

2.3.2.3 Conver sations

Conversations (Figure 17) are made up of two ConversationHalfs, one that is the initiator and one
that is the responder. Each Conversation also has a name that uniquely identifies it within the system. The
ConversationHalf type (Figure 18) corresponds to the Communication Class Diagrams within MaSE, and is
composed of a state table and a conviD that is the name of the Conversation it belongs to. The state table
of a ConversationHalf details the external communication and interna actions that defines the behavior of

one agent within a Conversation.

Conversation

name: String
initiator: ConversationHalf
responder: ConversationHalf

Figure 17 — Conversation Type

ConversationHa f

stateTable: StateTable
convID: String

Figure 18 — ConversationHalf Type

2.3.3State Tables

Several key models within MaSE (Concurrent Task Diagram, Communication Class Diagram,
and the dynamic model for Components) are defined using a finite state diagram, or equivalently a state
table. Each of these models are al'so key components to the transformation system defined in Chapter 111.
The state tables in the different models have various restrictions and dightly different semantics. This
section defines the state table types and explains the differences between the models. The UML class
diagram in Figure 19 gives a graphical overview of the different types used to define a StateTable and

shows the different relationships between them.

23

-

-

e

JUONELSIAINT) | SUOMESIEHI0
1BULIE] © S e)
{10000} ;S0 00

fune © e

;

/

Fiuuys - awen

=

_a ,f .

BuLls - SWey
A LEEd

O
NN

Bl

f//

/

Eugs - aue
| 2o Ul el P

..a

seil

&

Fups] | 1eouogauny
|Bums] :

ay
il]]

W pua s ERELEY s . (Calki g
A -. _H_ W
2l fioaoudh : spooxud -0
Buuys Japuas
s FENEaY sLO)IaE
o STy o8
LIESECUELEN
r.,.!ﬂHEpmmm._En_w__ L EUDIE SIEAID] ai TS
TR YTV INE by T
{pmo1d] : sioaomd [UogEsaunal | i0LEsiaund
.AU. UEDOg . pu3| m:E.W =1F =]
Sllis s uE=|ooq | s = i } aels |

un=sadxa Lesjoo penh

o suedql

R

.,
BLAOryhuE]

\\ W

aEls

o

SCE1NELS

Figure 19 — SateTable Class Diagram

24

A StateTable (Figure 20) is used to define the behavior of an entity through a set of states that it
may be in at any point in time and the set of transitions that occur as the entity goes from one state to the
next. State tables also describe the communication patterns that take place between the different entitiesin

the system through the events that are sent and received on the transitions.

StateTable

states: { State}
transitions: { Transition}

Figure 20 — SateTable Type
2.3.3.1 States

A State (Figure 21) represents internal processing and is defined by a name and a sequence of
actions that take place within the state. Each state within a state table must have a unique name. Upon
entering a state, the sequence of actions will be executed in the given order. The conversations attribute is
only used during the transformations defined in Chapter I11 and holds the set of conversations that the state

will bein.

State

name: String
actions: [Action]
conversations: { Conversation}

Figure 21 — State Type
The beginning state of every state table is the start state. In a state diagram thisis represented by a
solid circle, and in a state table it simply has the name “start”. Every state table will continue execution
until reaching the end state. In a state diagram the end state is represented by solid circle inside a hallow

circle, and in astate tableit is the state named “end”.

25

2.3.3.2 Transitions

Transitions specify how an entity moves from one state to another and define communication that
takes place within the system. A transition is typically defined by its origin and destination states, the
received event that triggers the transition, a guard condition, a set of actions that take place (if alowed),

and a set of transmission events. In a state diagram, the syntax for the transition label would be:

trigger [guard] / action(s) ™ transmnission(s)

For thisthesis, a Transition type (Figure 22) is defined that is used for every model that has a state
table, and is therefore usable throughout the transformation process in Chapter 111. The differences in the
semantics for transitions are discussed for each model. Several of the attributes shown for a transition

(start, end, conversations, convNames, and protocols) are used only for the transitions in Chapter I11.

Transition

from: State

receive: Event
receiveEvent: ReceiveEvent
guard: Boolean Expression
to: State

actions: [Action]

sends: { Event}

sendEvents:. { SendEvent}
start: Boolean

end: Boolean
conversations: { Conversation}
convNames: { String}
protocols: { Protocol}

Figure 22 — Transition Type
Transitions occur instantaneously and move the entity from one state to another (or possibly back

to the same state). A transitionisenabled if al of the following conditions are true.

1. Thetransition’s from state is the current state.

2. Thetransition’strigger event (if it has one) has been generated.

26

3. Thetransition’s guard condition (if it has one) evaluatesto true.
4. All actionsin the transition’s from state have been completed

If atransition does not have a trigger or a guard, both conditions are assumed to hold and the
transition is enabled. If there is no trigger, but there is a guard that is true, then the transition will also be

enabled.

2.3.3.2.1 Concurrent Task Diagram

Concurrent Task Diagrams alow the user to define both internal and external events that take
place between the tasks. Therefore, the trigger for a transition can either be an event that is received
internally (the receive attribute) or externally (the receiveEvent attribute). A transition cannot have both.
A transition can also have send events, both internal and external. Once the transition is triggered, all
transmission events are sent. The sends attribute denotes the internal events that are sent and the
sendEvents attribute denotes the external events that are sent. All transmissions are assumed to take place
instantaneously, so there is no implied ordering within the transmissions. Therefore, multiple transmissions
to asingle task (i.e. that belong to the same protocol) are not allowed on the same transition. As the state
tables are designed and implemented, an ordering is necessarily applied to the transmissions because in
reality they cannot take place instantaneously. However, the order the transmissions are received is already
defined in the analysis phase, because only one message can be received on atransition. In order to receive

two events, two transitions are required, and transitions are always enabled in a specific order.

To illustrate why a transition cannot have two transmissions to the same task, first consider Figure
23. The transition has two SendEvents that we assume are being sent to the same task. Figure 24 shows
the corresponding state diagram with two different orderings for the received events. This situation is not

allowed to avoid choosing the wrong order when the state diagram in Figure 23 isimplemented.

send(msgl, ag); send(msg2,
[siater |- TR SIS S g

Figure 23 — Transition with Two SendEvents to the Same Agent

27

receive(msgl, ag) —— receive(msg2,
Statel » State? Amsg2, ag) » State3

receive(msg2, ag) receive(msgl,
Statel State2 AL) [Sretes

Figure 24 — Two Orderings for ReceiveEvents
Concurrent Task Diagrams also have special restrictions on where actions are allowed. All actions
are defined to take place within the states, so every transition’s actions attribute will be the empty

sequence.

2.3.3.2.2 Component State Table

Each component for an agent has a state table that defines its behavior. Any events on the
transitions in the state table are defined to be internal events to other components of the same agent
instance. Therefore, the receiveEvent and sendEvents attributes will not be used. During the
transformation process in Chapter 111, a Component is created for each task and starts with an identical
StateTable that may have transitions with non-null receiveEvent or sendEvents attributes. However, the
transformation process removes those external events and create conversations with them, so that by the
end of the transformation process, component state tables have only internal events defined by the receive

and sends attributes.

Some of the transformations in Chapter |11 also add actions to the transitions. The semantics of
actions on a transition is that once the transition is enabled, the actions are executed in the given order

before any events are sent.

2.3.3.2.3 Communication Class Diagram

Communication Class Diagrams define the communication that takes place within a conversation
between two agents. Therefore, al events on the transitions represent external messages to or from the

other agent participating in the conversation. However, these messages are represented using the receive

28

(incoming message) and sends (outgoing messages) attributes, not receiveEvent or sendEvents like in the
Concurrent Task Diagram. Therefore, the transformation system must take the external events defined in
the Concurrent Task Diagrams with the receiveEvent and SendEvent attributes and transform them into
receive and sends that represent the same communication in the Communication Class Diagrams.
Communication Class Diagrams also allow for actions on the transitions, that are defined to take place

before any outgoing messages are sent.

2.3.3.3 Actions and Events

Actions represent the actual processing that takes place in the state table. Actions can be used to
represent internal reasoning, reading a percept from sensors, or causing an effector to make a change in the
environment. Originally, actions (or activities) were defined purely in the form of functions, where each
function would have a number of input parameters and could return one result, either as a single value or as

atuple[5]. The syntax of an action was of the form:

result = action-nanme(paranil, paran®, ... paranmN)

The definition of an action has since been expanded to allow tuple-to-tuple assignments, such as:

<X,y> = position(object) and <a,b> = <x,y>

The Action type is shown in Figure 25. The |hs attribute of an action represents the left-hand-side
of an assignment and is a sequence of strings that can be used to represent either a single value or a tuple.
The rhs attribute is the right-hand-side of the assignment and is either a FunctionCall or another sequence

of strings.

Action

Ihs: [String]

rhs: EFunctionCall L[Strinal
LIS R

Figure 25 — Action Type

29

FunctionCalls (Figure 26) represent processing being done by a role or agent within the action.
FunctionCalls are defined by their name and a sequence of input parameters. Parameters (Figure 27) are
simply defined by a string that represents the parameter’s name. Parameters would generally have a type
and a value associated with the identifying name. These are not necessary for the transformations in this
thesis, however they would be required for future transforms that trandate the design into code or another
formal language syntax. Similarly, the FunctionCall type would also reference a Function type (not defined

here) that has pre- and post-conditions that define its behavior.

FunctionCall

name: String
parameters. [Parameter]

Figure 26 — FunctionCall Type

Parameter

name: String

Figure 27 — Parameter Type
Since Concurrent Task Diagrams distinguish internal events from external events, a different type
is defined for each. The ReceiveEvent type (Figure 28) was defined to represent external events that are
received to trigger atransition in a Concurrent Task Diagram. Each ReceiveEvent represents an event on a
transition of theformr ecei ve(event, sender). The event attribute represents the external message
that is being received and the sender attribute represents the role instance that sent the message. The

protocols and convName attributes are only used in the transformations in Chapter I11.

RecelveEvent

event: Event
sender: String
protocols: { Protocol}

lcopvName: String |

Figure 28 — ReceiveEvent Type

30

Just as the ReceiveEvent type was defined to represent an eternal event received in a Concurrent
Task Diagram, a SendEvent type (Figure 29) was defined to represent an external event that is sent. Each
SendEvent represents an event on a transition of the form send(event, recipient). Like a
ReceiveEvent, a SendEvent also has an event attribute that represents the message being sent, but has a
recipient attribute that defines who the message is being sent to. If the recipient attribute is of the form
“<list-name>", then the recipient is a list of agents the message the will be sent to, and the SendEvent
represents a multicast. The protocols, conversations, and convName attributes were added for the

transformations in Chapter I11.

SendEvent

event: Event

recipient: String

protocols: { Protocol}
conversations: { Conversation}
convName: String

Figure 29 — SendEvent Type
An Event (Figure 30) is used to define a message that is passed in the system, either internally or
externaly. The name attribute represents the performative, which is the intent of the message, and the

sequence of parameters represents the content of the message.

Event

name: String
parameters: [Parameter]

Figure 30 — Event Type
2.4 Summary

This chapter described the approach taken for developing a formal transformation system that
semi-automatically creates MaSE design models based on the analysis models. This involved determining

the relationships between the models and where input is required from the designer. An expanded Role

31

Model for the analysis phase was presented, and the new organizationa structure for the agents,
components, and conversations in the design phase was described. This chapter also presented each model
used in the transformations by defining the individual types and their attributes, as well as the semantics
and constraints for the models. Chapter 111 follows the approach laid out in this chapter and presents the

detailed transformations as a three-stage process.

32

IIl. Transformations

Having defined the analysis and design models for MaSE in Chapter |1, this chapter now develops
the specific transformations that will use the Role Model and the Concurrent Task Diagrams to generate the
Agent Class Diagram, the Communication Class Diagrams for the conversations between the agent classes,
and the agent components that constitute the agents’ internal architectures. The transformation system
presented is actually a series of small steps that incrementally change the roles and tasks from the analysis
phase into agent classes and their components and conversations in the design phase. The process can be
broken down into the three stages shown in Figure 31. The transformations are designed to be applied in

the order they are presented, although some of them are to be applied iteratively.

~
Starting Point

 User develops the Role Model

* User defines each Concurrent Task Diagram

* User defines the roles each agent class plays)]

Stage 1

« Determine the protocols for external events

« Create agent components from tasks

« Replicate protocols in Design between components
« Update the protocol set for external eventsin
components

« Transform external eventsinto internal eventsif they
belong to internal protocols /

\

\
Stage 2
« Split up transitions with non-corresponding events
 Determine the protocol set for transitions
* Set start and end attributes for transitions
« Match up conversation start events
* Propagate the conversations /

Stage 3

* Prepare conversations that exit to multiple states
* Prepare variables in conversations that belong to
the parent component

* Harvest the conversations

Figure 31 — Three Sages of the Transformation Process

33

Within this chapter, Section 3.1 defines the notations used to present the transformations. Section
3.2 describes the first stage of the transformation process, where the components for the agent classes are
defined based on the user’s decision about which agent classes will play which roles. Section 3.3 describes
the second stage, centered around annotating the component state diagrams and matching external eventsin
the different components that become the initial messages of the conversations. Section 3.4 provides
details for the last stage of the transformation process, where component state diagrams are prepared for the
removal of the states and transitions that belong to conversations. They are then removed and added to the

state diagrams of the corresponding conversation halves.

3.1 Formal Notations

In order to formally define the transformations presented in this chapter, this section presents the
notations used. Each transformation is defined by a predicate logic equation of the form: condi ti on b
resul t, where the condition is the set of requirements that must be true for the transformation to take
place, and the result describes what is guaranteed to be true after the transformation is performed. This
notation is similar to defining functions with pre-conditions and post-conditions. These transformations
describe what must take place, not how it must be done. The types used in the transformations are the types

described in Chapter 11, and the following describes how they are used in this chapter:

The universe of discourse is the modelsin the system currently being devel oped

Sets are indicated by the pair of symbols { and }, and items in the set are separated by ,
when explicitly delineated

The Union of two setsisindicated by the symbol ?
The Intersection of two setsisindicated by the symbol n
The subset relationship is indicated by the symbol |

Sequences are indicated by the pair of symbols [and], and items in the sequence are
separated by , when explicitly delineated and are assumed to appear in the order required
by the sequence

Sequence concatenation is indicated by the symbol C

The symbol # is used to indicate the cardinality of a set or sequence

An element of a set isindicated by the symbol 1

The sub-field of atypeisindicated by the dot notation, such ast ype. attri but e
String concatenation is indicated by the symbol +

The tick symbol ' indicates that the variable being referenced is the variable after the

transformation

3.2 Generating the Agent Model

This section discusses the first stage of transformation process from the analysis phase to the
design, highlighted in Figure 32. Before these transformations can begin, the designer must have
developed the Role Model and the Concurrent Task Diagrams in the analysis phase. Additionally, the
designer must define the initial set of agent classes, but only to the extent of deciding which set of roles
each agent class will play, ensuring that each role is played by at least one agent class. In this stage, the
transformations must first determine to which set of protocols each external event belongs. Then,
components are created for agent classes to represent the tasks that the agent’s roles must perform. Since
the internal architecture of the agent consists of its components and their relationships, this step essentially
derives the architecture of each agent based on the analysis models. Whenever roles with an external
protocol between their tasks are combined, the user may determine that that protocol is now internal
communication within the agent. When this happens, every external event that belongs to that protocol

must be transformed into an internal event.

35

Starting Point

* User develops the Role Model

« User defines each Concurrent Task Diagram
« User defines the roles each agent class plays

=

(s

agel

N

« Determinethe protocolsfor external events

« Create agent components from tasks

* Replicate protocolsin Design between
components

« Update the protocol set for external eventsin
components

« Transform external eventsinto internal eventsif

\they belong tointernal protocols)

~
Stage 2

« Split up transitions with non-corresponding events

* Determine the protocol set for transitions

* Set start and end attributes for transitions

» Match up conversation start events

* Propagate the conversations /

Stage 3

* Prepare conversations that exit to multiple states
* Prepare variables in conversations that belong to

the parent component

 Harvest the conversations

Figure 32 — Stage 1 in the Transformation Process

3.2.1 Deter mining Protocolsfor External Events

In order to transform external events into internal events by declaring the protocol as internal, the
protocols that each external event belongs to must first be determined. The protocols that events belong to
are also the primary factor in the second stage of the transformation process when transitions are labeled to
denote the start and end of conversations. Events, or the messages they represent, may belong to multiple
protocols. This may seem alittle confusing at first, but the concept is ssimple. Figure 33 shows an example
of how a SendEvent could belong to multiple protocols. The sets above each event are shown for purposes
of the example and represent the set of protocols for that event. Each of the transitions into State3 have
ReceiveEvents that belong to different protocols. The transition leaving State3 has a SendEvent that is a

message sent in both protocols. This scenario seems logical and states that it doesn’t matter which protocol

36

is currently being carried out when State3 is reached. The variable y will be computed and then sent,

regardless of the current protocol.

{P1}
Statel receive(msgl(x), ag)
{P1, P2}
ySiLi:(Bf) send(msg3(y), ag) | Stated
{P2}
State? receive(msg2(x), ag)

Figure 33 — SendEvent with Multiple Protocols

The next three transformations are applied to the Role Model in the analysis phase and
automatically determine for some cases if external events belong to a specific protocol. However, there are
cases where it is impossible to automatically determine if the analyst meant for an event to belong to a
protocol or not. In these ambiguous cases, the analyst will need to make that determination.
Transformation 1 covers the case shown in Figure 34 that illustrates the condition that there are two tasks
that have at least one set of corresponding events' and those tasks have a protocol between them.
Additionally, neither task has a protocol with another task that also has a corresponding event in its state
table (denoted by an arrow with an X over it). If these conditions hold, then the events must be part of the
protocol, since there are no other protocols to which the events could belong. Figure 34 also shows that the
events within the tasks do not need to be unique. If Taskl has more than one correspond event, they will

all be labeled as belonging to Protocoal 1.

1 A “corresponding events’ refer to a SendEvent and a ReceiveEvent that have the same event (or message) parameter,
e.g., send(do(x), ag) and receive(do(x), agent). The do(x) parts represent the message being passed. The events only
need to have the same number of parameters (with matching types). The names of the parameters do not need to
match, nor do the identifiers (the recipient in the SendEvent and the sender in the ReceiveEvent).

37

Taskl Task2

Protocol 1

1 or more matching
SendEvents

1 or more matching
ReceiveEvents

Figure 34 — Example of Transformation 1

Transformation 1

"1, t2: Task, t, st2 : StateTable, trans, trans2 : Transition, se: SendEvent, re : ReceiveEvent,
p : Protocol -
(((p.initiator = t U p.responder = t2) U (p.initiator = t2 U p.responder = t)) Ust = t.stateTable
Ust2 = t2.stateTable UtransT st.transitions Utrans2 T st2.transitions Usel trans.sendEvents
Ure = trans2.receiveEvent U se.event = re.event
UQJ($ t3: Task, st3: StateTable, trans3 : Transition, re2 : ReceiveEvent, p2 : Protocol -
p2t pUt31 2 Ust3 = t3.stateTable Utrans3 1 st3.transitions U re2 = trans3.receiveEvent
U ((p2.initiator = t U p2.responder = t3) U (p2.initiator = t3 U p2.responder = t)) U se.event = re2.event)
UQJ($ t4: Task ,st4 : StateTable, trans4 : Transition, se2 : SendEvent, p3 : Protocol -
p3t pUtd? t Ustd = td.stateTable Utransd T st4.transitions Use2 T transd.sendEvents
U ((p3.initiator = t2 U p3.responder = t4) U (p3.initiator = t4 U p3.responder = t2)) U se2.event = re.event))
b

(re’.protocols = { p} U se’.protocols = {p})

Transformation 2 covers the case illustrated in Figure 35, where there are two tasks that have at
least one set of corresponding events and those tasks have a protocol between them. This is no different
than Transformation 1, except that now the ReceiveEvent must be unique within Task2, and it is acceptable
for Task2 to have a protocol with another task that also has a corresponding SendEvent. The reason thisis
still correct is that there is no other protocol to which the SendEvent(s) in Task1 can belong. Furthermore,
since the ReceiveEvent in Task2 is the only matching event for the SendEvent(s) in Taskl, it must also
belong to that protocol. However, the ReceiveEvent in Task?2 is not limited to the protocol with Taskl. If
Task?2 has another protocol with a different task that has a corresponding SendEvent, then the

ReceiveEvent could also belong to that protocol.

38

Taskl Task2

Protocol 1

A 4

1 or more matching
SendEvents

Only 1 matching
ReceiveEvent

Figure 35 — Example of Transformation 2

Transfor mation 2

" 1,12,t3: Task, &, st2, st3: StateTable, trans, trans2 : Transition, se: SendEvent, re : ReceiveEvent,
p : Protocol -
(((p.initiator = t U p.responder = t2) U (p.initiator = t2 U p.responder = t)) Ust = t.stateTable
Ust2 = t2.stateTable UtransT st.transitions Utrans2 T st2.transitions Usel trans.sendEvents
Ure = trans2.receiveEvent U se.event = re.event
U@($ trans3 : Transition, se2 : SendEvent - trans3 T st.transitionsUse21 trans3.sendEvents
Use2? seUse2.event = se.event)
UQ($t4: Task ,st4 : StateTable, trans4 : Transition, se3 : SendEvent, p3 : Protocol -
p3t pUt4? t Ustd = t4stateTable Utransd 1 std.transitionsUse3 1 transd.sendEvents
U ((p3.initiator = t3 U p3.responder = t4) U (p3.initiator = t4 U p3.responder = t3)) U se3.event = re.event))
b
{p} I re.protocolsU{p} I se .protocols)

Transformation 3 covers the case depicted in Figure 36 that is essentially the mirror image of
Transformation 2. There are two tasks that have at least one set of corresponding events and those tasks
have a protocol between them. Now the SendEvent must be unique within Taskl, and it is acceptable for

Task1 to have a protocol with another task that also has a corresponding ReceiveEvent.

Taskl Task2

Protocol 1

) 4

Only 1 matching
SendEvent

1 or more matching
ReceiveEvents

Figure 36 — Example of Transformation 3

39

Transformation 3

" 1,12,t3: Task, &, st2, st3: StateTable, trans, trans2 : Transition, se: SendEvent, re : ReceiveEvent,
p : Protocol -
(((p.initiator = t U p.responder = t2) U (p.initiator = t2 U p.responder = t)) Ust = t.stateTable
Ust2 = t2.stateTable UtransT st.transitions Utrans2 T st2.transitionsUsel trans.sendEvents
Ure = trans2.receiveEvent U se.event = re.event
U@($ trans3 : Transition, re2 : ReceiveEvent - trans31 st.transitions
Ure2 = trans3.receiveEvent Ure2 t re Ure2.event = re.event)
UQ($t4: Task ,st4 : StateTable, trans4 : Transition, re3 : ReceiveEvent, p3 : Protocol -
p3t pUt4? t Ustd = tdstateTable Utransd 1 sté.transitions U re3 = trans4.receiveEvent
U ((p3.initiator = t3 U p3.responder = t4) U (p3.initiator = t4 U p3.responder = t3)) Ure3.event = re.event))
b
({p} I se.protocols U{p} I re .protocols)

After the first three transformations have been applied, there may still be some cases where, due to
ambiguity, the transformations were unable to automatically determine that an event is intended to belong
to aprotocol. In each case, the developer must determine whether or not the event belongs to the protocol.
The ambiguous cases can be identified by an external protocol between two tasks with corresponding

external events that were not automatically determined to belong to the protocol.

Figure 37 illustrates the case where it is impossible to automatically determine to which protocols
a SendEvent belongs. Task1 has more than one SendEvent and participates in more than one protocol with
other tasks that have corresponding ReceiveEvents. Some of the SendEvents may belong to only one
protocol and not the other, while some SendEvents could belong to both. The developer has to make the

determination.

Task2 Taskl Task3

Protocol 1 Protocol 2

Morethan 1
matching SendEvents

1 or more matching
ReceiveEvents

1 or more matching
ReceiveEvents

Figure 37 — Ambiguous Protocols for SendEvents

40

Figure 38 is similar to Figure 37, and illustrates the case when it is impossible to automatically
determine to which protocols a ReceiveEvent belongs. The ReceiveEvents in Taskl may belong to

Protocol 1, Protocol 2, or both.

Task2 Taskl Task3

Protocol Protocol 2

Morethan 1
matching ReceiveEvents

1 or more matching
SendEvents

1 or more matching
SendEvents

Figure 38 — Ambiguous Protocols for ReceiveEvents

3.2.2 Creating Componentsfor Agentsfrom Tasks

At this point, the designer must have already determined the set of roles each agent class will play.
Transformation 4 states that for every task of every role that an agent plays, a component is created for that
task. The component’s state table is initially the same as the state table of the task for which it was
generated, and the component’s name is the name of the task. The rest of the transformation process is

centered around these component state tables.

As an example of how Transformation 4 creates components for agent classes, consider Figure 39
as the Role Model created in the analysis phase. If the developer decides in the design phase to create the
agent classes with the roles shown in Figure 40, then Transformation 4 creates the components shown for
the agents. Since both agents play Role 2, there is a component created for each agent for Role 2's Task 2.
Figure 40 is not a MaSE diagram, but is presented to illustrate the internal agent components based on the

initial Agent Class Diagram.

Role 1 Role 2 Role 3
Protocol 1 Protocol 2
Task 1 =@ » Task 3

Figure 39 — Role Model Example

41

Agent 1 Agent 2
Role 1 Role 2

Role 2 Role 3

Component: Component: Component: Component:
Task 1 Task 2 Task 2 Task 3

Figure 40 — Agent Components Created From the Roles Tasks

Transformation 4

" a:Agent,r:Rolet:Task -
(r 7 arolesUt1 r.tasks)
b

($ c: Component - ¢T & .components U c.stateTable = t.stateTable U c.name = t.name)

3.2.3 Replicating Protocols Between Components

Next, for each protocol in the analysis, Transformation 5 creates corresponding protocols in the
design. Protocols in the analysis phase are defined between tasks. Transformation 4 created agent
components based on the roles that each agent plays and the tasks that those roles have, protocols in the
design phase must be between the components created for those tasks. Also, arole may be played by many
different agent classes, and the tasks of that role are duplicated as components of all agents that play that
role. Therefore, the protocols between those tasks are also duplicated for every component that was created
from the task. Thisis done so that the designer can define whether, for every protocol between roles that

are combined together, that protocol is now internal instead of external.

As an example of how the protocols might be duplicated in the design based on the Role Model
and the roles chosen for agent classes, consider again our example from Figure 39 and Figure 40. Figure
41 takes the example one step further and illustrates how the protocols from the analysis phase are
replicated in the design. Since both Agent 1 and Agent 2 have a component created from Task 2, and both

Protocol 1 and Protocol 2 involve Task 2, there are two instances of each protocol in the design between

42

each component. The protocols shown in Figure 41 are illustrated purely for the purposes of the example.

Thereis currently no model in MaSE that depicts protocols between agent components.

Agent 1 Agent 2
Role 1 Role 2
Role 2 Role 3

Component:

Prdtocol 1
' Task 2

Component:
Task 1

Protocol 2

Figure 41 — Agent Diagram Example

Transformation 5

" p: Protocol, r, r2: Role t,t2: Task, ¢, c2: Component, a, a2 : Agent -

(rT arolesUtT rtasksUcT acomponentsUc.name=t.name Up.initiator =t Ur2T a2.roles

Ut21 r2tasksUc2T a2.components U c2.name = t2.name U p.responder = t2)

b

($ p2: Protocol - p2.name = p.name U p2.initiator = p.initiator U p2.responder = p.responder

U p2.initComp = ¢ U p2.respComp = ¢2 U p2.mode = p.mode)

At this point, the set of protocols for external events in the components are identical to the
protocols defined between the tasks in the analysis phase. The next two transformations update those
protocols to denote the protocols between the components. Transformation 6 converts the set of protocols
for ReceiveEvents and Transformation 7 for SendEvents. The previous examples are used to illustrate the
importance of these transformations. Assume that in Figure 39 there is an external event E in Task 2 that

belongs to Protocol 1. Figure 41 illustrates the agents, component, and components after Transformation 4

and Transformation 5. In Agent 2's Task 2 component, the external event E must belong to the instance of

43

Protocol 1 between Agent 1's Task 1 component and Agent 2's Task 2 component, not to the other instance

of Protocol 1 between Agent 1's Task 1 and Task 2 components.

Transfor mation 6

" p, p2: Protocol, t, t2: Task, ¢ : Component, st : StateTable, t: Transition, re: ReceiveEvent -
(st=c.stateTable Ut1 st.transitions Ure=t.receiveEvent UpT reprotocols U p.initiator = p2.initiator
U p.responder = p2.responder U (p2.initComp = ¢ U p2.respComp = ¢))

b

(p21 re .protocolsUpT re .protocols)

Transfor mation 7

" p, p2: Protocol, t, t2: Task, ¢ : Component, st : StateTable, t: Transition, se: SendEvent -
(st=cstateTableUtT sttransitionsUsel t.sendEventsUpT se.protocols U p.initiator = p2.initiator
U p.responder = p2.responder U (p2.initComp = ¢ U p2.respComp = ¢))

b

(P21 se.protocolsUp T se'.protocols)

3.24 Transforming External Eventsinto Internal Events

For each pair of roles that are combined into an agent class, the designer must determine whether
each protocol that exists between components of that agent is either internal or external. This was also
done for protocols between tasks of the same role in the analysis phase. If a protocol is defined asinternal,
al external ReceiveEvents and SendEvents that belong to the protocol are converted into internal receive
and send Events. Transformation 8 describes how external SendEvents are converted to an internal Event
in the sends clause, and Transformation 9 describes how an external ReceiveEvent is converted into an

internal Event in the receive clause.

For example, if the ReceiveEvent, receive(msg(x, y), agent), is part of a protocol that is determined
to beinternal, the event is changed to msg(x, y). It should be noted that in order for an external event to be

transformed into an internal event, every protocol that the event belongs to must be designated as internal.

If an event belongs to both internal and external protocols, an error has been made and it must be corrected

before the transformation process can continue.

Transformation 8

" c¢: Component, p: Protocol, st : StateTable, t: Transition, se: SendEvent -

((p.initComp = ¢ Up.respComp = ¢) Ust = c.stateTable Ut T st.transitionsUsel t.sendEvents
U se.protocol = p Up.mode = “internal”)

b

(seevent t.sendsUsel t'.sendEvents)

Transfor mation 9

" ¢: Component, p: Protocal, st : StateTable, t: Transition, re : ReceiveEvent -
((p.initComp = ¢ Up.respComp = ¢) Ust = c.stateTable Ut T st.transitions U re = t.receiveEvent
Ure? null Ureprotocol = p Up.mode = “internal”)

b

(re.event = t'.receive Ut' .receiveEvent = null)

3.3 Annotating Component State Diagrams

Now that components have been created for the agent classes that represent the concurrent tasks
from the analysis phase, the next stage of the transformation process (highlighted in Figure 42) is centered
around annotating the component state tables for the removal of the conversations. There are many
different cases in which tasks can be defined in the analysis phase that make removing conversations
problematic, such as events being received or sent on transitions that do not belong to the same
conversation. The transformations in this section first convert the component’ s state tables into a canonical
form to ssimplify harvesting the conversations from them. Then the state tables are annotated to indicate
where each conversation begins and ends. Finally, the starting points for the conversations in the different

component state diagrams are matched.

45

Starting Point
« User develops the Role Model
» User defines each Concurrent Task Diagram

 User defines the roles each agent class plays]

Stage 1

« Determine the protocols for external events

« Create agent components from tasks

« Replicate protocols in Design between components

« Update the protocol set for external eventsin
components

« Transform external eventsinto interna eventsif they
belong to internal protocols /

\

\
Stage 2

« Split up transitions with non-corresponding
events

» Determinethe protocol set for transitions

* Set start and end attributesfor transitions

* Match up conversation start events

* Propagate the conver sations j

Stage 3

« Prepare conversations that exit to multiple states
* Prepare variables in conversations that belong to
the parent component

 Harvest the conversations

Figure 42 — Stage 2 in the Transformation Process

3.3.1 Splitting Transitions

Transitions in a component state table that have either multiple events that represent
communication in different protocols, or some external and some internal communication, make it difficult
to remove the conversations from the state table. Since a transition can only have either an external
ReceiveEvent or an internal Receive Event, there is a transformation that handles each case.
Transformation 10 covers transitions that have an external ReceiveEvent. The requirement for the
transformation is that there is 1) an external ReceiveEvent and 2) either an internal send Event or an
external SendEvent that belongs to a different set of protocols. All external SendEvents that have the same
protocols as the ReceiveEvent are placed on the first transition along with the receiveEvent, the guard

condition, and the actions, all of which are defined to take place before any transmitted events. The

46

internal send Events and the remaining external SendEvents with protocols that are different than the

ReceiveEvent’ s protocols are placed on the second transition.

Transfor mation 10

" c¢: Component, st : StateTable, t : Transition, re: ReceiveEvent -

(st=c.stateTable Ut1 st.transitions Ure = t.receiveEvent Ure? null

U(($se: SendEvent - sel t.sendEvents Ureprotocols® seprotocols) U($ e: Event - el t.sends)))
b

($s: State, t1,t2: Transition, n: String - s1 st .statesUs| st.statesUt11 st’.transitions

Ut21 o .transitions Us.name= (“Null” +n) U@ ($ s2: State - s* s2 Us.name = s2.name) Us.actions = {}
Utl.receive = null Utl.receiveEvent = t.receiveEvent Utl.guard = t.guard Utl.actions = t.actions
Utl.sends={} Utl.from=tfrom Utl.to=sU@($ t3: Transtion - t3to=sUt1? t3)

U(" sel: SendEvent - (sell t.sendEvents Ure.protocols = sel.protocols) U sell tl.sendEvents)
Ut2.receive = null Ut2.receiveEvent = null Ut2.guard = null Ut2.actions=[] Ut2.sends = t.sends

U(" se2: SendEvent - (se21 t.sendEvents Ureprotocols® se2.protocols) U se21 t2.sendEvents)
Ut2from=sUt2to=ttoUtl s .transitionsU@($ t3: Transition - t3from=sUt21 t3))

Figure 43 shows how Transformation 10 would split a transition. The sets above the events
represent the protocols to which the events belong. The original transition has a ReceiveEvent that is part
of protocol P1 and one SendEvent for protocol P1 and one SendEvent for protocol P2. After the
transformation, the SendEvent for P1 is placed on the first transition with the ReceiveEvent and the
SendEvent for P2 is placed on the second transition. The resulting transitions and null state are consistent
with the semantics of the original transition. In order for the original transition to take place, both the guard
condition must be met and the do(a) message is received from agl. When the transition occurs the ack
message is sent back to agl, and the do(a) message is sent to ag2. After the transformation, the guard must
be true and the do(a) message must be received from agl for the first transition to take place, sending the
ack message back to agl. There are no new actions that are done within the null state, and the second

transition is automatically enabled, sending the do(a) message to ag2.

a7

{P1} {P1} {P2}
receive(do(a), agl) [guard] “send(ack, agl); send(do(a), ag2)

}

{P1} {P1} {P2}
receive(do(a), agl) [guard] ~send(ack, agl) - "send(do(a), ag2) R

StateA » StateB

StateA Null

StateB

Figure 43 — Example of Splitting a Transition
As seen in the example shown in Figure 43, there was an ordering applied to the SendEvents.
This is a design decision that is consistent with the original specification defined by the concurrent task
diagrams. Since the SendEvents belong to different protocols (see Section 2.3.3.2.1), they are received by
different components. Therefore, it makes no difference what order is chosen to send them. The first event
is sent to one component, followed by the next event to the other component. Even if the different
components belong to the same agent, they should both be waiting to receive the events, regardless of the

order in which they are received.

Transformation 11 covers transitions that have either an internal receive or send event. The
requirement for this transformation to take place is that there is 1) either an internally received or sent
Event and 2) at least one external SendEvent in the sendEvents clause. Any internal receive or send Events
are placed on the first transition along with the original transition’s guard and actions. The second

transition simply contains the set of external SendEvents.

48

Transformation 11

" c¢:Component, st : StateTable, t : Transition -

(st=cstateTable Ut1 st.transitions U (t.receive® null Ut.sends? {}) Ut.sendEvents? {})

b

($s: State, t1,t2: Transition, n: String - s1 st .statesUs| st.statesUt11 st’.transitions

Ut21 s transitionsUs.name= (“Null” +n) U@($ 2: State - s2* sUs2.name = s.name) Us.actions = {}

Utl.receive = t.receive U tl.receiveEvent = null Utl.guard = t.guard Utl.actions = t.actions

Utl.sends = t.sends U t1.sendEvents = {} Utl.from = t.from Utl.to = sUt2.receive = null Ut2.sends = {}

U t2.receiveEvent = null Ut2.guard = null Ut2.actions = [] Ut2.sendEvents = t.sendEvents Ut2.from=s

Ut2to=ttoUtT o .transitionsU@($t3: Transition - (t3.to=sUt1? t3) U(t3.from=sUt2? t3)))

Figure 44 illustrates how Transformation 11 would split a transition that has both interna events
and external SendEvents. The original transition has both an internal receive and send Event, as well as an
external SendEvent. After the transformation only the internal events are placed on the first transition and
the external SendEvents (in this case only one) are placed on the second transition. Again, the state
diagram after the transformation is consistent with the semantics of the original state diagram. In both
cases, do(a) must be internally received, the guard condition must be true, and the internal acknowledge
event is sent, as well as the external SendEvent belonging to protocol P1. The transmissions in the

resulting state diagram have been ordered, but since the events are being sent to different components, they

are still consistent with the original state diagram.

{P1}
N .
StateA do(a) [guard] * acknowledge; send(msg(a), ag) | Siaten
{P1}
do(a) [guard] ~ acknowledge Nsend(msg(a),
Stoton () [guard] 9 g Nl (msg(@. 29) =

Figure 44 — Example 2 of Splitting a Transition

49

3.3.2 Determining the Protocols for Transitions

The next step of the transformation process is to annotate the component state tables to show
where each conversation begins and ends. In order to simplify this process, each transition is labeled with a
set of protocols that represents the external protocols in which the transition may participate. If atransition
has a non-empty set of protocols, then the communication that takes place on that transition at any given
time will be with only one of the protocols in the set, not all of them. If atransition has an empty set of
protocols, then either there is no external communication taking place, or there is communication with
more than one agent that takes place. Later, the set of protocolsisthe primary factor for determining where

conversations start and end.

Table 1 shows the rules for determining the set of protocols for atransition. The first five columns
show the properties for the transition being labeled. Transformation 10 and Transformation 11 split up
transitions with events that do not correspond to each other, so Table 1 shows the only possible
combinations for the transition being labeled. There will be no transitions with a) an internal receive Event
and an external ReceiveEvent, b) an internal receive Event and external SendEvents, ¢) an external
ReceiveEvent and internal send Events, d) a ReceiveEvent and SendEvents that don’t correspond (i.e.

different protocols), or €) internal send Events and external SendEvents.

An “X" in the table represents a “don’t care” in a traditional logic table. Under the SendEvents
column, “same protocols’ means that every SendEvent on the transition has the same set of protocols, and
“different protocols’ means that not all SendEvents have the same set. The “Union” label means that the

set of protocolsisthe union of all protocol sets on transitions into the from state.

50

Table 1 — Rules for Determining a Transition’s Set of Protocols

Transition being labeled Protocols for Protocols for Resulting Transformation
Transitions into | Transitions out of Set of
receive ReceiveEvent guard sends SendEvents Actions] the from state the from state Protocols

no yes X no X X X X ReceiveEvent's 12
no no X no same protocols X X X SendEvent's 13
no no X no different protocols X X X {} 14
no no X no to <list> X X X {} 15
yes no X X no X X X {} 16

X no X yes no X X X {} 16
no no X no no X ={} Union Union 17
no no X no no X {} X {} 18
no no X no no X X {} {} 18
no no X no no X X != Union {} 18

Transformation 12 sets the protocols for all transitions that have a non-null receiveEvent attribute.
Transformation 10 ensured that transitions with an external ReceiveEvent only have SendEvents that have
the same set of protocols. Therefore, it is certain that the set of protocols for the transition can be the same

as that of the ReceiveEvent.

Transformation 12

" ¢: Component, st : StateTable, t: Transition, re: ReceiveEvent -

(st=cstateTable UtT st.transitions Ure = t.receiveEvent Ure® null Ut.receive = null Ut.sends = {}
U@($ se: SendEvent - sel t.sendEvents Ureprotocols?t se.protocols))

b

t'.protocols = re.protocols

If there is atransition with no internal events, no ReceiveEvent, and all external SendEvents have
the same protocols, and the none of the recipients of the SendEvents is a list, then Transformation 13 sets
the protocols of the transition to the SendEvents' set of protocols. While the set of protocols for the
SendEvents may contain more than one protocol, it is assumed that the events that are sent belong to only
one protocol at atime. If thereis at least one SendEvent with different protocols, then Transformation 14

sets the protocols to the empty set, since that transition contains communication that may belong to two

different protocols at the same time.

51

Transfor mation 13

" c¢:Component, st : StateTable, t : Transition, se: SendEvent -

(st=cstateTable Ut1 st.transitions Ut.receiveEvent = null Ut.receive = null Ut.sends = {}
Usel t.sendEvents U @isList(se.recipient)

U@($ se2: SendEvent - se2T t.sendEvents Use2 * se Use2.protocols? se.protocols))

b

t'.protocols = se.protocols

Transfor mation 14

" c¢: Component, st : StateTable, t : Transition -

(st=c.stateTable Ut1 st.transitions Ut.receive = null Ut.sends={}

U($sel, se2: SendEvent - sel? se2 Usel | t.sendEventsUse21 t.sendEvents

U sel.protocols? se2.protocols))

p

t'.protocols = {}

If atransition has an external SendEvent to a list (a multicast), then Transformation 15 sets the
transition’s protocols to the empty set, not because the transition contains communication to different
protocols at the same time, but because a multicast implies simultaneous communication with a different

instance of the protocol for each agent represented in the list. The isList(String) function returns true if the

string representing the recipient is of the form <list-name>.

Transfor mation 15

" ¢: Component, st : StateTable, t: Transition, se: SendEvent -

(st=cstateTable UtT sttransitionsUsel t.sendEvents UisList(serecipient))

b

t'.protocols = {}

Transformation 16 states that if a transition has an internal event, then the protocols set must be

the empty set, denoting that no communication with external protocols takes place on the transition.

Transformation 11 split transitions that had both internal and external events, so at this point any transitions

52

that have at least one internal event are assured to have no externa events, and therefore belong to no

external protocols.

Transfor mation 16

" c¢:Component, st : StateTable, t : Transition -
(st=c.stateTable Ut1 st.transitions U (t.receive® null Ut.sends? {}))
b

t'.protocols = {}

If there is a transition with no internal or external events that are received or sent, then the
transition by itself gives no information as to what the protocols set should be. It is not necessarily empty
since the set of protocols represents the current communication that is taking place and is used in
determining if a transition is the start or end of a conversation. Other factors are used to determine the
protocols of these transitions. If every transition to or from the transition’s from state have non-empty
protocols, and every transition leaving the from state contains the union of the protocols for al transitions
into the from state, then Transformation 17 also makes the set of protocols for the transition in question the
union of all protocols of the transitions into the from state. Otherwise, there has been a change in the active

protocol, and Transformation 18 gives the transition the empty set of protocols.

Transfor mation 17

" c¢:Component, st : StateTable, t : Transition -

(st=c.stateTable Ut1 st.transitions Ut.receive = null Ut.receiveEvent = null Ut.sends = {}

Ut.sendEvents = {}

U@($t2: Transition - 121 sttransitionsUt2t t Ut2.to = t.from Ut2.protocols = {})

U@($13: Transition - t31 st.transitionsUt2* t Ut3.from = t.from Ut3.protocols = {})

U(" t4: Transition, p: Protocol - t41 sttransitionsUt41 t Utdfrom=tfromUpT t4.protocols
Upt null U ($t5: Transition - t51 st.transitions Ut5.to = t4.from Up1 t5.protocols)))

b

(" t6: Transition - (t6* t Ut6.to =t.from) P t'.protocols = (t.protocols ? t6.protocols))

53

Transfor mation 18

" c¢:Component, st : StateTable, t : Transition -
(st=c.stateTable Ut1 st.transitions Ut.receive = null Ut.receiveEvent = null Ut.sends = {}
Ut.sendEvents = {}
U(($t2: Transtion - t21 sttransitionsUt2? t Ut2.to = t.from Ut2.protocols = {})
U($t3: Transtion - t31 st.transitionsUt3! t Ut3.from = t.from Ut3.protocols = {})
U@(" t4: Transition, p: Protocol - t41 st.transitionsUt4.from=tfrom UpT t4.protocolsUp* null
U ($1t5: Transition - t51 st.transitions Ut5.to = t4fromUpT t5.protocols))))
b

t'.protocols = {}

The next example illustrates how Transformation 17 determines the protocols for transitions that
have no events. Figure 45 shows a state diagram with three different transitions with no events. The setsin
the figure show the protocols for the transitions. The transition leaving Statel is an automatic transition
and has no events. However, the only transition into Statel has { P1} asits set of protocols. Since thereis
no indication that the active protocol has changed, Transformation 17 sets the protocols for the transition

leaving Statel to {P1}. In the same way, the transition leaving State? receives the protocol set {P2}. The

resulting state diagram is shown in Figure 46.

{P1} I {P2}
receive(dol(a), ag) receive(do2(b), ag)

i I Oile i

Statel - State?
C=1UA) (¢ £ o rsend(sorry, ag) S TP
Eval -
[c>0]

Figure 45 — Transitions With No Events

{P1} I {P2}
receive(dol(a), ag) receive(do2(b), ag)

l I o‘I‘I e l

Statel State2
Y {P1,P2} T forr
c=11@ ¢ £ 0 rsend(sorry, ag) (€= 12P)
{P1} {F2}
Eva |«
[c> 0]

Figure 46 — Protocols Determined for Two Transitions

The more interesting case is the transition leaving the Eval state. It only has a guard condition and
no events, yet Transformation 17 determines that the set of protocols should be { P1, P2}, the union of the
protocols of the transitions into the Eval state. This is because the protocols of the other transition leaving
the Eval state is also the union of the transitions into the Eval state (determined either by the first three
transformations or by the designer), and there are no transitions into or out of the Eval state with an empty
set of protocols. The resulting state diagram is shown in Figure 47. Asyou can see from this example, in
order for these transformations to be executed correctly, all other transitions into or out of its from state
must already be determined. For example, the protocols for the transition out of the Eval state with only
the guard condition could not be determined correctly if the protocols for the transitions into the Eval state

had not already been determined.

55

{P1}
receive(dol(a), ag)

|

{P2}
receive(do2(b), ag)

l

Statel
c="f1(a)

[c£ (]
{F1}

Idle l
State?
{P1, P2} Y
~send(sorry, ag) ¢ =12(b)
{R2}
Eval ~
{P1, P2}
[c>0]

Figure 47 — Protocols Determined for All Transitions

3.3.3 Start Label for Transitions

Now that al transitions have a set of protocols, the next step is to determine where conversations
begin and end. There are many reasons to label a transition as the start of a new conversation. However,
since every transition aready has its protocols set, the rules are greatly simplified. The protocols indicate
with whom the communication takes place.

conversation by a change in who the agent is communicating with, which in most cases is due to a change

in the protocoals.

1. A transition has a protocol not found in at least one transition into its from state

(Transformation 19).

2. A transition has a non-empty set of protocols that is different than another transition leaving

the same state (Transformation 20).

3. A transition has a non-empty set of protocols, yet lacks a protocol of another transition into its

from state (Transformation 21).

4, A transition has a non-empty set of protocols, and there is another transition into or out of its

The following six conditions indicate the start of a

from state with an empty set of protocols (Transformation 22).

56

5. A transition has an empty set of protocols and at least one SendEvent (Transformation 23).

6. A transition has a SendEvent whose recipient was previously determine by an action
(Transformation 24).

Transformation 19 states that when a transition has a protocol in its set of protocols that is not
found in at least one transition into its from state, then the transition must be the start of a new
conversation. In this case, the transition has communication that belongs to a protocol not previously
active, so the communication to the newly active protocol will be a new conversation. The most obvious
example of thisis when there is a complete change in the set of protocols from one transition to the next.
Figure 48 illustrates another example of when Transformation 19 would label atransition as the start of a
conversation. The sets indicate the protocols set for the transitions, and the letter S over the transition
indicates it has been labeled as the start of a conversation. The attributes of the transitions are not shown in
these examples, because it is only the set of protocols that matters in these transformations. In the portion
of the state diagram shown in Figure 48, the transition leaving Statel has both P1 and P2 as protocols, but it
also has P3 and there is no transition into Statel with P3 as a protocol, so the transition becomes the start of

aconversation.

{P2}

P1 P1, P2, P3
tPl} » Statel S{ }=

Figure 48 — Example of Transformation 19

Transfor mation 19

" ¢:Component, st : StateTable, t: Transition, p : Protocol -
(st=cstateTable UtT st.transitions Ut.protocols? {} Up1 t.protocols
U@($t2: Transition - 121 sttransitionsUt2.to=tfromUpT t2.protocols))
b

t'.start = true

57

Transformation 20 states that if there is a transition with a non-empty set of protocols leaving a
state and there is another transition with different protocols leaving the same state, then the transition must
be the start of a conversation. These transitions cannot be the continuation of a previous conversation,
because they have different protocols that may be active when leaving the from state. Figure 49 illustrates
one example of how Transformation 20 would label a transition as the start of a conversation. In the
example, there are two transitions with different protocols both leaving Statel. These transitions must be
the start of conversations because it is unclear which transition would be enabled from Statel and therefore

which protocol would be active in communication.

{P2}

tPl} » Statel S tPl}

v

Figure 49 — Example of Transformation 20

Transfor mation 20

" ¢: Component, st : StateTable, t: Transition -

(st=cstateTable UtT st.transitions Ut.protocols? {}

U($t2: Transition - t21 st.transitions Ut2.from = t.from Ut2.protocols? t.protocols))
b

t'.start = true

Transformation 21 states that if there is a transition with at least one protocol leaving a state and
that transition lacks a protocol that another transition into the from state has, then the transition is the start
of a conversation. The protocol that is missing for the transition leaving the from state may be the active
protocol for the transition into the from state, so that conversation cannot continue and another one must
begin. In the previous example, Figure 49 illustrates an instance where Transformation 21 would be
applied. Since the transition with protocols { P2} leaving Statel does not have P1 as a protocol, and the
transition into Statel does, the transition leaving Statel is the start of a conversation, regardless of the fact

that there is another transition leaving Statel with different protocols.

58

Transfor mation 21

" c¢:Component, st : StateTable, t : Transition -

(st=cstateTable Ut1 st.transitions Ut.protocols? {}

U($t2: Transition, p: Protocol - 121 st.transitionsUt2.to=t.fromUpT t2.protocols UpT t.protocols))

b

t'.start = true

Transformation 22 states that when a transition is labeled with at least one protocol and there is
another transition either from or into its from state that has no protocols, then the transition is the start of a
conversation. If there is a transition into the from state with an empty set of protocols, then it is possible
that the transition was the one taken, and the protocol activated on the transition leaving the state must
represent communication to a new agent. If thereis atransition out of the from state with an empty set of

protocols, then no transition leaving the from state can continue any previous conversation because the

transition with no protocols may be the one taken.

As an example, consider Figure 50, where the transition leaving Statel is labeled with only
protocol P1 and there is another transition with an empty set of protocols that is also leaving Statel.
Transformation 22 labels the transition with protocols { P1} as the start of a conversation. If the transition
with no protocols was not present, then the transition leaving Statel with protocols {P1} would be

guaranteed to continue the conversation.

P1 P1
(P} Statel S {P1) -

{}

A

Figure 50 — Example of Transformation 22

59

Transfor mation 22

" c¢:Component, st : StateTable, t : Transition -
(st=cstateTable Ut1 st.transitions Ut.protocols? {}

U($t2: Transtion - t21 sttransitions U (t2.to = t.from Ut2.from = t.from) Ut2.protocols = {})
b

t'.start = true

Transformation 23 states that if a transition labeled with no protocols has a SendEvent, then the

transition starts a new conversation. This covers the following two possibilities:

1. Thetransition has more than one SendEvents and they have different recipients.
2. Thetransition has a SendEvent to alist.

In each case, there is communication with more than one agent. Therefore, there are multiple
instances of conversations that take place on the transition, and the conversations result in simple “single-
transition” conversations. Later, Transformation 26 also labels these transitions as the end of the

conversation.

Transfor mation 23

" ¢: Component, st : StateTable, t: Transition -
(st=c.stateTable Ut1 st.transitions Ut.sendEvents® {} Ut.protocols={})
b

t'.start = true

Transformation 24 simply states that if there is an action, either in a state or on a transition, that
determines the recipient of a SendEvent on a subsequent transition, then the transition starts a new
conversation. In most cases, that action will occur in the transition’s from state, but there could be states
and transitions between the setting of that variable and its use in the SendEvent. The
isAssigned(SendEvent, Transition, StateTable) function is defined in Appendix B, and takes care of these
cases by recursively searching back from the transition to determine if there is an action that sets the

recipient of the SendEvent. Figure 51 shows one example where Transformation 24 would apply. There

60

isan action in Statel that sets the recipient of the SendEvent on the transition leaving that state. Since the
action just determined who the communication in the SendEvent would be with, the transition is the start of

anew conversation.

Statel "send(msg, ag)
NS
ag = top(list)

Figure 51 — Example of Transformation 24

Transfor mation 24

" c¢:Component, st : StateTable, t : Transition, se: SendEvent -
(st=cstateTable UtT sttransitions Usel t.sendEvents UisAssigned(se, t, st) Ut.protocols? {})
p

t'.start = true

3.3.4End Label for Transitions

In the same way that the set of protocols for transitions are used to determine the start of
conversations, they are also used to determine where conversations end. The following four conditions

indicate the end of a conversation.

1. A transition has a protocol not found in atransition leaving its to state (Transformation 25).

2. A transition has an empty set of protocols and at |east one SendEvent (Transformation 26).

3. A transition has a non-empty set of protocols and there is a start transition leaving its to state

(Transformation 27).

4. A transition to the end state has a non-empty set of protocols (Transformation 28).

Transformation 25 states that if there is a transition with a protocol and there is another transition
leaving its to state that does not also have that protocol, then the transition must be the end of a
conversation because that protocol might not continue to have active communication. Figure 52 shows an

example of how Transformation 25 would apply. The transition into Statel has P1 as a protocol, but the

61

transition leaving Statel has the empty set as its set of protocols. Thus, the transition with protocols { P1}

islabeled as the end of a conversation.

PY e [sae U

v

Figure 52 — Example of Transformation 25

Transfor mation 25

" c¢:Component, st : StateTable, t : Transition, p : Protocol -
(st=c.stateTable Ut1 sttransitionsUp1 t.protocolsUp?t null

U@(" t2: Transtion - t21 sttransitionsUt.to=t2.fromUpT t2.protocols)
b

t'.end = true

Transformation 26 is the corresponding transformation to Transformation 20, and designates any
transition with an empty set of protocols and at least one external SendEvent as the end of a conversation.
As stated earlier this occurs when either 1) there are external SendEvents with different recipients or 2)
there is a SendEvent to alist. Each case represents multiple conversation instances that take place on the

transition, so the transition is both the start and end of the conversation(s).

Transfor mation 26

" ¢: Component, st : StateTable, t: Transition -
(st=cstateTable UtT st.transitions Ut.sendEvents® {} Ut.protocols={})
b

t'.end = true

Transformation 27 is straightforward, and states that if a transition has a non-empty set of
protocols and its to state is the from state of a transition that is marked as the start of a new conversation,
then that transition is the end of the conversation. This must be the case so that the next conversation can

start.

62

Transfor mation 27

" c:Component, st : StateTable, t, t2: Transition -

(st=cstateTable Ut1 sttransitionsUt21 st.transitions Ut.protocols? {} Ut.to = t2.from Ut2.start = true)
b

t'.end = true

Transformation 28 describes the last reason that a transition can be labeled the end of a

conversation, which is when a transition has a non-empty set of protocols and its to state is the end state. It

is obvious in this situation that the conversation must end because the state table ends.

Transfor mation 28

" c:Component, st : StateTable, t: Transition, s: State -
(st=cstateTable Ut1 st.transitions Ut.protocols? null UsT st.statesUs=t.to Us.name = “end”)
b

t'.end = true

3.3.5Matching Conversation Halves

After all of the components’ state diagrams have been annotated, the different conversation halves,
as annotated, must be matched. As the events are matched, they are given the same convName. Events
may be matched with more than one corresponding event, so in practice, every matching set of events
would receive the same conversation name, which may ripple through as new matches are made. Once all
conversation halves have been matched, Conversations can be created to represent the communication.
The protocols between the components provide a way to determine to which component the corresponding
halves belong. The next two transformations define how, in some cases, the different conversation halves
can be automatically matched. The transformations are very similar to the transformations used to
determine the set of protocols for external events. Again, not all matches can be made automatically. In
some cases, the developer must determine whether a message in a SendEvent is actually meant to be

received by a ReceiveEvent in another component.

63

Transformation 29 is essentially the same as Transformation 2. It covers the conditions illustrated
in Figure 53, where there is a protocol between two components that have corresponding events. One
component has at |east one corresponding SendEvent, and the other component has only one corresponding
ReceiveEvent. The component with the SendEvent cannot have a protocol with another component that
has a corresponding ReceiveEvent, while the component with the unique ReceiveEvent may have a

protocol with another component with a corresponding SendEvent.

Component1 Component2

Has 1 or more matching
SendEvents on atransition

Has only 1 matching
ReceiveEvents on atransition

Figure 53 — Example of Transformation 29

Transfor mation 29

" cl, c2: Component, p : Protocol, st1, st2 : StateTable, t1, t2 : Transition, se: SendEvent,
re: ReceiveEvent -
(stl=cl.stateTable Ust2 = c2.stateTable Ut1 T stltransitionsUt21 st2.transitions
U ((c1 = p.initComp U c2 = p.respComp) U (c1 = p.respComp U ¢2 =p.initComp))
Utlstart = true Ut2.start = true Use 1 tl.sendEvents U re = t2.receiveEvent U se.event = re.event
U@($ p2 : Protocol, c3 : Component, st3 : StateTable, t3 : Transition, se2 : SendEvent -
p21 p U((p2.initComp = ¢3 U p2.respComp = ¢2) U (p2.initComp = c2 U p2.respComp = ¢3))
Uc3? clUst3=c3.stateTable Ut3T st3.transitionsUse21 t3.sendEvents
U se2.event = re.event)
U@($t3: Transition, se2: SendEvent - t3* t1 Ut3T stltransitionsUse21 t3.sendEvents
U se2.event = se.event))
b

($ newName: String - se’.convName = newName U re’ .convName = newName)

Transformation 30 is essentialy the same as Transformation 3 and the mirror image to
Transformation 29. The conditions for the transformation to apply are illustrated in Figure 54, where the
SendEvent must be unique and its component is allowed to have a protocol with another component that
has a corresponding ReceiveEvent. The ReceiveEvent in the other component is not required to be unique,

but that component cannot have a protocol with another component with a corresponding SendEvent.

Component1 Component2

Protocol 1

Has only 1 matching
SendEvents on a transition

Has 1 or more matching
ReceiveEvents on atransition

Figure 54 — Example of Transformation 30

Transfor mation 30

" cl, c2: Component, p : Protocol, st1, st2 : StateTable, t1, t2 : Transition, se: SendEvent,

re: ReceiveEvent -

(stl = clstateTable Ust2 = c2.stateTable Ut T stl.transitionsUt21 st2.transitions

U ((c1 = p.initComp U ¢2 = p.respComp) U (c1 = p.respComp U c2 =p.initComp))

Utl.start = true Ut2.start = true Use T tl.sendEvents U re = t2.receiveEvent U se.event = re.event

U @($ p2: Protocol, c3 : Component, st3 : StateTable, t3: Transition, re2 : ReceiveEvent -
p21 p U((p2.initComp = ¢3 U p2.respComp = c1) U (p2.initComp = c1 U p2.respComp = ¢3))
Uc3t c2Ust3=c3.stateTable Ut3T st3.transitions U re2 = t3.receiveEvent U re2.event = se.event)

U@($t3: Transition, re2 : ReceiveEvent - t31 t2Ut31 st2.transitions Ure2 = t3.receiveEvent
Ure2.event = reevent))

b

($ newName: String - s¢’.convName = newName U re’ .convName = newName)

In many cases this transformation will not be sufficient. As mentioned earlier, the user will have
to match up many events that cannot be determined automatically. However, this is not the only problem
that may arise after matching up the conversation halves. One problem that may exist is that there may be
two events matched as the beginning of a conversation, but the rest of the events are out of order or do not
correspond. In this case, an error has been made, either because the definitions of the state tables for the
tasks in the analysis phase were incorrect, or because the user decided to match up a SendEvent with a

ReceiveEvent that was not really intended to correspond as a message passing between them.

Another problem that may result after the component state tables have been annotated is that the
corresponding state tables might have been annotated differently so that the conversation halves do not
match. This will be evident when there is a start transition in a component with either a SendEvent or

ReceiveEvent, and there is no start transition in the state table of the component that participates in the

65

protocol with the corresponding event. This will happen when one of the components has coordination
with other components or other agents that causes different start and end transitions. In this case, the

appropriate start and end labels will need to be added to the state tables so that they match up.

Figure 55 shows one example where two state diagrams have been annotated differently. The
dashed arrows show the two events that should match up as the beginning of conversations. However, only
the first event will be matched. In the top state diagram, thereis no start label for the second transition with
the ReceiveEvent even though in the bottom state table the transition with the corresponding SendEvent is
aready labeled as a start transition. The annotations do not match up is because in the bottom state
diagram there are internal events that take place in the middle of the transitions with externa events,
reguiring two conversations instead of one. When the developer determines that second set of events
match, a start label is added to the second transition in the top state diagram and a new conversation name

is given to the transitions for the new match.

~send(msgl(x), receive(msg2(y),
S (Mmsg10).) o e e(sg(y)ag)E=@
P *.
¥ \‘\4
o receive(msgl(x),ag) _ "send(msg2(y), ag)
S E—» Statel State3 S E+©
A
Acompute(x) inform(y)
» State?

Figure 55 — Two Sate Diagrams Annotated Differently
Since this last process may involve adding new start labels to transitions, Transformation 27
would now be reapplied so that any needed end labels would also be added to the state tables on transitions

in front of the new start transitions.

66

3.3.6 Splitting Transitions with a ReceiveEvent and M ultiple Conver sation Names

As conversations are matched, it may be the case that a transition that has a non-empty set of
protocols can end up with ReceiveEvent that starts one conversation and a SendEvent that starts another
conversation. Transformation 10 only split up transitions that had a ReceiveEvent and at least one
SendEvent with different protocols. Consider the example in Figure 56. The sets above the transitions
represent the set of protocols and the convName for the events. Although both events in the top state
diagram belong to the same protocol, they become the first messages in two different conversations
because of the way that the bottom state diagram was annotated due to the internalMsg(x) event on the

transition between Statel and State?.

{P1}convl {P1}conv2
receive(msgl(x), ag) * send(ack, ag)
° O b 4 A S E >@
r'e a0
{P1}convl {P1}conv2
A send(msgl(x), N internalM sg(x receive(ack,
e N EFA T State2} s £

Figure 56 — Transition with a ReceiveEvent and Multiple Conversation Names

Transformation 31 splits transitions that are labeled as the start of a conversation but have a
ReceiveEvent that starts one conversation and a SendEvent that starts another conversation. As mentioned,
Transformation 10 made sure the only SendEvent on a transition with a ReceiveEvent has the same
protocols. Furthermore, since a transition cannot have multiple SendEvents to the same entity (i.e. the
protocols are the same), then we can also be certain at this point in the transformation process that there can
only be one SendEvent on transitions that have a ReceiveEvent. When Transformation 31 splits up the
transition, anew null state is created that becomes the to state of the original transition, and a new transition
is added from the new null state to the original to state. The ReceiveEvent is |eft on the original transition
with any guard and actions. The single SendEvent is placed on the new transition, and its set of protocols

isthe same asthe original transition. The original transition is given the end label, and the new transition is

67

given the start label. Additionally, if the original transition had the end label, so will the new transition

with the SendEvent.

Transfor mation 31

" c¢: Component, st : StateTable, t : Transition, re: ReceiveEvent -

(st=cstateTable Ut1 st.transitions Ut.start = true Ut.protocols? {} Ut.receiveEvent =reUre? null

U($se: SendEvent - sel tsendEventsUse? null Use.convName? null Use.convName? re.convName))

b

(t'.end = true Ut .sendEvents = {}

U($s: State, t2: Transition, num: String - s1 st.statesUsT st’.states Us.name = “Null” + num
Usactions=[] Ut21 sttransitionsUt21 st .transitions Ut2.receive = null U t2.receiveEvent = null
Ut2.guard = null Ut2.actions =[] Ut2.sends = [] Ut2.sendEvents = [se] U t2.protocols = t.protocols
Ut2.start = true Ut2.from=sUt2to=tto Ut .to= s U (t.end = true P t2.end = true)

UQ($s2: State- s2T o .states Us2t sUs2.name = s.name)))

Continuing with our example from Figure 56, Transformation 31 changes the state diagram to that
shown in Figure 57. Breaking up the transition was straightforward, and now the messages for the two

conversations are on two different transitions, but still in the same order as that of the original transition.

{P1} convl {P1} conv2
S ' 1(x), = "send(ack,
receive(msgl(x), ag) Null1ls send(ack, ag) =0
/ X,
v i
{P1} convl {P1} conv2
" send(msgl(x), ag) Statel N internal M sg(X) State? receive(ack, ag) 0

Figure 57 — Sate Diagrams After Transformation 31
3.3.7 Creating Conver sations

Once the different halves of the conversations have been matched up in the component state
tables, “empty” conversations can be created based on the conversation names given to the transitions. The

conversations will initially be empty because no ConversationHalf objects exist yet that hold the state

68

tables for the initiator and responder parts of the conversation. The ConversationHalfs will be created for
the conversations during the third stage of the transformation process, when the conversations are harvested

from the components.

As events within component state tables are matched as the beginning of conversations, an event
may be matched to several other corresponding events. For every matching pair of events for a given
conversation name, a conversation with a unique name is created between the agents of those components.
As an example, Figure 58 shows four agents and three conversations between them. The conversations are
given unique names because of the compound definition that MaSE uses for conversations”. While each
half of the conversations must send/receive the same messages in the same order, the state tables do not
need to be equivalent. There may be different actions within the states or on the transitions, as well as
different states, etc. In other words, the messages sent and received within the components of Agent2 and
Agent3 must be the same and in the same order so that they both correspond to the messages within
Agentl's component. However, the state tables may still be different and therefore require unique

conversations.

convl-1

Agentl Agent2
conwd-2

Agent4 Agent3
convl-3

Figure 58 — Duplicate Conversations Between Agents
In order to further illustrate this point, Figure 59 shows the state diagrams for the components of
Agent2 and Agent3 annotated for conv1-1 and conv1-2 respectively. The transitions and eventsin the two
state diagrams are identical. However, the actions in the states used to compute y call different functions,

so the state diagrams are not equivalent and therefore require different conversations.

69

 receive(msgl(x), ag) | Statel “send(msg2(y), ag) - @
> y =f1(x) -
« receive(msgl(x), ag) | Statel "send(msg2(y), ag) @
> y =f2(x) -

Figure 59 — State Diagrams with Different Actionsin Satel

3.3.8 Propagating the Set of Conversations

Once al component state tables have been annotated and conversations have been assigned to the
start transitions, the set of conversations needs to be propagated to all of the states and transitions belonging
to the conversations. Transformation 32 does just that and is intended to be applied iteratively, beginning
with all of the start transitions. The transformation no longer needs to be applied when it reaches all

transitions that are labeled as the end of a conversation.

Figure 60 continues with an earlier example to demonstrate how Transformation 32 propagates the
set of conversations from the start transitions until an end transition is reached. The sets above the
transitions represent the set of conversations that the transitions belong to. The S and E labels on the
transitions represent the start and end of conversations respectively. In the example, the two transitions
leaving the Idle state are the start of two different conversations named convl and conv2. The transition
leaving Statel receives the set of conversations from the transition into Statel, which is {convl}. The
transition leaving State2 likewise receives the set { conv2}. The two conversations merge at the Eval state,
and the transitions leaving the Eval state receive {convl, conv2} as conversations, the union of the two

sets.

2 |n MaSE, conversations are defined by two state tables, one for the initiator and one for the responder. Therefore, the
conversations are defined not only by the messages that pass between the agents, but also by the actions that take
placein the states and on the transitions to perform the necessary processing.

70

{conv1} I {conv2}
receive(dol(a), ag) _ de |s receive(do2(b), ag)
Statel E State2
c=f1(a) { convl, conv2} c=f2(b)
£ 0] "send :
{conv1} [c £ 0] "send(sorry, ag) {conv2}
» Eval |«

{convl, conv2}

[c> 0]

Figure 60 — Example of Propagating the Set of Conversations

Transfor mation 32

" c:Component, st : StateTable, t, t2: Transtion, s: State -

(st=cstateTable Ut1 sttransitionsUt21 sttransitionsUsi st.statesUs=t.to Us=t2.from

Ut.end = false)
b

(s'.conversations = s.conversations ? t.conversations

Ut2' .conversations = t2.conversations ? t.conversations)

3.4 Harvesting the Conver sations

Once the component state tables have been fully annotated and the different conversation halves

have been matched, the next stage in the transformation process, highlighted in Figure 61, isto first prepare

the conversations to be removed and then to actually remove them and replace them with an action on a

transition that performs that conversation.

71

Starting Point
« User develops the Role Model
» User defines each Concurrent Task Diagram

» User defines the roles each agent class plays]

Stage 1

« Determine the protocols for external events

« Create agent components from tasks

« Replicate protocolsin Design between components
« Update the protocol set for external eventsin
components

« Transform external eventsinto internal eventsif they
belong to interna protocols /

~

\
Stage 2
« Split up transitions with non-corresponding events
 Determine the protocol set for transitions
* Set start and end attributes for transitions
» Match up conversation start events
* Propagate the conversations /

Stage 3

 Prepare conver sations that exit to multiple
states

* Preparevariablesin conversationsthat belong
to the parent component

« Harvest the conver sations

Figure 61 — Stage 3 in the Transformation Process

3.4.1 Combining Conversation End States

The approach for harvesting the conversations from the component state tables is to replace the
states and transitions that belong to the conversation with a transition that has an action to perform the
conversation. However, if a conversation can end in more than one state, replacing the conversation with a
single transition is impossible without first modifying the state table so that the conversation will always
exit to asingle state. This section describes how this modification is done while preserving the semantics
of the model. Before the individual transformations are presented, consider the following example. Figure
62 illustrates a portion of a state diagram annotated as a conversation with multiple states that the end

transitions exit to (State 2 and State 3).

72

receive(msg2(y), ag)

State?

m
4

"send(msg1(x), ag)

Statel at

d
=

receive(msg3(z), ag)

» State3

m

Figure 62 — Conversation with Multiple Exit Sates

Figure 63 shows the state diagram after the transformations execute. All end transitions now have
the same to state, which is anewly created null state. Additionally, thereis an action on each end transition
that sets a BRANCH variable unique to each transition, and for each end transition there is a corresponding
transition to the original to state with a guard testing the value of the BRANCH variable. The reason
“parent.BRANCH” isused in the action will be explained later. This change in the state diagram maintains
the semantics of the original state diagram. For example, if the receive(msg2(y),ag) ReceiveEvent is
received while in the Wait state, the original state diagram will transition to State2. In the state diagram
after the transformations, if the same receive(msg2(y), ag) is received while in the Wait state, the state
diagram will transition to the new Nulll state. However, the BRANCH variable is set to 1 and there is an

automatic transition from state Null1 to State? with a guard condition “BRANCH ==1".

receive(msg2(y), ag) / parent. BRANCH =1

State2

Statel S ASGnd(mSgl(X), ag); W

ait

State3

receive(msg3(z), ag) / parent. BRANCH = 2

Figure 63 — State Diagram After Transformations
In order to simplify the transformations, this process is broken into three different transformations.

If the transitions out of an annotated conversation are to different states, then the first step isto create a new

73

null state for each exiting transition and set the to state to the new null state. Also a new automatic
transition is created from the null state to the original to state. This change is consistent with the semantics
of the original state table. There is nothing new being done and the flow of actions and events remains the
same. These modifications are found in Transformation 33. Using the example for this section and
beginning with the state diagram in Figure 62, Transformation 33 alters the state table into the form shown

in Figure 64

Transfor mation 33

" c¢:Component, st : StateTable, t, t2: Transition, s, s2 : State -

(st=cstateTableUtT sttransitionsUt21 sttransitionsUsT st.states Ut.end = true
Utto=sUs2T ststatesUt2end=trueUt2to=s2Ut2? tUs2t s

Ut.conversations | t2.conversations)

b

($s3: State, t3: Transition, n: String - s31 st'.statesUs31 st.states U s3.name = (“Null” + n)
Us3.conversations = {} U@($ s4: States- s41 s3Us4T o .states U s4.name = s3.name)
Us3.assignments={} Ut .to=s3Ut31 s .transitionsUt3.from=s3Ut3to=tto

Ut3.receive = null Ut3.receiveEvent = null Ut3.guard = null Ut3.sends={} Ut3.sendEvents = {}
Ut3.actions=[] Ut3.protocols = {} Ut3.conversations = {}

U@($t4: Transition - t41 s transitionsUtdto=s3Ut41 t)

U@($t5: Transition - t51 s’ .transitions Ut5.from=s3Ut5? t3))

receive(msg2(y),
Am02).29) e N > State?
send(msgl(x), .
Statel S (MSgL0). 2g), Wait
receive(msg3(z),
Amsg3@.) £, Nz > State3

Figure 64 — State Diagram After Transformation 33
Now that all transitions that end the conversation exit to null state, the null states need to be
combined so that the conversation exits to a single state. Before this is done, there must be some way to

determine which transition was taken as the conversation completed. Transformation 34 does this by

74

adding an action to each exiting transition of the form “parent. BRANCH = x”, where x is a unique integer
for each transition. The reason “parent. BRANCH” is used in the left hand side of the action is because the
variable being set will be checked within the component after the conversation is removed from it.
Additionally, for each transition out of the null states the guard condition “BRANCH == x” is added, where
X corresponds to the x in the action on the transition into the state. Here, “parent.” does not need to be
prepended to the BRANCH variable because this transition will remain in the component’ s state table and
the BRANCH variable belongs to the component. Continuing with the current example, Transformation 34

would ater the state diagram in Figure 64 into the state diagram shown in Figure 65.

Transfor mation 34

" c:Component, st : StateTable, t, t2: Transition, s, s2 : State -
(st=cstateTable Ut1 sttransitionsUt21 sttransitionsUsi st.statesUt.end=trueUtto=s
Us21 ststatesUt2.end=true Ut2.to=s2 Ut21 t Us2t sUt.conversationsi t2.conversations)
b
($ a: Action, num: String - t'.actions = (t.actions C a) Ualhs = [“parent. BRANCH”] U arhs = [num]
U@($t3: Transition, a2 : Action - t31 s’ .transitionsUt' * t3Ual t3.actions
U (t.conversationsn t2.conversationsn t3.conversations) * {})

U(" t4: Transition - t41 sttransitionsUt4.from=t.to b t4'.guard=“BRANCH =="“ + num))

receive(msg2(y), ag)

/ parent. BRANCH =1 [BRANCH ==1]
B> Nul1 » State?
"send(msgl(x), .
Statel S (MsgL(x). 20) Wait
[BRANCH ==2]
- B> Null2 > State3
receive(msy3(2), ag)

/ parent. BRANCH = 2
Figure 65 — State Diagram After Transformation 34
Now that each exiting transition has been uniquely labeled with an action and there is a guard
condition on the transition out of the null state, Transformation 35 merges all of the null states that the

conversation exits to into a single null state, that becomes the to state of all of the exiting transitions and the

75

from state of al transitions out of the null states. The set of null states that the conversation once exited to
are removed. In the current example, Transformation 35 changes the state diagram in Figure 65 into its

final state, as shown in Figure 66.

Transfor mation 35

" c:Component, st : StateTable, t, t2: Transtion, s, s2: State -

(st=cstateTable Ut1 sttransitionsUt21 sttransitionsUsi st.statesUt.end=trueUtto=s

Us21 ststatesUt2.end=true Ut2.to=s2 Ut21 t Us2t sUt.conversationsi t2.conversations)

b

($s3: State, n: String - 31 ' .statesUs3 1 st.states Us3.name = (“Null” + n) U s3.conversations = {}
Us3.actions=[]Ut.to=s3Ut2 .to=s3U@($ A : State- 41 s’ .statesUs4 ! s3 U sd.name = s3.name)
U(" t3: Transition - (t31 st.transitions U (t3.from=sUt3.from=s2)) b t3 .from=s3))

receive(msg2(y), ag) / parent. BRANCH =1

B State2
[: [BRA
A
State1 [-S—ndMSGI). &),y 44 Null3

A
E [BRA

. State3

receive(msg3(z), ag) / parent. BRANCH = 2

Figure 66 — Sate Diagram After Transformation 35

3.4.2 Preparing Variablesand Parameters

The next step in preparing the state tables for removal of conversations deals with variables and
parameters used within a conversation that are also used outside of that conversation. The semantics of
variables in a conversation are that they are local to the conversation. Therefore, any variable that is
accessed within a conversation and is also used elsewhere in the state table must belong to the “parent”

component.

If atransition that belongs to a conversation has a receive event with parameters that are used

anywhere else besides locally to the conversation, then there must be an action to set each parameter in the

76

parent component. Otherwise, the event will be received in the conversation, but the component and the
other conversations that belong to the component that also must know about the parameters in the event
will not have visihility to it. Transformation 36 covers the case when there is a state that does not belong to
the conversation and has an action that uses the parameter, and Transformation 37 takes care of cases

where there is another transition that does not belong to the conversation and uses that parameter.

All of the transformations in this section use one of two functions defined in Appendix B. The
usedInAction(Parameter, Action) function returnstrue if the parameter is used in the action’ s left hand side,
right hand side, or as a parameter of its right hand side function. The usedinTransition(Parameter,
Transition) function returns true if the parameter is a parameter of any of the events on the transition, used

in the guard condition, or used in an action on the transition.

Transfor mation 36

" c:Component, st : StateTable, t : Transition, re: ReceiveEvent, e: Event, s: State,

a: Action, p : Parameter, param : String -

(st=c.stateTable Ut1 st.transitions Ure = t.receiveEvent Ue=reevent UpT eparameters
Uparam = p.name UsT st.statesUal sactions U (t.conversationsn s.conversations={})
U usedinAction(p, &))

b

($a2: Action - t'.actions = t.actions C a2 U a2.lhs = [“parent.” + param] U a2.rhs = [param])

Transfor mation 37

" c¢: Component, st : StateTable, t, t2: Transition, re: ReceiveEvent, e: Event, p : Parameter,
param: String -

(st=cstateTable UtT st.transitions Ure = t.receiveEvent Ue=reevent Up1 e.parameters
Uparam = p.name Ut21 st.transitions U (t.conversationsn s.conversations = {})

U usedinTransition(p, t2))

b

($a2: Action - t'.actions = t.actions C a2 U a2.lhs = [“parent.” + param] U a2.rhs = [param])\

As an example, consider Figure 67 that shows a state table with an annotated conversation. The

start transition for the conversation receives the message msgl(x). There is aso another transition in the

77

state table that is not part of the conversation with an internal event that has x as one of its parameters.
Therefore, the parameter x must belong to the component, not just to the conversation, so an action is added

to the start transition and the resulting state diagram is shown in Figure 68.

.. C receive(msgl(x), ag) | Statel "send(msg2(y), ag) —
> y =f2(x) =]
State?
acknowledge Ainternal Backup(X, v,
©- g Wait p(x, ¥, ag)
Figure 67 — State Diagram Before Transformation 37
~receive(msgl(x), ag) / parent.x =X | Statel ~send(msg2(y), ag) —
Laxe) g =
y =f2(x) l
State?
acknowledge Ainternal Backup(X, v,
©- g Wait p(x, ¥, ag)

Figure 68 — Sate Diagram After Transformation 37
In addition to parameters in received events in conversations, if a states that belongs to a
conversation has an action that uses a variable and that variable is also used or set anywhere else in the
component, then the variable must be prepended with “parent.” to indicate that it is a variable that belongs
to the parent component. Transformation 38 makes sure this is done when the variable is used in another
state not in the conversation, and Transformation 39 covers the case when the variable is used in a

transition that does not belong to the conversation.

78

Transfor mation 38

" c:Component, st : StateTable, s, S2: State, a, a2 : Action, p : Parameter, param : String -
(st=cstateTable Us] st.statesUal s.actionsUparam=p.nameUs21 st.statesUa21 s2.actions
U(param1 alhsUparam1 arhsUp1 afunction.parameters) U (s.conversationsn s2.conversations={})
U usedinAction(p, a2))

b

(p’.name = “parent.” + param U param’ = p’.name)

Transfor mation 39

" c:Component, st : StateTable, s: State, a: Action, p : Parameter, param : String, t : Transition -
(st=cstateTableUsT st.statesUal s.actionsUparam=p.nameUt1 st.transitions

U(paran1 alhsUparam1 arhsUp1 afunction.parameters) U (s.conversationsn s2.conversations = {})
U usedinTransition(p, t))

b

(p'.name="p.” + param U param’ = p’.name)

Continuing with the previous example, Statel in Figure 68 has an action that computes y based on

the parameter x. Since x and y are used as parameters in the internalBackup(x, y, ag) event, that variable

must belong to the parent component. The resulting state diagram is shown in Figure 69

receive(msgl(x), ag) / parent.x = x Statel "send(msg2(y), ag)
S - 202 E
parent.y = f2(parent.x)
A\ 4
State?

acknowledge Ainternal Backup(x, vy, ag)

A

Wait

Figure 69 — State Diagram After Transformation 39

The next two transformations are essentially the same as Transformation 38 and Transformation

39, except that the actions with the variables to be prepended with “parent.” are on transitions within a

conversation, not states.

79

Transfor mation 40

" c:Component, st : StateTable, t: Transition, s: State, a, a2 : Action, p : Parameter, param : String -
(st=cstateTable Ut1 sttransitionsUal t.actions Uparam=p.nameUsT st.statesUa21 s.actions
U(param1 alhsUparam1 arhsUp1 afunction.parameters) U (t.conversationsn s.conversations={})
U usedInAction(p, a2))

b

(p’.name = “parent.” + param U param’ = p’.name)

Transfor mation 41

" ¢:Component, st : StateTable, a: Action, p : Parameter, param : String, t, t2 : Transition -
(st=cstateTable UtT sttransitionsUal t.actions Uparam=p.nameUt21 st.transitions

U(paran1 alhsUparami arhsUp1 afunction.parameters) U (t.conversationsn s.conversations={})
U usedinTransition(p, t2))

b

(p’ .name = “parent.” + param U param’ = p’.name)

The last condition where special preparations must be made for variables is when there is a
transition that belongs to a conversation that has a SendEvent with a parameter that is used outside of the
annotated conversation. Transformation 42 covers the case when the parameter is also used in an action
within a state that does not belong to the conversation, while Transformation 43 covers the case when the
variable is used in another transition that does not belong to the same conversation. The result of the

transformations is that the parameter is prepended with “parent.” to indicate that it belongs to the parent

component.

Transfor mation 42

" ¢:Component, st : StateTable, t: Transition, se: SendEvent, e: Event, s: State, a: Action,

p : Parameter -

(st=cstateTable Ut1 sttransitionsUsel t.sendEventsUe=seevent Up1 eparametersUsT st.states
Ual sactions U (t.conversationsn s.conversations={}) U usedinAction(p, a))

b

p’.name = “parent.” + p.name

80

Transfor mation 43

" c:Component, st : StateTable, t, t2: Transtion, se: SendEvent, e: Event, p : Parameter -

(st=c.stateTable Ut1 sttransitionsUsel t.sendEventsUe=seevent Up1 e.parameters

Ut21 sttransitions U (t.conversationsn t2.conversations = {}) UusedinTransition(p, t2))

b

p’.name = “parent.” + p.name

Continuing with our example, the parameter y is used in the SendEvent send(msg2(y), ag) on the

transition leaving Statel. However, y is also used in the internal Backup(x, y, ag) event on atransition that

does not belong to the conversation. Transformation 43 changes y in the SendEvent to parent.y to indicate

that it belongs to the parent component. The resulting state diagram is shown in Figure 70.

receive(msgl(x), ag) / parent.x = X Statel Asend(msg2(parent.y), ag)
*S > o =
parent.y = f2(parent.x)
A 4
State?

acknowledge

Ainternal Backup(x, Y, ag)

A

O) Wait

Figure 70 — State Diagram After Transformation 43

3.4.3 Initiator Conversation Halves

In acomponent state table, the initiator half of a conversation isindicated by a start transition with

no ReceiveEvent, but that does have at least one SendEvent. There are two possible cases that must be

considered when dealing with the initiator sides of the conversations. The first case is that the transition

could have a non-empty set of protocols, which also implies there is a single conversation name.

Transformation 44 deals with this case, and creates a transition with a single action that represents the

execution of the conversation. The other case is when a start transition has an empty set of protocols. This

happens when a transition has SendEvents to different recipients or there is a SendEvent that is a multicast.

Transformation 45 handles this case and creates an action on the transition for each conversation that is

81

indicated by the set of conversation names. The following steps will be taken when performing these

transformations:

A new transition is added to component’s state diagram. The transition’s from state is the

start transition’s from state, and the transition’ s to state is the end transition’ s to state.

The guard condition from the initial transition of the conversation is added to the
transition and removed from the conversation’s transition. This is done so that the

conversation is only instantiated if the guard condition istrue.

An action is added to the transition for each conversation that is started on the transition.
The action instantiates each conversation, and when the conversation completes, the

action is done, thus preserving the original semantics of the state table.

The recipient in the first SendEvent in the conversation is added as the first parameter to
the action’s function call, and all variables used in the conversation before they are set, as
defined by isNeeded() in Appendix B, are added as parameters to the action.

Transfor mation 44

" c:Component, st : StateTable, t, t2: Transition, s, s2: State -

(st=cstateTable Ut1 sttransitionsUt21 sttransiionsUs1 st.statesUs21 st.states

Ut.protocols® {} Ut.start = true Ut2.end = true Ut.from = s Ut2.to = s2 Ut.receiveEvent = null

Ut.conversations i t2.conversations U ($ se: SendEvent - sel t.sendEventsUse? null))

b

($! t3: Transition, a: Action, f : FunctionCall, num: String - t31 st’.transitions Ut31 st.transitions

Ut3.from = t.from Ut3.to = t2.to U t3.guard = t.guard Ut’.guard = null Ut3.conversations = {}

Ut3.actions = [a] Ualhs=null Uarhs=f U (#(t.conversations) > 1) b f.name = se.convName + num

U@($t4: Transition, a2 : Action, f2: FunctionCall - t41 st’.transitionsUt4* t3Ua21 t4.actions
Ua2.rhs = f2 Uf2.name = f.name)

U (#(t.conversations) = 1) b f.name = t.conversations]1].name U f parameters[1] = se.recipient

U(" p:Parameter - isNeeded(p, t.conversations, st) b f'.parameters = f.parameters C p))

In order to more fully describe Transformation 44, consider the state diagram shown in Figure 71.
The set above the transitions indi cate the conversations to which the transitions belong. The transition from
the start state to Statel is indicated as the start of the conversation, and since there is only a SendEvent and

no ReceiveEvent, it must be the initiator half of the conversation. Figure 52 shows the state diagram after

82

Transformation 44 creates the new transition from the start state to the end state. The action was given the
name of the conversation because there was a single conversation being started. The variable x is passed as
a parameter for the action to perform the conversation because x is sent in a message before its value has
been determined by an action in the conversation. Similarly, variables used in an action, either in a state or
on atransition, before they have been set within the conversation will also be provided as parameters to the
function for that conversation. The exception to this rule is when avariable is used before it is set, but was
prepended with “parent.” by one of the earlier transformations. In this case, the variable does not need to

be provided when the conversation is instantiated, because the variable is already referencing the parent

component.

{conv1-1} {conv1-1}

o "send(msgl(x), ag) | Statel | receive(msg2(y).ag)

@ O g — #@
Figure 71 — Sate Diagram Before Transfor mation 44

{conv1-1} {conv1-1}

o "send(msgl(x), ag) | Statel | receve(msg2(y).ag) . -

J g | I

/ convl1-1(ag, x)

Figure 72 — State Diagram After Transformation 44

The next example demonstrates how Transformation 44 creates a transition and an action if the
start transition has a non-empty protocols set, but there are multiple conversations in its conversations set.
This means that the SendEvent matched up with multiple ReceiveEvents as the start of the conversation.
Figure 74 shows the state diagram after Transformation 44 has added the transition from the start state to
the end state with the action named convl-1 2. There is a single action placed on the transition even
though there are two possibilities for which conversation actually takes place when the action is executed.
While the responder halves state diagrams may not be identical, from the initiator’'s point of view the

messages they pass are the same so only one action is necessary. The recipient of the first SendEvent (ag)

83

is supplied as a parameter to the function call and will be the parameter that actually determines which

conversation is started.

{convl-1, conv1-2} {conv1-1, convl1-2}
o "send(msgl(x), ag) | Statel | receive(msg2(y), ag)

') Ll

m
) 4
®

Figure 73 — Sate Diagram Before Transfor mation 44

{convl-1, conv1-2} {conv1-1, convl1-2}
o "send(msgl(x), ag) | Statel | receive(msg2(y), ag)

') Ll

m
) 4
[J

/ convl-1 2(ag, X)

Figure 74 — Sate Diagram After Transformation 44

Transfor mation 45

" c¢:Component, st : StateTable, t, t2: Transition, s, s2 : State -
(st=cstateTableUtT sttransitionsUs] st.statesUs21 st.states Ut.protocols = {} Ut.start = true
Ut.end = true Ut.from = sUt.to = s2 U t.receiveEvent = null Ut.sendEventst {})
b
($! t3: Transition - t31 st .transitionsUt31 st.transitions Ut3.from = s Ut3.to = 2
Ut3.guard = t.guard Ut .guard = null Ut3.conversations = {}
U(" cname: String - (cname t.convNames
U($se: SendEvent - sel t.sendEvents U se.convName = cname))
b
($ a: Action, f : FunctionCall, num: String - t3'.actions = t3.actions C aUalhs=null Uarhs=f
U (#(se.conversations) > 1) P f.name = se.convName + num
U@($t4: Transition, a2 : Action, 2 : FunctionCall - t41 st'.transitionsUt4* t3Ua21 t4.actions
Ua2.rhs = f2 Uf2.name = f.name)
U (#(se.conversations) = 1) P f.name = se.conversations1].name U f.parameters[1] = se.recipient

U(" p:Parameter - isNeeded(p, se.conversations, st) b ' .parameters = f.parametersC p))))

Transformation 45 is also be described by way of an example. Figure 75 shows a ssimple state

diagram where there is a transition with SendEvents that start different conversations. The sets above the

transitions are the conversations sets for the SendEvents, not the transitions. The first SendEvent starts
conv1-1, while the second SendEvent starts either conv2-1 or conv2-2 based on ag2, the recipient. Figure
76 shows the state diagram after Transformation 45 adds the new transition from the start state to the end
state. The new transition has two actions, one named conv1-1 that was added for the first SendEvent on the
original transition, and the other named conv2-1 2 that was added for the second SendEvent on the original
transition with conversations conv2-1 and conv2-2. Only one action was used for the latter for the same

reasons previously described.

{conv1-1} {conv2-1, conv2-2}

S send(msgl(x), ag); send(msg2(y), ag2) E @
Figure 75 — Sate Diagram Before Transformation 45
{conv1-1} {conv2-1, conv2-2}
S "send(msgl(x), ag); send(msg2(y), ag2) =G

/ conv1-1(ag, x); conv2-1 2(ag2,y)

Figure 76 — State Diagram After Transformation 45

3.4.4 Responder Conversation Halves

In a component state table, the responder half of a conversation is indicated by a transition with
the start label that also has a ReceiveEvent. For responder conversation halves, Transformation 46 creates

atransition and an action to instantiate the conversation as follows:

A new transition is added to component’s state diagram. The transition’s from state is the
from state of the transition with the start label. The transition’s to state is the to state of
the end transition in the conversation.

The guard condition from the initial transition of the conversation is added to the

transition and removed from the original transition.

85

The external ReceiveEvent from the initial transition of the conversation is added to the
transition. This means that when the component receives this first message it will know

to start the corresponding conversation.

An action is added to the transition to create the conversation. Again, the conversation
ends before the action is finished and the next state is entered.

All parameters in the conversation that are used somewhere else, as defined by the

isNeeded() function in Appendix B, are added as parameters to the action.

Transfor mation 46

" c:Component, st : StateTable, t, t2: Transtion, s, s2: State, re: RecelveEvent, cid : String -

(st=cstateTable Ut1 sttransitionsUt21 sttransitionsUs] st.statesUs21 st.states

Ut.conversations | t2.conversations Ut.start = true Ut2.end = true Ut.from = sUt2.to = 2

Ure = t.receiveEvent Ure? null)

b

($t3: Transition, a: Action, f : FunctionCall, num: String - t31 st’.transitions U t3.from = t.from

Ut3.to = t2.to Ut3.guard = t.guard Ut .guard = null Ut3.conviDs = {} Ut3.receiveEvent = t.receiveEvent

Ut3 .actions = t3.actions C aUalhs=null Uarhs=f

U (#(t.conversations) > 1) P f.name = re.convName + num

U@($ t4: Transition, a2 : Action, f2: FunctionCall - t41 st'.transitionsUt4* t3Ua21 t4.actions
Ua2.rhs = f2 Uf2.name = f.name)

U (#(t.conversations) = 1) b f.name = t.conversations[1].name U f parameters[1] = re.sender

U(" p:Parameter - isNeeded(p, t.conversations, st) b ' .parameters = f.parameters C p))

An example is used to more fully explain Transformation 46. Figure 77 show a state diagram that
has a transition with a ReceiveEvent that is the start of conversation convl-1. The sets above the
transitions show the set of conversations to which the transitions belong. Figure 78 shows the state
diagram after Transformation 46 adds the new transition from the start state to the end state with the
original ReceiveEvent and the action to start convl-1. The ReceiveEvent is added to the transition only to
indicate that the external message has arrived. Without the ReceiveEvent on the new transition, there is no
trigger that associates the receipt of the message to the transition being activated. The component itself
does not handle the message, but instead calls the function that performs the conversation. The

conversation will handle the message as the first message in the conversation.

86

{convl1-1} {conv1-1}
o receive(msgl(x), ag) | Statel “send(msg2(y), ag)
> "Ty=19 E-®

Figure 77 — Sate Diagram Before Transformation 46

{convl1-1} {conv1-1}
o receive(msgl(x), ag) | Statel "send(msg2(y), ag)
= 1y =f(x)

m
) 4
[J

receive(msgl(x), ag)/convl-1(ag)

Figure 78 — Sate Diagram After Transformation 46
Figure 79 shows the same state diagram as in the previous example, but this time the
ReceiveEvent has been matched to two different SendEvents and therefore there are two conversations
(conv1-1 and conv1-2) that may be started by receiving the msgl(x) message from the start state. Asinthe
case with the initiator conversations, a single transition and single action are used because from this agent’s

point of view the conversations are the same. Figure 80 shows that state table after Transformation 46.

{convl-1, convl-2} {conv1-1, convl-2}
o receive(msgl(x), ag) | Statel “send(msg2(y), ag) @
'S > | B

y =f(x)
Figure 79 — Sate Diagram Before Transformation 46

{convl-1, convl-2} {conv1-1, convl1-2}
o receive(msgl(x), ag) | Statel rsend(msg2(y), ag)
> Ty = ol

receive(msgl(x), ag)/convl-1_2(ag)

Figure 80 — Sate Diagram After Transformation 46

87

3.4.5 Moving States and Transitions From Componentsto Conver sations

At this point every annotated conversation in the component state tables has a transition with an
action to replace the states and transitions of the conversations. Transformation 47 creates the
ConversationHalfs that contain the state tables for the initiator and responder halves of the conversations.
The states and transitions that belong to those ConversationHalfs will then be removed from the component
state tables and added to the ConversationHalf state tables by Transformation 48 through Transformation

50.

Transfor mation 47

" ¢: Component, st : StateTable, t: Transition, conv : Conversation -
(st=cstateTable UtT st.transitions Ut.start = true Uconv 1 t.conversations)
b

($ ch: ConversationHalf - ch1 ¢’.convs U ch.convID = conv.name

U ((t.receiveEvent = null) b conv.initiator = ch) U ((t.receiveEvent * null) b conv.responder = ch))

Transformation 48 duplicates states from component state tables for every conversation half to
which they belong. Since states and transitions can belong to more than one conversation, as they are
added to the conversation half’ s state table the conversation is removed from its set of conversations. Only
when that set is empty (i.e., when it has been added to the state tables of all necessary conversation halves)

are the state or transition removed from the component state table.

Transfor mation 48

" ¢: Component, conv: Conversation, ch : ConversationHalf, s, st2 : StateTable, s: State -
(st = c.stateTable Ust2 = ch.stateTable Uch T c.convsUsT st.states

U (ch = conv.initiator U ch = conv.responder) Uconv 1 s.conversations)

b

(sT st2".statesUconv | s .conversations U ((#(s .conversations) =0) b s | s’ .states))

When a transition has SendEvents that belong to different conversations it is handled as a specia

case. Transformation 49 states that if the transition has SendEvents that have different conversations, then

88

atransition with only the SendEvents that belong to that conversation half will be added to the conversation
half’s state table. If there are no SendEvents with different conversations, then Transformation 50 adds the

entire transition to the conversation half’ s state table.

Transfor mation 49

" ¢: Component, conv : Conversation, ch : ConversationHalf, st, st2 : StateTable, t : Transition -
(st = c.stateTable Ust2 = ch.stateTable UchT c.convsUtT c.transitions

U (ch = conv.initiator U ch = conv.responder) Uconv 1 t.conversations Ut.protocols = {})

b

($t2: Transition - t21 st2' .transitions Ut2.guard = null Ut2.receive = null Ut2.receiveEvent = null
Ut2.sends={} Ut2.actions=[] Ut2.start = true Ut2.end = true

U(" se:SendEvent - (sel t.sendEventsUconv 1 se3.conversations) b sel t2.sendEvents)

Uconv i t'.conversations U ((#(t' .conversations) == 0) b t' | st'.transitions))

Transfor mation 50

" c¢: Component, conv : Conversation, ch : ConversationHalf, st, st2 : StateTable, t : Transition -
(st = c.stateTable Ust2 = ch.stateTable Uch T c.convsUt1 st.transitions

U (ch = conv.initiator U ch = conv.responder) Uconv 1 t.conversations Ut.protocols?® {})

b

(T st2 .transitionsUcid | t'.conversations U ((#(t' .conversations) == 0) b t' 1 st’.transitions))

As the transitions are added to the state tables of the conversation halves, the events on the
transitions are either ReceiveEvents or SendEvents. However, events in the Communication Class
Diagrams that make up the conversations use events in the receive and sends clauses. Therefore,

Transformation 51 changes any ReceiveEvent into an Event in the receive clause, and Transformation 52

changes SendEvents into Events in the sends clause.

89

Transfor mation 51

" ch: ConversationHalf, st : StateTable, t : Transition, re: ReceiveEvent -
(st=ch.stateTable Ut T st.transitions Ure = t.receiveEvent Ure® null)
b

(t' .receive = re.event Ut' .receiveEvent = null)

Transfor mation 52

" ch: ConversationHalf, st : StateTable, t : Transition, se: SendEvent -
(st=ch.stateTable Ut1 st.transitionsUsel t.sendEventsUse?! null)
[5)

(seevent] t.sendsUsel t'.sendEvents)

The last step in the transformation process is to add the start and end states to the state tables of
the conversation halves. These are simple transformations. Whenever a transition is a start transition, then
Transformation 53 creates a start state that is that transition’s from state. Likewise, if atransition is hasthe

end label, then Transformation 54 creates an end state that is that transition’s to state.

Transfor mation 53

" ch: ConversationHalf, st : StateTable, t : Transition -
(st=ch.stateTable Ut1 st.transitions Ut.start = true)
[5)

($s: State - sname="“start” UsT o .states Ut’ .from =)

Transfor mation 54

" ch: ConversationHalf, st : StateTable, t : Transition -
(st = ch.stateTable UtT st.transitions Ut.end = true)
b

($s: State- sname="end’ Usl o .statesUt' .to=s)

90

3.5 Summary

This chapter used formal predicate logic equations to present the transformations that generate the
MaSE design models from the analysis models. The transformation system was broken down into a three-
stage process. The first stage created the agent components from the concurrent tasks based on the roles
given to the agents in the Agent Class Diagram. Other activities in this stage include determining protocols
for eterna events in the Concurrent Task Diagrams, replicating protocols in the design, and transforming
external eventsinto internal eventsin the componentsif the designer determines the protocol they belong to
isinternal. The second stage annotated component state diagrams for the start and end of conversations
and matching the events in the different components that start the conversations. The last stage added the
states and transitions from the components to their appropriate conversation halves, removing them from
the components and replacing them with a transition and an action that performed the conversation.
Chapter 1V describes how the transformation system was demonstrated by implementing them in AFIT's

agentTool.

91

V. Demonstration

Chapter 111 used predicate logic equations to define aformal transformation system that creates the
MaSE design models based on the analysis models. This chapter outlines how the transformations were
implemented and integrated with AFIT’ s agentTool multiagent development environment. Section 4.1
provides an overview of the three-stage transformation process. Section 4.2 details how the
transformations were implemented in agentTool. Finally, Section 4.3 steps through an example and
illustrates how the transformations incrementally create the agent components and conversations from the

Role Maodel and Concurrent Task Diagrams.

4.1 Transformation System Overview

Chapter |11 described, in detail, how the transformation system can be thought of as the three-stage
process shown in Figure 81. Before the transformations can take place, the developer must analyze the
system and develop a Role Model, which defines the roles that are present in the system, and a set of
concurrent tasks, which the roles perform to accomplish their goals. The developer must also decide which
agent classes will be in the system and the roles that each agent class will play. During the first stage of the
transformation process, the components for the agent classes are created based on the roles assigned by the
developer. The set of protocols for each external event is also determined. The second stage centers
around annotating the component state diagrams and matching external events in the different components
that become the initial messages of a conversation. During the last stage of the transformation process the
component state diagrams are prepared for the removal of the states and transitions that belong to
conversations. They are then removed and added to the state diagrams of the corresponding conversation
halves. As they are removed from the components they are replaced with a single transition that has an

action that starts the conversation.

92

Starting Point

* User develops the Role Model

« User defines each Concurrent Task Diagram
« User defines the roles each agent class plays

&

Stage 1

components

belong to internal protocols

« Determine the protocols for external events

« Create agent components from tasks

« Replicate protocols in Design between components
« Update the protocol set for external eventsin

« Transform external eventsinto internal eventsif they

\

/

Figure 81—

4.2 Integration with agentT ool

In order to demonstrate the transformations defined in Chapter 111, a transformation system was
implemented as part of the agentTool development environment using the Java programming language.
The implementation maintained the three-stage approach. Figure 82 shows the menu that was added to
agentTool’s menu bar. The menu item Add Agent Components corresponds to the first stage of the
transformation process, Annotate Component Sate Diagrams corresponds to the second stage, and Create
Conversations corresponds to the third stage. If the developer selects Create Conversations from the menu
without having previously selected the first two, then they are done automatically before the conversations

are created. As previously stated, before the transformations can take place the Role Model must already

~
Stage 2

« Split up transitions with non-corresponding events
* Determine the protocol set for transitions
* Set start and end attributes for transitions
» Match up conversation start events

* Propagate the conversations

/

Stage 3

* Prepare conversations that exit to multiple states
* Prepare variables in conversations that belong to

the parent component

 Harvest the conversations

Three Stages of the Transformation Process

exist and there must be at least one agent class that plays each role.

93

Egjj'agenﬂuul _ O x|
File Knowledge Base Warify CodeGen Fans tior

Currently Selected ,7 Add Agent Components
Annotate Component State Diagrams

rGuaI Hierarchy |’Use Cases | Seq Create Conversations jagram rDepIuyment

Add Goal | =

agert Toolwl.8
Readyr

[4]

I [*]

Figure 82 — Transformation Menu in agentTool
4.2.1 Transformation Classes

To implement the transformations, Java classes were defined for the transformations. In most
instances each transformation class represents a single transformation from Chapter I1l. However, there
were times when it was possible to combine several transformations into a single class. For example,
Transformation 19 through Transformation 24 all add start labels to transitions. A class named
Transform19 was created that represented all of these transformations. When a transformation class is
instantiated, the constructor calls its execute method, which is where the transformation is actually

performed.

When the user makes a selection from the transformation menu, a class is instantiated that
represents that stage of the transformation process, which in turn creates instances of the transformation
classes that execute during that stage. For example, when the user selects Create Components from the
transformation menu, a class named Stagel is instantiated. Upon creation, the Stagel object instantiates, in

order, the classes implementing Transformation 1 through Transformation 9.

94

The transformations are formally defined in Chapter 1l using universal and existential
quantification. In most cases, a loop is used to implement universal quantification over a variable, and a
method call is used to implement existential quantification. Therefore, the transformations that use
universal quantification over several variables have severa nested loops that drill down through the tree to
test each combination of the variables. An alternate approach would have been to use a visitor pattern [14]
to walk the tree, but implementing the transformations would have been more difficult and harder to

understand.

4.2.2 Model Classes

The architectural structure of agentTool already had classes for roles, tasks, state tables, etc.
These are referred to as the ATsystem classes. However, a new package was created with Java classes for
each of the types defined in Chapter Il and used in the transformations in Chapter 111. This was done for
two reasons. First, this made implementing the transformations straightforward. Many of the
transformations are non-trivial and translating the formal representations into code was much easier using
classes that had the same names and attributes. Secondly, the ATsystem classes were created only to hold
the information needed to visually represent the models and did not have the required granularity of detail
reguired to perform the transformations. For example, the transmissions on a transition are represented by
a single string. They do not distinguish between different events or whether the events are external or
internal, much less the parameters of the events. Creating the new classes in a separate package kept the
transformations loosely coupled to the existing architectural design for agentTool, whereas altering the
ATsystem classes would have risked injecting errors into the existing code. Each new class created for the
transformations held a pointer to the corresponding ATsystem class, and made updates to it whenever

necessary.

4.3 Example

This section steps through an example to demonstrate how the transformation system implemented

in agentTool creates agent components and conversations from the Role Model and the Concurrent Task

95

Diagrams. The example does not demonstrate every possible situation that may arise, but demonstrates
many of the most common situations encountered while transforming a well-analyzed multiagent system.
This section also describes the mechanism for prompting the user for design decisions necessary to

complete the transformation process.

4.3.1 Starting Point — Role Model and Initial Agent Classes

The Role Model for a multiagent system is shown in Figure 83, which is the starting point for the
transformation process. The Role Model is fairly simple, with only three roles, each with a single task.
The Manager role is responsible for bidding out certain search tasks using the ContractNet protocol. The
Bidder role is responsible for bidding on the different tasks and then requesting a search from the Searcher
role via the SearchRequest protocol. The Searcher role uses mobility to search for the request from the

Bidder.

E;i agentT ool =]

File Knowledge Base Werifi CodeGen Transformation

Currently Selected | |

Goal Hierarchy rUs_e Cases rSeq_ Diagram |/Rnle Diagram rngent Template Diagram |/Depluym,bnt

| Add Role
Add Task =
AddProtocol

Manager Bidder Searcher

Caontractiet GJOE/ SearchRequest @

Figure 83 — Role Model

agert Tool vl 8
Ready

ulfillSearchRequest:

4]

[

Figure 84 shows the state diagram that represents the Manager rol€’s Fulfill SearchRequests task.
The task is basically the initiator half of the Contract Net protocol. When there is a task to bid out, a

multicast announcement is sent to the list of bidders. The manager then accepts bids until a set time has

96

expired. The manager determines the winner, sending that agent a message to start the task. Every other
rolein thelist is sent a sorry message. The manager then waits for the results from the bidder, displaying

them when they are received.

File Enmyledpe Bage ety CudeGen Tranefonreation

Currently Salecied | |

| GoalHierarchy Use Cases Sew Diagram | Role Diagram Task Panel | Aient Tenplate Diaaram Deploinedt |

A Siaie: [Mz=k]
i
T e L e R T e EE eI
= . ittt
VRCE VPR RS 0N, Bidner il sal A Rase) it orRmsults

g Tacd vl 3
Feutye
gn;%‘l;mﬁh hegll'l *gandizormylaskl, =losare=]

pidLizk=newlizl]
=gefTimerdinme)
e,
.

J"‘:rnnn:l[annnuiﬁ:u\?_lI=r=li|_‘= bidders=)

;]
|Irﬂ:|rrri_l:lsars

ieialvelanmvlecds winneibiddai)

o
wraitF orinnar
weaitF orBids |
- "H
ff b ki Asand(=ian k. wiriner, il r.hidder
Py .I. |Iin'|EE iradit] sendistan i=sk, arieesl), winnar. BN
-~ A M\\- [eablate [
| recelvalaBIataEE, mEn,a0) s |
1 1
*z and{ackn pededge, @))

“nkwinner = evaluatEEdsidLEn
lnzars = gedBidoaraghldLst
upiak Insars = emovaiwinner.bidderlosers)

bit==G0sl,a0e
BidLizl=addbid bidli=])

Figure 84 — Fulfill SearchRequest Task for the Manager Role
The Bid task for the Bidder role is shown in Figure 85. This task is started automatically and
enters an idle state until it receives announcement for a new task. The bidder then determines if it should
submit a bid on the task, sending the bid if it is acceptable. Once the bid has been placed, the bidder waits
for a message from the manager that indicates if it won the task or not. If it did not, then it transitions back
to the idle state. However, if it receives a start message, then it sends a message to the searcher to do the
search. When it receives the results from the searcher, they are forwarded back to the manager that

reguested them.

97

File Knitdedge Base ef Casaten Tranzfatmation

Currently Selectes |

Gl Wieraciy | Lise Cases | Seq Diagrem | Role Diagram | Task Panet | Agent Tempeate Diagram | Deployment |

i

| AwTrans st e sandonytessiry gy
.
recennfrEsLte), Searthi"sendnniEsus), mor
— T E—
T
3;:;001'"]3 J‘ . - L - - raceiyelstamiask oo, mﬂ"]“se‘“'ﬂ[-a':h’ll;ﬁ“é"u[l?.mﬂr.l;59“'1':'10593@.39&”"1:'
recEUeiannouR el ask),men H T :

. T receivEDmask,nE) |

allF ot BlResu
(M) b

prapanaHid e gl e kn
rostErosT P efommilask] [bid==rdiaBid[bask,cosl), mar] watlForc knowtedae
bid=accaptabiibieosl jask

fge rror

=
|

Figure 85 — Bid Task for the Bidder Role
Figure 86 defines the Search task for the Searcher role. The task is started upon receipt of a
do(task) message from a bidder. The searcher then determines if it needs to move in order to do the task.
If it does, then it attempts to move. If the move fails, then it sends a sorry message to the bidder.
However, if the move is successful or the searcher doesn't need to move, then it searches based on the
given task. The searcher then sends the results back to the bidder if there are any, or sends a sorry message

if there are none.

Another important requirement for the transformation process to begin is that the developer must
determine the initial agent classes and the roles they play. For this example, one SearchManager agent
class plays the Manager role and the MobileSearcher agent class plays both the Bidder and Searcher roles.
This will be important as the agent components are created during the first stage of the transformation

process. Theinitial Agent Class Diagram is shown in Figure 87.

98

[(_,:lageanool [_[O] x|

File Knowledge Base Werify CodeGen Transformation

Currently Selected | |

Goal Hierarchy | Use Cases | Seq Diagram | Rale Diagram | Task Panel | Agent Template Diagram | Deployment

| Add State
Add Trans

receive{daltagk) hidder

| moverleeded
—_————— tryhlove |
agmtToolvlg dest=searchDestinationitasky [needMave] |
currentLocation=checkLocation() |<m0\red,reason»:move(dest) |
needMove=compare(dest currentLocation)

[WMOT ngediove]

| I [MNOT moved*send(gorryraas on, hidder)

=results reason==finditask)

infolresults), hidder)

[reason==nu

[reasonl=null*send(sorryireason) bidden

[4]

[¥]
Figure 86 — Search Task for the Searcher Role
E%g agentT ool I [=]
File knowledge Base Werify CodeGen Transformation
Currently Selected | |
Ruie Diagram rngem Template Diagram rﬁgpmymenf|
[Wewagem | | GoalMerarcy | UseCases | SeaDiagram |
| Add Comy |
SearchManager MobileSearcher
g&:;foolvl.s Manager Bidder
Search
] |

Figure 87 —Initial Agent Class Diagram

99

4.3.2 Stage One — Creating Agent Components

Now that the Role Model and the initial Agent Class Diagram have been defined, the first stage of
the transformation process can begin. This stage will determine the protocols for external events, create
agent components based on the roles they play, and allow the user to determine the mode of some protocols

in the design.

4.3.2.1 Deter mining the Protocols for External Events

The first transformations in stage one try to identify the protocols for the external events. In most
cases, this process requires no input from the user. However, in some instances it is impossible to
automatically determine in which protocols the events were meant to belong. Before the developer is asked
to make any decisions about protocols for events, the dialog in Figure 88 is displayed as information on

what is about to happen next.

&

I]QL:: It was impossible to determine for some
i external events which protocols they belong to.

For each of these pvents you will be asked to
determine the appropriate set of protocols.

Figure 88 — Ambiguous Protocols Dialog

In the example, there are two events for which the transformations could not automatically
determine the protocols. The Bid task for the Bidder role receives two different externa sorry events, one
from the Manager role and another from the Searcher role. The developer is asked to make the decision for
the events one at atime. As shown in Figure 89, the transition with the event in question is highlighted in
the Bid task and another window is displayed for the developer to select the protocols for that event. The
first external event presented to the developer is the receive(sorry(task), mgr) event. This event belongs to

the ContractNet protocol between the Manager role and the Bidder role, so that protocol is chosen.

100

[C_,J agentTool
File

Knowledge Base

[=1E3

Werify CodeGen Transformation

Currently Selected |

Goal Hierarchy | Use Cases | Seq Diagram | Role Diagram | Task Panel | Agent Template Diagram | Deployment

| Add State
Add Trans

agerd Tool wl &
Feady

Saving MADL file. ..
... Bawe Complete

EC_,J Event's Protocols

Choose the pr

receive(sorryireason), searchi*sendisorryireason), mgr

receive(infofresults), searchi*send(infofresults), mar) |waitForSearchResults

receive(startitask costy, mortsend{acknowledge, man;sendidoftask

receiweiannouncedask) mar

eceiveisorry(task),mor waitForBidResult

[NOT] bid]

receiveiackn

- waitF orAcknowledge

wrledge,mar)

otocols the Receive Event: receive{sorryitask), mgr) belongs to.
The transition is highlighted in the task diagram.

Protocols Event's Protocols
SearchRequest Cantracthlet

=» Add =>

<= Delete...

[<]

I3

Finish |

Figure 89 — First Protocol Decision

The next external event for which the developer must determine the protocols is the

receive(sorry(reason)

,Search) message, shown in Figure 90. Since that event belongs to the SearchRequest

protocol between the Bidder and Searcher roles, that is the protocol selected.

101

['ur| ngECA T 00k M=
Fika Encwdedige Bage Varify Codazen Trarsforrmsdon

Curvasy Selactod |
i :r-....i -r - Jﬁ’i'i"jTﬂKPﬂmIf'”-' P r 5
| AdiStae |
Al Trans | . TecahBis0my[ieasn], saethrsendizorryreason), mor
e | receivelltheaulla), seatchl sendinmresul=), mon s oSearthRez s
e
e Tl el B T, Do
Rty b SR recelyeistatiaskcost, mgr.l'sandn:a:kn}ﬁenge.mm;smdn:dn:u:taslcl.searm:l
Smarg MAML £ o e
.. i Cange recebefannougeelask men - -
e recaivatsorrEskmgn |waEtForBldResult
|moT bid)
L:i Ewenl®s Pinlacols B I rece e ackn sl ade, mgn
Chiomse e probocdls the Receie Beanl 1eceimsnrmayreason), seanch) belonns o AFarBEEosEdga
The transiion is: highibghted in the (ask dagram.
Profncols Event's Prafocets
\zonbacibet salchReguest |
= hald == |
= Dehate...
=]
3
Fnish |

Figure 90 — Second Protocol Decision

4.3.2.2 Determining the Mode for the Sear chRequest Protocol

Since the developer determined that a single agent class could play both the Bidder and Searcher
roles, the developer must decide if the protocols between tasks of those roles are still external, or if they are
now meant to be internal communication. The SearchRequest protocol is the only protocol that falls into
this category, and is meant to be internal communication. When the dialog shown in Figure 91 is
displayed, the “Internal” button is chosen, and every event that belongs to the SearchRequest protocol in

the Bid and Search components are changed into internal events.

102

Egg Choose Protocol Mode

Agent: MobileSearcher is playing hoth
Hole: Bidder and Role: Search.
Choose the mode of Protocol: SearchRequest in the design.

If the protocol is internal, all events that belong to
the protocol will hbecome imternal events.
Otherwise, they will remain the same.

‘ Ihternal. || External |

Figure 91 — Dialog to Choose a Protocol’ s Mode
When determining the mode for protocols in the design phase, it is possible for the user to make a
mistake. Once the developer is finished determining the mode for protocols, if any event belongs to both
an external and internal protocol, an error has been made. The developer will be notified, all of the
protocols for that event will be reset to external, and the developer will be asked again to determine the

mode for the protocols.

4.3.2.3 Agent Components

The result of the first stage of the transformation process is that components are created for the
agent classes based on the roles they play. The state diagram for the component is initially the same as that
of the task it implements. If there are any external events that belong to protocols that the developer

determines to be internal communication, the events are transformed into internal events.

In the example, a component named Fulfill SearchRequests was created for the SearchManager
agent. The component’s state diagram is the same as the Manager role’ s Fulfill SearchRequests task, so it is
not shown again. Figure 92 shows the state diagram for the Bid component created for the MobileSearcher
agent. Every event that belongs to the SearchRequest protocol has been changed into an internal event.
Every remaining external event belongs to the ContractNet protocol with the SearchManager agent. Figure
93 shows the Search task that was created for the MobileSearcher agent. Since every event was determined
to belong to the SearchRequest protocol and that protocol was then determined to be an interna event,

every event within the component was changed into an internal event.

103

AQarE Mol Seartier |

prepareEid

cosl= cosfToPerormidask]
E'id = al:l:spiahili‘htl:usmashl

racabE[Eekigwange, mon

[wid]"sendiaBidlask, eost mod = walFarhrknowladge

Figure 92 — MobileSearcher Agent’s Bid Component

_ agentT ool

Agent: MohileSearcher

dodtask)

moverleeded

agert Tool wl.8

Ready dest= searchDestination(task)

Savring BIAML file..
... Bawme Coonplete

currentLocation = checkLocationd

needhlove = compareidest, currentLocation)

[MOT needmove]

search

[needMove] | tryhove |

=moved, reason= = moveidest) |

[MOT moved)isarryireason)

[reasonl=nulll*sarry(reason

=results, reason= = finditask)

| [reason==null]*info{results)

Figure 93 — MobileSearcher Agent’s Search Component

104

4.3.3 Stage Two — Annotating Component State Diagrams

Now that every agent now has components with state diagrams, the second stage focuses on
annotating the components to show where conversations will begin and end. This stage will a'so match up

the events that become the initial messages of the conversations.

4.3.3.1 Matching up the First M essages of the Conver sations

Although not the first transformations that take place during phase two of the transformation
process, the first interaction requires the developer to determine if events in different components
correspond. In most cases this can be done automatically, but as with determining the protocols for events,
there are some cases where only the developer can make the determination. In these cases, a window is
displayed with the state diagrams of both components that contain the events in question, as well as the
Role Model from the analysis phase for reference. The transitions in the state diagrams that contain the

events are highlighted, and developer is asked if the events correspond to each other.

In the example, there are three cases where the transformations can not automatically determine
that the events corresponded. The first case, shown in Figure 94, involves the aBid(task, cost) message
from the Bid component of the MobileSearcher agent to the FulfillSearchRequests component of the

SearchManager agent. These events were intended to correspond, so the “YES” option is chosen.

The two other cases, shown in Figure 95 and Figure 96, involve the start(task, cost) and
sorry(task) messages respectively, both from the Fulfill SearchRequest component of the SearchManager
agent to the Bid component of the MobileSearcher agent. Asin the first case, these events were also meant

to correspond, so the“YES’ option was chosen for each case.

105

el = T Pa i ista sk
b= aeceqtabi pcast, k)

‘sEnoacinwkogeag
raEehea B (isa ko sl ag)

*hidz =oel, age
hicLisi= addibid, bLish

fomare = g bBid o e bi dlisth
fomane = rermaTeein nerhidder, los

pd i = Gt N s RIS
Ll

Figure 95 — Second Event Match Decision

106

| meenaisammazany biidetinapl simazon EFo iResuts
g mmm-.l]a%l_ ~AEanEe]
Illﬁllllmiili.

-mmeua-cmwu%e.wnw D

ihi doders=] —1

hFuM\mv
s iy —,.—r'
" ke p——] oo

Bgel; MoletaSear, ke, Comspose; Bid

T v

"F:u?uma-:nﬁﬂm.sfs —

Srwiann opom itk mer

Y et ateizampla i _fwatFaiBiui)
¢ —y

rasmiearkripwiatige, m

preparesd
[P eardiaB itk cosimmn _ lwakFocar ksl edgg
coet = co e ToPa s sk
| |t = aeecmiali kpjeast, bk

—

L N'-'r! ﬂﬂﬂ- narn‘aauurﬁﬂuﬂ
o O FT

HulD
o racetvapantesk, ool Ak

Nanagar EEET

Condrsc et -:-:'..;u.-'- Geare R aguest
Mo

I Camgone: Bal?
HYES, the messages will pepresem the o of 8 commesbns.

| || o

Figure 96 — Third Event Match Decision

4.3.3.2 Annotated Component State Diagrams

The result of the second stage of the transformation process is that all of the component state

diagrams have been annotated, and the events that represent the beginning of conversations have been

matched.

The annotated state diagram for the Fulfill SearchRequests component is shown in Figure 97. The
letter “S” at the beginning of atransition denotes where a conversation will begin, and the letter “E” at the
end of atransition represents the end of a conversation. The states and transitions between the start and end
labels will be removed from the component and placed in the conversation state diagrams in the next stage

of the transformation process. There are many different conversations that emerge from this component,

mainly because of the multicast messages that are sent in the ContractNet protocol.

107

P v |

[C_,JagentTool
File

Add State |

Knowledge Base

I[=1E3

Yarify CodeGen Transformation

Currently Selected |Agent: SearchiManager |

Agent: SearchManager rFumIISearchRequests : Component State Diag |/Depll'1yment |

Goal Hierarchy r Use Cases r Seq Diagram r Role Diagram |/ Task Panel |/ Agent Template Diagram

Add Trans

agert Toolwl.8

Saving MLAML £ile...
... Bamee Coatip lete

[ltask]

receiveiinfofresults), hidderiidisplayiresults)

o receive(sorry(reason), hiddedddisplay(reason) o WaitF orResults

E
*send{sornitagk), =losers=)

I
InfarmLosers
E

receiveiacknowledge winner.bidder)

waitF orinner

*sendistartitask, winner.qost), winner bidder)

receivelaBidtask cost),ag)

*send{ackiowledge, ag) i

| evaluate |

update

winner = evaluateBids{bidList)
losers = getBidders{hbidList
losers = removefwinner.bidder, losers)

“lbid = =cost, ag=
bidList = add{hid, hidList)

¥

Figure 97 — Annotated Fulfill Sear chRequests Component

The annotated state diagram for the Bid component is shown in Figure 98. Again, the letters“S’

and “E” denote the beginning and end of conversations that will be removed from the components during
the next phase. There are also three new null states that were added during this stage of the transformation
process. The new null states in the diagram are the result of splitting up the transitions that had both

internal and external events, which allowed for a clear delineation of where the conversations begin and

end.

Since the Search component for the MobileSearcher agent did not have any external events left

after the first stage of transformations, the component remained unchanged during this stage.

108

Enowiedie Basa =] CodeGern Transformaton

File

Currently Selected | genl: MobiaSearcher |

Aot Tomglate Diagram A gt HolwlaSsarcier | B : Compnon Stats Diag | Doploytoen |

[e S S e R D R o e S R e
=
| Al Trang . =
H_,-J'% griinds suits} walF rSearhREsUES
nsendirioimeytsymon -
| T sornressen)
R e 1
Idle I‘L = "sendisormreasany, mgq.l Hulll | “doilpsk]l
s T T “E Mulld
Bisady] =y
Furig BLANE fi... A .,
e Coaaglen | ey :
I'i MHH.\ recekeietarilask, cost), maedendiacknowledpel, men
retwa-:am-:dpllra-:t,aslq-,mgrj e IF
“
[T i ' . RCENEOMAERS MY teailForSidResult
N :
Y
; :
4 IECEhE[Er Wi Ed0E, MO0

prepanaBid 1

_ [pidisend 3BIdaEk cosk,mn vreatF o kmnwledoe
cost=costToPeritntasky
bid = acceplabilicost, task]

[4]

¥

Figure 98 — Annotated Bid Component

4.3.4 Stage Three— Creating Conver sations

At this paoint, all component state diagrams have been annotated and the initial messages of the
annotated conversations have been matched. The last stage of the transformation process moves the states
and transitions from the components to their appropriate Conversation Class Diagrams, replacing them with
a transition that has an action to do the conversation. Figure 99 shows the Agent Class Diagram after the
conversations have been added between the agents. The transformations gave the conversations generic but

unique names.

The state diagram for the SearchManager agent’s FulfillSearchRequests component after
harvesting the conversations is shown in Figure 100, and the MobileSearcher agent’s Bid component is
shown in Figure 101. Asshown in each diagram, the states and transitions that belong to the conversations
are no longer in the component, but the state diagram that remains defines how the different conversations

are coordinated together.

109

- [O] x|

= agentT ool
File Knowledge Base Werify CodeGen Transfarmation
Currently Selected [sgent: MobileSearcher |
Task Panel rngerrt Template Diagram rnggmi.i'dhhile',;earcher rﬂeﬁlwnent=|
| Add Agent | Goal Hierarchy r Use Cases r Seq Diagram |/ Role Diagram
Al Cons | Comversation10-1
Conversationt1-1
SearchManager / MoBlle SeArcher
agrtTool vl g Manager Conwversation? 2-1 Bidder
Search
\ Convergation13-1
Corwersation?4-1
Conversation?5-1
[+
Figure 99 — Agent Class Diagram with Conversations
[C_,JagentT ool B = B
Enowledge Base Merify CodeGen Transfarmation

File

Currenthy Selected |Agent: Searchianager |

Agent: SearchManager rFumIISearchRequests : Component State Diag rDelejy'ment |

Add State | | GoalHierarchy | usecases | SeqDiagram | RoleDiagram | TaskPamel | Agent Template Diagram
[ltask]
Add Trans receiveinfolresults), bidderuCorversation 2-1(hidden

WaitForResults

teceive(sorryireason), hiddeniConversation11-1{bidder

agerd Toolwl 8
Re

Sating MAMT file...
... Bare Cotplete

ICorversation1 5-1(=losers=)

InfarmLosers

1(=hidders=) IConversation 4-1dwinner hidder, winner.cost)

receive(aBiditask, cost), agConversation? 3-1{ag)

ICanversationt [l

evaluate

[timeExpired((] innar= avaluateBids(bidList
losers = getBiddersihidList)
losers = removefwinner hidder, losers)

s [weaitF orBids

[«]

3

Figure 100 — Fulfill SearchRequests Component After Stage Three

110

E._'ageml'onl | _ 5] x]
Fila Knoedadge Base arify CodaGien Transformadion
Currpnbly Selacted fsenl MobileSeanher |
e Tomplate Disgram Mmtl'lttiﬁmmrj Bid; Componnt State Diag | Dgpmnm ‘|
| Adid State GnulHInqdlr | UseCases Sullhawm Ih:h Dlm i Task Pane|

lidle

™,
™,

e

.
recakaEnnouncedash), mgdtormerzation 1010l

5 &

£

pieparedid

_[MOT big] ¢ L

coal= cosMoPerorntasi |
bid = acceptabilibjcost, skt

"”"? -c:'""':'”“"'m:' ailF orGearchResuls
rcumersallnn_u HFRan
snmu;aun]

£ fCDnuErEalluﬂH Sliman Nu||1 |¢

apadTaelvl A Mulld
Seirg MM Gls... 4
G Coenplets .,

. -.ra-:sr-'s[surrm.ask-i, o o marsationt 5-1(mgn

1ecgivaatartitask, eost, mor
i

-,

T |vmiiFOrBI0R B5UH

[oispCorwersabon T3 10mg |

nifREK)

Corwersationd 4-1 fmar

:4|

Figure 101 — Bid Component After Stage Three
Each conversation shown in the Agent Class Diagram now has the appropriate states and
transitions in the initiator and responder halves, but only one conversation will be examined for the sake of
brevity. Figure 102 shows the Communication Class Diagram for the initiator half of Conversation13-1.
The state and transitions were added from the Bid component to create this is a very simple state diagram,
where the MobileSearcher agent sends the aBid(parent.task, parent.cost) message and then receives the
acknowledgement of the bid. The parameters task and cost for the aBid message were prepended with

“parent.” to indicate that they belong to the parent (Bid) component, rather than the conversation.

Figure 103 shows the Communication Class Diagram for the responder half of Conversation13-1,
harvested from the Fulfill SearchRequests component. The aBid(task, cost) message is received and then an
acknowledge message is sent in return. Also to note in the state diagram are the new actions and prepended
variables. The parent.task=task action was added to the transition from the start state to the update state to
set the variable named task in the parent component because it was received as a message parameter in this

conversation and is either used within the parent component (FulfillSearchRequests), or within another

111

conversation that belongs to the parent component. Similarly, the bidList variables in the update state's
second action were changed to parent.bidList, indicating that the bidList variable also belongs to the parent

(Fulfill SearchRequests) component.

EC,] agentT ool - |O]

File Knowledge Base Werify CodeGen Transformation

Currently Selected [Conv Conversation?3-1 |

Comv-Conversation13-1 Initiator ﬁt_ﬁﬁ&.@,ﬁfmséiiﬁﬁiiﬁﬁsﬁdfMei rﬁ,éind’jiﬁmﬁt |
" Adastate | | GoalMierarchy | UseCases | SeqDiagram | RoleDiagram | Agent Template Diagram |

Add Trans . [

“aBidiparenttask, parent.cost)

waitForAcknowledge
agerit Toolwl 8

Re
e acknowledged

®

[4]

[+
Figure 102 — Initiator Half of Conversation13-1
EC,J agentT ool M= B3
File Knowledge Base Warify CodeGen Transformation
Currently Selected |Conv Conversation] 3-1 |
Ifijhﬁ;{f_?orhgei_séﬁm'ﬁ{iInitidfti_‘r' rConu:Conuersatiun13-1 Responder rDepluytmm |
AdState | | GoalMierarchy | UseCases | SeqDiagram | RoleDiagram | Agent Template Diagram |
Add Trans :
abiditask, costipanenttask=task
| update |
agat Toolwl 8 hid = =cost, ag=
Feady o . o
parentbidList= addibid, parent.bidList)
*acknowledge)
[|

Figure 103 — Responder Half of Conversation13-1

112

4.4 Summary

This chapter described how the transformation system defined in Chapter |11 was successfully
integrated with AFIT’ s agentTool multiagent development environment. An example was also presented to
show the input required from the developer as design decisions, as well as the output from each stage of the

transformation process.

113

V. Conclusions and Future Work

The previous chapters of this thesis described a semi-automatic formal transformation system for
the MaSE methodol ogy that generates agent components and conversations in the design phase from the
Role Model and Concurrent Task Diagramsin the analysis phase. This chapter summarizes the
conclusions from the previous chapters and suggests areas of future work that will enhance or extend this

research.

5.1 Conclusions

The transformation system described in the previous chapters successfully accomplished the
objectives established at the outset of this research. The transformations provide a correct and robust
methodology for generating MaSE design models from the analysis models without losing any information
from the analysis phase. A key contribution of the research in thisthesisis that the MaSE methodology has
necessarily matured and expanded. In order to develop formal transformations between the different

models, the models had to be fully defined and the relationships between the models had to be identified.

The transformation system was developed as a three-stage process that incrementally forms the
design models from the analysis models. The first stage creates the initial components for the agent classes
based on the roles they play. Each agent component implements a task from the Role Model.
Transformations in this stage also determine the protocols in which external events are passed. The second
stage determines where conversations logically take place within the agent components, annotating the
state tables accordingly. External events that constitute the first messages passed in the conversations are
also matched, in some cases automatically and in others by the developer. The last stage of the
transformation process creates the conversations between the agents based on the way the agent
components are annotated. The states and transitions that belong to the conversations are removed from the

component state tables and placed in state tables for the appropriate conversation halves. When the states

114

and transitions are removed from the component state tables, they are replaced with atransition that has an

action that starts the conversation.

The transformation system is predominantly an automatic process, requiring only afew key design
decisions from the system developer. There are many benefits from using an automated process that is
known to preserve correctness from one model to the next. One key advantage offered by the
transformation process is that it provides clear traceability between the analysis and design, simplifying the
verification process. The developer aso has much more confidence that no inconsistencies or errors
occurred during the design process. Furthermore, when implemented in a development environment such
as agentTool, the transformations allow the developer to maintain the system in the more abstract analysis
models and regenerate the design when any changes are made. How many times during a software
development project are the models in the analysis phase forgotten once the project enters the design
phase? In many cases, there is simply not enough time or manpower to maintain the consistency between
the models in the two phases. The transformation system presented in this thesis can eliminate that

problem for system devel opers using the MaSE methodology.

5.2 Future Research Areas

The work done in this thesis brought to light many related areas where more work is still required.
This section presents those areas of future work that would benefit not only the ongoing research being
done at AFIT, but would have overarching impact on the development of multiagent systems and formal

methods for software engineering as awhole.

5.2.1 Transformation Enhancements

While the transformation system defined in this thesis fully addressed the need to automate the
transition between the analysis and design phases of the MaSE methodology, there are many other areas
where the transformation system could be enhanced and expanded. The transformations were designed to

be applied in the order they are presented. Throughout this process, the developer may be required to make

115

some decisions that affect the eventual system design. The transformations were implemented in agentTool

accordingly, but the transformation system is a one-way process.

In order for the developer to be able to more effectively maintain the system at the analysis phase,
the design decisions that the user makes should be maintained so they can be “undone’, “redone’, or
“replayed” when applying the transformations. Most effective would be the ability to “step through” the
decisions, similar to a web browser or program debugger. Currently, if the user needs to change the
analysis of the system and desires to reapply the transformations, the developer has to make the same
design decisions again during the transformation process. Being able to “replay” the previous design
decisions would greatly enhance the interactive process. Furthermore, if a mistake is made while applying
the transformations in agentTool, the developer is unable to stop, backup, and fix the mistake. The process
must be started again from the very beginning. Thisiswhere “undo” and “redo” functionality would be of

great benefit.

The transformation system could also be expanded by defining a set of transformations that
automatically determine the attributes and methods for the agent components. These transformations
should be straightforward, and would provide the user a more complete view of the internal design of the
agent classes. The user could then supply information for the attribute types, function return types,
function parameter types, and function pre- and post-conditions. Automated verification procedures could
then be applied to the design to check for things like type-matching, etc. In addition, this would also
provide the requisite formality for transforming the design into another formal language representation, and

would improve the quality of the code that can be automatically generated from the design.

The last suggestion for further enhancements to the transformations deals with optimality. The
scope of this thesis included defining transformations that preserved correctness, but in many cases
optimality was forsaken for simplicity. One example is the way that conversations are created. After
applying the transformations, there may be two conversations between two agents that do exactly the same
thing. The current transformations do not even check for this, much less try to fix it. One possible

approach to this problem isto add an additional set of transformations that optimize the design.

116

5.2.2 Formal Transformationsfor Mixed-Initiative Systems

The transformation process defined in this thesis can be thought of as a mix-initiative process
because the developer is required to make various design decisions as the transformations are applied.
However, none of the formal transformations capture the mixed-initiative aspect of the transformation
process. They simply assume that the interaction takes place at the right time and the data is available
when needed. |s there a way to formally capture the required user interaction and incorporate it into the

rest of the transformation process?

Formalizing the mixed-initiative aspect of a system could have even greater implications for other
system that have more complicated user interaction patterns, especially in systems where user interaction is
critically important. For example, a mixed-initiative strategic or tactical planning system should be able to
provide the utmost confidence to the user that the system will always perform correctly. Part of that
performance includes interaction with the user. If that interaction does not take place, or if it takes placein
the wrong order, there could be dire consequences if the user is unaware of the error. The ability to
formally capture the interaction and incorporate that with the rest of the system design could prove to be

invaluable.

5.2.3 Formal Proof

While many example cases, simple and complex, were used to test the transformation system,
there is no way to test every case to make sure that the transformations are absolutely correct and complete.
The only way to ensure correctness and completeness is to develop a formal proof of the transformations,
but in doing so would require even more rigorous formal definitions of the MaSE models and their
properties. Developing a formal proof is no small task, and an automated tool that could identify any
“missing” pieces in the formal representations of the models would be very useful, however developing
such atool may not be feasible. Even if the transformations are proved correct, there is still the matter of
tranglating the formal representation of the transformation system into code, providing more than enough

opportunity for error in the implementation. In that sense, unless there is also some automated method for

117

implementing verifiably correct transformations, the effort necessary to prove that the transformations are

correct may have diminishing returns.

5.3 Summary

This research addresses the critical need for more reliable multiagent systems, which may be one
way to provide information superiority for the Air Force and the Department of Defense during the 21%
Century. Formal transformation systems reduce mistakes made during design and implementation of
complex multiagent systems. No longer do system engineers have to hope that their design corresponds to
the analysis, thus fulfilling the system requirements. Combining the work here with research done in the
past, present, and future, provides the foundation necessary for devel oping multiagent systems that reliably

operate in complex, distributed environments.

118

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]
(14]

[15]

[16]

[17]

(18]

VI. Bibliography

Shalikashvili, John M., Joint Vision 2010. Joint Staff: Pentagon, 1999.

Kelley, Jay W., Air Force 2025. 2025 Support Office, Air University, Air Education and Training
Command: Air University Press, 1996.

Del oach, Scott, “Multiagent Systems Engineering: A Methodology and Language for Designing
Agent Systems,” Proceedings of the Agent Oriented Information Systems '99 (AOIS99), Seattle, WA,
1 May 1999, 1999.

Sycara, Katia, “Multiagent Systems,” in Al Magazine, vol. 19[2], 1998, pp. 79-92.

Del oach, Scott and Wood, Mark, “Multiagent Systems Engineering Methodology: the Analysis
Phase,” Air Force Institute of Technology, Technical Report AFIT/EN-TR-00-02, June 2000.

Del oach, Scott, Wood, Mark, and Sparkman, Clint, “Multiagent Systems Engineering,” submitted to
Internationa Journal on Software Engineering and Knowledge Engineering, 2000.

Del oach, Scott and Wood, Mark, “Developing Multiagent Systems with agentTool,” Proceedings of
the Seventh International Workshop on Agent Theories, Architectures, and Languages (ATAL-2000),
Boston, MA, July 7-9, 2000.

Wood, Mark, Multiagent Systems Engineering: A Methodology for Anaysis and Design of
Multiagent Systems. M S thesis, AFIT/GCS/ENG/00M-26. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB, OH, 2000.

Del oach, Scott, “Specifying Agent Behavior as Concurrent Tasks: defining the behavior of social
agents,” Air Force Institute of Technology, Technical Report AFIT/EN-TR-00-03, July 2000.

Robinson, David, A Component Based Approach to Agent Specificaion. MS thesis,
AFIT/GCS/ENG/00M-22. School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, OH, 2000.

Hartrum, Thomas and Graham, Robert, “The AFIT Wide Spectrum Object Modeling Environment:
An AWESOME Beginning,” Proceedings of the National Aerospace and Electronics Conference
(NAECON), Dayton, OH, October 10-12, 2000.

Saba, G. Mitchell and Santos, Eugene, “the Multi-Agent Distributed Goal Satisfaction System,”
Proceedings of the International ICSC Symposium on Multi-Agents and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA '2000) 2000.

Del oach, Scott, “Using agentMom,” Air Force Institute of Technology, 2000.

Gamma, Erich, Heim, Richard, Johnson, Ralph, et al., Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Mass.: Addison-Wesley Pub. Co., 1995.

Wooldrige, Michael, Jennings, Nicholas, and Kinney, David, “The Gaia Methodology for Agent-
Oriented Analysis and Design,” Journal of Autonomous Agents and Multiagent Systems, 2000.

Iglesias, Carlos, Garijo, Mercedes, Gonzalez, Fose, et al., “Analysis and Design of Multiagent
Systems using MAS-CommonKADS,” Proceedings of the AAAI '97 Workshop on Agent Theories,
Architectures and Languages, Providence, RI, July, 1997.

Clarke, Edmund and Wing, Jeannette, “Formal Methods: State of the Art and Future Directions,”
ACM Computing Surveys, vol. 28, No.4, 1996.

Hall, Anthony, “ Seven Myths of Forma Methods,” |EEE Software, 1990.

119

[19] Green, C., Luckham, D., Bazer, R., et al., “Report on a Knowledge-Based Software Assistant,” in
Readings in Artificial Intelligence and Software Engineering, C. Rich and R. C. Waters, Eds. San
Mateo, Calif.: Morgan Kaufmann, 1986, pp. 377-428.

[20] d'lverno, Mark, Fisher, Michael, Lomuscio, Alessio, et a., “Formalisms for Multi-Agent Systems,”
Proceedings of the First UK Workshop of Multi-Agent Systems 1996.

[21] d'lverno, Mark and Luck, Michael, “Development and Application of a Formal Agent Framework,”
Proceedings of the First IEEE International Conference on Forma Engineering Methods 1997.

120

Appendix A. Background

This appendix provides background information to assist the reader in understanding the concepts
that are foundational to this thesis. The material is divided into two sections. In the first section (A.1),
three different methodologies for developing multiagent system will be reviewed with respect to both the
analysis and design phases. Particular attention will be paid to the guidance given for transitioning from
analysis to design and the possibilities for automating this process for each methodology. In the second

section (A.2), forma methods and transformation systems will be reviewed.

A.1 Multiagent System M ethodologies

Agent technology has received a great deal of attention in the last few years, and as a result, the
industry is beginning to develop methodologies for the development of multiagent systems. There are
currently only a few complete and well defined methodologies for multiagent systems, and many of those

lack guidance for transitioning from the analysis phase to the design phase.

The first phase of any software development is the analysis phase, which is the most crucial step
to developing a system that meets the user’s requirements and behaves in the desired manner. The
objective of the analysis phase is to transform the requirements into some abstract representation of the
system that can then be trandated into a more concrete design. The analysis of a system should capture
how the system will perform, i.e. what it does, not how it does it. Since multiagent systems have different
characteristics than traditional software systems due to their distributive, cooperative nature, many of the
analysis techniques attempt to capture those unique characteristics through the idea of roles, protocols,

interactions, and organizations.

After the analysis phase, the design phase traditionally takes what the system has been modeled to
do and define how the system will do it. The output of the design phase should be a set of models at a

sufficiently low level of abstraction that they can be easily implemented. The step of transitioning from

121

analysis to design is critical because without clearly defined methods of doing so, a design could be

developed that isinconsistent with the analysis, therefore introducing errorsinto the system.

A.1.1 Multiagent System Engineering M ethodology

At AFIT, recent research has focused around developing and maturing the Multiagent Systems
Engineering (MaSE) methodology that is intended to cover the complete life cycle of a multiagent system
[3, 5-8]. Although MaSE is till being refined, it is probably the most complete and well defined
methodology that has been developed for multiagent systems. MaSE is comprised of the 7 steps shown in
Figure 104. The boxes represent the different models used in the steps and the arrows indicate a flow
between the models. However, MaSE is aso intended to be applied iteratively. The first three steps
together represent the analysis phase of the methodology, while the last three steps represent the design
phase. It should also be noted that many of the models in the methodology are closely related to each other
and provide afine level of granularity in detail from the beginning of the analysis to the end of the design,

sometimes blurring the lines between traditional analysis and design.

In general, the analysis phase is devoted to capturing the goals of the system and then defining
roles which will accomplish those goals through a set of concurrent tasks. In the design phase, agent
classes are defined to play the roles, and conversations are used to describe the detailed communication
protocols that the agent classes have with each other. The designer also develops a deployment strategy
through the use of a Deployment Diagram, which details on what platforms individual agent instances will

reside and what communication paths exist between the different agents.

122

Require-
ments
Goal

Hierarchy
Use Cases
Applying Use

A Cases
Sequence
Diagrams

Capturing Goals

A

Concurrent
Tasks

Refining Roles

A 4

Agent Creating Agent
Classes Classes

y K

Conver- Constructing
[Satons Conversations
v)
Agent Assembling
Architectue Agent Classes
v ¥

Deployment)
Diagrams System Design

Figure 104 — Phases in the MaSE Methodol ogy

«+— ubfissaqg —————»>4—— SsisAeuy ——»

A.1.1.1 Capturing Goals

The first step in MaSE is Capturing Goals, where the system analyst takes the system
requirements and develops a Goal Hierarchy Diagram (shown in Figure 105), which is a structured set of
system-level goals. Goals are defined as some system-level objective within the context of MaSE, and
embody what the system is trying to achieve, and generally remain constant throughout the rest of the
analysis and design process. A goal is typicaly a declaration of system intent, and phrased like “The
system shall ...” Since MaSE uses a goal-driven approach, every action within the system must support a

specific goal.

Capturing Goals is made up of two sub-steps. First, goals are identified from the initial system

context, which is the collection of anything given to the analyst that is a starting point for system analysis.

123

Next, the goals are analyzed and structured into a Goal Hierarchy Diagram that is used later in the analysis
phase. After roles have been identified, each role will be assigned some set of the goals. Intuitively, if al
of the system requirements have been embodied as goals and all of the goals are being fulfilled by roles

(which later become agents), then the system will meet the initial requirements.

1. Detect and notify
administrator of
host violations.

Y

1.1 Detect & notify
admin of system file
violations.

Y

Y
1.2 Detect and
notify administrator
of login violations.

A

Y
1.1.1 Determine if

Y
1.1.2 Detect user

1.1.3 Notify 1.2.1 Determine if 1.2.2 Notify
files have been attempts to modify administrator of invalid user tries to administrator of
deleted or modified. files. violations. login login violations
|
Y
1.1.3a/1.1.2a

Ensure the admin
receives notification.

Figure 105 — Goal Hierarchy Diagram[5]

A.1.1.2 Applying Use Cases

Applying Use Cases is the next step in MaSE, where use cases are devel oped and then restructured
as Sequence Diagrams. Uses cases are defined from the system requirements and are a narrative
description of a sequence of events that capture desired system behavior. Use cases can be extracted from
the requirements specification, user stories, or any other available source. Each use case should describe a
particular instance of how the system will be used. It isimportant to capture both positive and negative use
cases. Positive use cases describe what should happen during normal system operation, while failure use

cases capture the desired sequence of eventsin the case of a breakdown or failure.

Once the system analyst has a representative set of Use Cases, those sequences of interactions are

then captured in a more structured representation of a Sequence Diagram. Seguence Diagrams, as shown in

124

Figure 106, capture a sequence of messages between the different roles being played in the system.
Sequence Diagrams provide a high-level view of how different roles interact to accomplish their goals, and
are useful when constructing the tasks that each role has. The boxes at the top of the diagram represent
system roles and the arrows between the lines represent events passed between roles. Time is assumed to

flow from the tip of the diagram to the bottom.

GileModifiedDetectoD FileNotifier AdminNotifier User

FileViolation

RequestNotification‘

-

Notify

Y

Acknowledge

A

ANotificationCompIete

Reported

Figure 106 — Sequence Diagram [5]

A.1.1.3 Refining Roles

The next step is Refining Roles, where the analyst determines which roles will be played in the
system and defines what tasks will be accomplished by each role. The Sequence Diagrams along with the
Goal Hierarchy Diagram give the analyst insight into what roles should be played in the system. Each
participate in the Sequence Diagrams is a candidate to become arole. Roles are defined much like an actor
in a play, or a position in an organization (President, Vice President, Manager, etc). Each role must
responsible for accomplishing one or more goals in the Goa Hierarchy Diagram, and there must be at least
one role responsible for each goal. Since roles form the foundation for creating agent classes and they
represent the system goals from the analysis phase, they serve as a link between what the system is
supposed to do (the analysis phase and goals) and how it accomplishes it (the design phase and agent

classes).

125

In Refining Roles, a Role Model is used to graphically depict the roles in the system and the
communication paths between those roles. Role Models can also enable the reuse of roles from previous
systems. The basic ideais that patterns of agent roles are constructed, labeled, and archived. When a new
system is developed, the patterns are recognized and a Role Model can be re-applied from an archive,
resulting in a collection of agent roles that satisfy a subset of the system goals. As shown in Figure 107, the

arrows on Role Models are paths of communication connecting roles, and the dots indicate multiplicity.

S | | . b [y 1
I Clier * Medistor | " Colleague |

Figure 107 — A Role Model [8]

As part of defining the roles, the analyst also defines the tasks that each role has. . Tasks describe
the behavior that a role must exhibit in order to accomplish its goal and are specified graphically using a
finite state automaton as shown in Figure 108. A single role may have multiple concurrent tasks that define
the complete behavior of the role. As a minimum, the messages in the sequence diagrams should also be
messages being passed within atask. Concurrent tasks can be used to implement complex communication
protocols such as Contract Net, Dutch Auction, etc. [9]. Thisis a very important part of the analysis as it
allows the user to define how the system components will coordinate and interact with each other, which is
the strength of multiagent systems. These tasks also lay the foundation for conversations between agent

classesin the design phase of MaSE.

deragister |

removeSourcelsource, Iist)|
receiveideregisterfsturce), 157

*sendiackngwledge, 15}

receive(registe rgendiackniwledge, 15)

register

addSource{source, list)

Figure 108 — Sample Task in MaSE

126

In order for tasks to execute concurrently, all tasks are assumed to start execution under a separate
thread of control upon startup of the role and continue until the role terminates or an end state is reached.
Activities take place within the states and specify functions carried out by the role. One important property
of atask isthat they are able to communicate with multiple tasks in order to accomplish their goals. The
tasks can belong to the samerole, or they may belong to a different role. Tasks that belong to the samerole
can coordinate with each other through internal events. In order for a task to communicate to a task of
another role, events that represent external communication are specified using send and receive events.
These events are defined to send and retrieve messages from an implied message-handling component of

therole.

A.1.1.4 Creating Agent Classes

Creating Agent Classes is the first step in the design phase of MaSE. Agent classes are defined
from roles and an Agent Class Diagram is produced, which depicts the agent classes and the conversations
between them at ahigh level. An agent classis atemplate for an agent that will operate within the system,
and is analogous to an object class in object oriented software engineering. When the system is deployed,
the agents in the system will be actual instances of an agent class. Agent classes are defined by the roles

they will play and the conversations they will participate in.

In order to ensure that all system goals are being met, each role must be played by at least one
agent class. Thiswill ensure that all of the goals in the analysis phase are traceable to agents in the design
phase. In general, there is a one-to-one mapping from roles to agents where each role becomes an agent
class. There may be some instances however where the designer decides to allow an agent class to play
multiple roles, with the roles changing dynamically during execution. The designer may also allow arole
to be played by more than one agent class. These design decisions is are made either to share the
capabilities and responsihilities of a role (allowing more than one agent class to play a role), or for
performance enhancements by reducing communication overhead (combining multiple roles into an agent

class).

127

In addition to defining the agent classes in the system, the designer must also identify the
conversations those agent classes must participate in. The details of the conversations are left to the next
step, Constructing Conversations, described in Section A.1.1.5. The conversations that an agent class must
participate in can are derived from the external communications paths defined between the roles it plays. |If
roles A and B are defined by concurrent tasks that communicate with each other and agent 1 plays role A
and agent 2 plays role B, then there must be a conversation between agent 1 and 2 to implement the

communication described between roles A and B.

The product of this step is an Agent Class Diagram, as shown in Figure 109. Each rectangle
represents an agent class and a directed line represents a conversation between the agent classes. The
arrows on the lines indicate the initiator and responder in the conversation. An Agent Class Diagram is
similar to object-oriented diagrams with two exceptions. First, agents are defined by the roles they play
rather than by attributes and methods. Secondly, all relationships between classes are conversations that

may take place between two agent classes.

InformationSource

Userlnter: Prodigpy
serinterface RéisPlai rodigytianager

GetGaallnfo GetStatelnfo

Infarmationhanager

SourceStatelnfo

SourcePackagelnfoHigh

SourcePackagelnfosll

Figure 109 — Agent Class Diagram

128

A.1.1.5 Constructing Conver sations

Constructing Conversations is the next step defined in MaSE. This step can actually happen
before, after, or in parallel with the next step, Assembling Agents. The two steps are closely related, and it
may be beneficial to aternate between them. In the previous step, Creating Agent Classes, the designer
developed the Agent Class Diagram, which simply identified the agent classes and the conversations they

have. The goal of this step is to define the details of those conversations.

Conversations are detailed coordination protocols between two agents and consist of two
Communication Class Diagrams, one each for the initiator and responder. Conversations are at the heart of
any multiagent system, as they detail how the different agents will communicate with each other. Like
tasks, Communication Class Diagrams are finite state automaton that define the states and transitions for

each half of aconversation. One example of a Communication Class Diagram is shown in Figure 110.

*nlan{packanes)

| quenUser gqueryiguestion) "planipackages) deselectPackages

waitingF orPlan

rar

|inf0 = queryJseriguestion) W
inform

[chaoice == rejeef]™replan

‘ reviewFlan ‘

‘choice = displa\,rF'Ian(pIan)|

[choice == actept]*accept

Figure 110 — Communication Class Diagram
As described in Section A.1.1.4, the roles that an agent class plays determine the set of
conversations an agent class participatesin. Likewise, the details of the conversations are derived from the

tasks associated with those roles. Since tasks can capture communication between multiple roles as well as

129

packages = deselectPackagesO|

communication with other tasks interna to its role, a task will likely be broken into more than one
conversation. Conversations are defined to be point-to-point communication between just two agents, and
every event within the Communication Class Diagram is defined to be a message to or from the other agent
instance participating in the conversation. Conversations do not allow for communication with multiple

agents simultaneously or internal events to be exchanged with components internal to the agent.

A.1.1.6 Assembling Agent Classes

In Assembling Agent Classes, the internal components of an agent are defined. Thisis a two-step
process by first defining the agent architecture and then defining the components that make up that
architecture. When constructing an agent architecture, the designer can either use a pre-existing
architecture from a set of architecture style templates or design a custom architecture from scratch. Each
architecture is built using components, which are also either custom-built or reused from an existing

component library.

Each agent component is defined using an architectural modeling language combined with the
Object Constraint Language. This allows the user to define attributes and functions that belong to the
agent. Each component can also have a finite state automaton defining the dynamic characteristics of the
component. The events passed within a component’s dynamic model will be limited to internal events with
other components that belong to that agent. There will not be any external send or receive events with

other agentsin the component’s dynamic model. That is all accomplished through conversations.

A.1.1.7 System Deployment

The fina step defined in MaSE is System Deployment. In this step, the designer takes the agent
classes defined previously and instantiates actual agents. A Deployment Diagram is used to show al of the
detailed information necessary to deploy the system, including numbers, types, and locations of agents

within a system. An example of a Deployment Diagram can be found in Figure 111. The three

130

dimensional boxes are agents and the connecting lines between them represent conversations between those

agents. A dashed-line box indicates that agents are housed on the same physical platform.

LigyE SAT SHTZ
[Sintartace CQntarfaca Ciintarfaca
LAY AT
CrSintarfacs LSl nbartace
P LIAN. Cantroler: MIZ-S5AT
MissionCil | Regstrar Mis=zinCirl
Controdar;
TershiCirl
JTFCE ;/ - JTFL2
omer Anplyst

Figure 111 — Deployment Diagram [8]

Deployment Diagrams offer the designer an opportunity to tune the system by defining various
configurations of agents and computers to maximize available processing power and network bandwidth.
If the user has not specified the particular number of components or the specific computers on which
certain agents must reside, the designer should consider the communication and processing requirements
when assigning agents to computers. If two agents have a high degree of communication, then the designer
may decide to deploy them on the same machine. However, overloading a machine with too many agents
reduces the advantages of distribution gained using the agent paradigm. Furthermore, the designer may

decide to dedicate a machine to asingle agent if that agent has high processing requirements.

A.1.1.8 Transitioning from Analysisto design - MaSE

Not only does MaSE provide guidance from the analysis to design phase, but it provides guidance
throughout the entire development process. The models in each step are clearly influenced by models in

previous steps due to strong relationships between the information being presented in them. Specifically, it

131

is clear that roles are related to agent classes and the tasks that the roles perform are then both related to the
conversations between those agent classes and to some aspects of the agent’s internal components. Since
there are such strong relationships between the models in this methodology and there is clear guidance on
making the transition from analysis to design, this methodology has the most promise for automation.
While there are still many places where the developer has to make design decisions, once those decisions

are made, going from one model to the next should be straightforward transformations.

A.1.2 Gaia M ethodology

Another recent attempt at developing a full methodology for both analysis and design of a
multiagent system is the Gaia methodology by Wooldrige, Jennings, and Kinney [15]. This methodology
was developed for systems with a relatively small number (less than 100) of heterogeneous, autonomous
agents attempting to maximize some global quality measure. Each agents services and the relationships

they have with other agents are assumed to be static and will not change during run-time.

A.1.2.1 AnalysisPhase - Gaia

The highest level of abstraction that the analysis phase attempts to capture is the organization of
the system, which is a collection of roles that have relationships with one another and take part in

systematic, institutionalized patterns of interactions with other roles (shown in Figure 112).

[S_ysrem]

A
[Permiss'ons] [Protocols]

Figure 112 — Abstract Analysis Hierarchy [15]

132

The Gaia methodology views the system as a society or organization, and the elements of that
society are defined as roles. Roles are a natural abstraction for a multiagent system and are analogous to a
typical company structure. A company has roles such as “president”, “vice-president”, and “manager” all
arranged in some hierarchical fashion. The idea of arole is not a static representation because someone
acting as one role may later (or at the same time) also play the part of a different role. Roles are initialy
captured in a prototypical roles model, which will be incrementally expanded and fully elaborated by the

end of the analysis phase.

A role is defined by four attributes: responsibilities, permissions, activities, and protocols.
Responsibilities determine the functionality of a role and may be their key attribute. An example
responsibility associated with the role of mail clerk might be to deliver and pick up mail to and from each
required office. Responsibilities are divided into two types. liveness properties (something good that
should happen) and safety properties (or invariants). Permissions are the “rights’ associated with a role
and identify the resources that are available to a role in order to achieve its responsibilities. In multiagent
systems, these permissions tend to be information resources. Activities of a role are computations
associated with arole that may be carried out by the agent without interacting with other agents. Protocols
define the way that arole can interact with other roles, for example “Dutch auction”, “English auction”, or
“Contract Net”. A protocol definition consists of the following attributes: purpose, initiator, responder,
inputs, outputs, and processing. After protocols have been identified, an interaction model is produced

which captures the recurring patterns of inter-role interaction.

A.1.2.2 design Phase - Gaia

In the Gaia methodology, the goal of the design phase is a little different than the traditional
interpretation. The analysis model is transformed into a sufficiently low level of abstraction so that
“traditional design techniques’ can be applied to implement the agents. During the design phase, the

designer will generate three models: the agent model, services model, and the acquaintance model.

133

The agent model documents the various agent types in the system. An agent type can be thought
of asaset of agent roles. A designer can choose to package a number of closely related roles in the same
agent type for the purpose of convenience and sometimes for better efficiency. The Gaia agent model also

documents the run-time cardinalities of agent instances.

The services model identifies the services associated with each agent role and specifies the main
properties of these services. Specifically, the inputs, outputs, pre-conditions, and post-conditions of each
service are identified. Inputs and outputs are derived from the protocols model and pre- and post-

conditions are derived from the safety properties of arole.

The acquaintance model simply defines the communication links that exist between agent types.
They do not define what messages are sent or when messages are sent. This doesn’'t really seem to exploit
the power inherent to multiagent systems, which is their ability to coordinate with each other through the

idea of conversations or sequences of messages.

A.1.2.3 Transitioning from Analysisto design — Gaia

While the Gaia methodology gives sound guidance for developing the design models from the
analysis models, the resulting design is till at arather high level of abstraction. The methodology gives no
real guidance on how to transform the design models into a sufficiently low-level of design to implement
the system. The methodology needs to be expanded to either incorporate lower level design models or
provide more guidance on how to refine the current models to a “traditional” system design. With such a
lack of detail given, it would be very difficult to try and automate this process. To automate the generation

of the design models described in this methodology would be of little use.

A.1.3 MAS-CommonKADS

Another complete multiagent system methodology that has been proposed by Iglesias, Garijo,
Gonzalez, and Velasco is the MAS-CommonKADS methodology [16]. This methodology extends

CommonKADS for multiagent systems by adding techniques from object oriented methodologies and

134

protocol engineering. The general software process combines a risk-driven approach with a component-

based approach.

A.1.3.1 AnalysisPhase - MAS-CommonKADS

The first phase of analysis is Conceptualization, where the analyst determines use cases from the
initial user requirements and then formalizes them with Message Sequence Charts. The purpose of this
phase is to capture roles and to develop an initia understanding of the interactions that must take place
between those roles. After the Conceptualization phase, a requirements specification of the system will be
generated through the development of six models, each consisting of constituents (the entities to be

model ed) and rel ationships between the constituents.

The first model is the Agent model, which specifies the agent characteristics such as reasoning
capabilities, skills (sensors / effectors), services, agent groups and hierarchies (both modeled in the
organization model). The second model is the Task model that describes the tasks that the agents can carry
out through description of goals, decompositions, ingredients and problem-solving methods. The third
model, the Expertise model, describes the knowledge (information sources) needed by the agents to achieve
their goals. The fourth model is the Organization model that describes the organization into which the
MAS is going to be introduced and the social organization of the agent society. The Coordination model is
the fifth model, which describes the conversations between agents: their interactions, protocols and
required capabilities. The last model, the Communication model, details the human-software agent

interactions and the human factors for developing these user interfaces.

There are no examples of the models in this methodology, but it does describe how these models
are developed in a risk-driven way through the following five steps. The first step is Agent modeling,
where you develop the initia instances of the agent model for identifying and describing the agents. The
next step is Task modeling, where tasks are decomposed and the goals and ingredients of the tasks for each
agent are determined. The third step is Coordination modeling, where the coordination model for

describing the interactions and coordination protocols between the agents is developed. The fourth step is

135

Knowledge modeling, where the knowledge on the domain, the agents (knowledge needed to carry out the
tasks and their proactive behavior) and the environment (beliefs and inferences of the world, including the
rest of the agents) is modeled. The last step is Organization modeling, where the organization model is
developed. Depending on the type of project, it may be necessary to model the organization of the
enterprise into which the MAS is going to be introduced to study the feasibility of the proposed solution.
In this case, two instances of the organization model are developed: before and after the introduction of the

MAS. Thismodel is also used to model the software agent organization.

A.1.3.2 design Phase- MAS-CommonKADS

From the initial set of models defined in the analysis phase, a design model is produced that is
subdivided into three sub models, the Agent Network design, Agent design, and Platform design. The
Agent Network design model describes the infrastructure of the MAS and consists of network, knowledge
and coordination facilities. The agents that maintain this infrastructure are also defined, depending on the
required facilities such as network facilities (agent name service, register and subscription service, transport
/ application protocals, etc.), knowledge facilities (ontology servers, knowledge representation language
tranglators, etc.), and coordination facilities (coordination protocols, protocol servers, group management

facilities, police agents, etc.).

The Agent design model defines the appropriate architecture for each agent, and agents can be
introduced or subdivided according to pragmatic criteria. Each agent is subdivided in modules for user
communication (from communication model), agent communication (from coordination model),
deliberation and reaction (from expertise, agent and organization models), and external skills and services

(from agent, expertise and task models).

The last model is the Platform design model where the decisions on software (multiagent

development environment) and hardware that are needed for the system are captured.

136

A.1.3.3 Transitioning from Analysisto design — MAS-CommonK ADS

While there are some indications of what models in the analysis phase affect the models in the
design phase, exactly how they are related is not specified. In fact, there are no examples of some of the
analysis models and no examples of the design models. Without more concrete information on the models
and how they relate to each other, one can only speculate on how easy it would be to automate the process

of transforming the analysis models into design models.

A.2 Formal Methods

Computer systems continue to grow in scale, functionality and complexity, increasing the
likelihood of subtle errors. A maor goa of software engineering is to enable developers to construct
systems that operate reliably despite this complexity. One way of achieving this goal is by using formal
methods, which are mathematically based languages, techniques and tools for specifying and verifying such
systems. While forma methods do not necessarily guarantee correctness, they can greatly increase our
understanding of a system by revealing inconsistencies, ambiguities, and incompleteness that might

otherwise go unnoticed [17].

Hall [18] uses the term formal methods to describe the use of mathematics in software and details

the main activities in using formal methods:
writing aformal specification
proving properties about the specification
constructing a program be mathematically manipulating the specification
verifying a program by mathematical argument

The first step, writing a formal specification, may be the most important part of formal
development. A formal specification gives an unambiguous, precise definition of exactly what the system

is intended to do, and is the foundation for all other activities relating to forma development. For many

137

projects, thisis the only part of the development that is formal. The major benefit of using forma methods
to write a system specification is that they require the analyst to more fully understand the system because

errors and ambiguities become blatantly obvious.

Once aformal specification has been developed, since the specification is mathematical in nature,
the developer can prove things about the specification, as well as the program. These proofs may deal with
the consistency of the specification, the completeness of operation definitions, or that the specification will
meet certain key requirements. For safety-critical systems, these proofs may be of great importance. In
any case, errors at this stage are more costly than implementation errors, so proofs of these properties are

correspondingly more important than proofs of implementation.

If a developer wants to implement a system formally, instead of writing the program and then
trying to prove that it meets the specification, the program is constructed through a transformation system,
described below. Since the each step of the transformation system is provably correct, then the program is

correct by construction and can be mathematically verified.

A.2.1 Transformational Programming

Within the recent developments in formal methods, a new paradigm for software development has
emerged, transformational programming, in which software is developed, modified, and maintained at the
specification level, and then automatically transformed into production-quality software [19]. The basic
idea behind a transformation system is to take a formal specification for the system and apply a series of
correctness-preserving transformations that translate the system specification into a system design and then
into executable code. If each transformation preserves correctness, the resulting system is guaranteed to be
correct, but only with respect to the specification. If the specification is not correct, neither will resulting

design and code be correct.

Hartrum and Graham [11] describe a semi-automated software synthesis process using a
transformation system shown in Figure 113. First, domain knowledge is stored in a formal domain model.

Then aformal specification for a specific problem is generated by an application engineer from the domain

138

model. The developer will then apply a series of transformations, each of which are verified to preserve the
correctness of the system, to produce a formal design specification. Finaly, further transformations are

applied to generate the executable code.

A g LT By =

Deenaln -

- Foowledgs . _ Statzment] Mﬂ
(a] U Lesign
L o Histerles
Ty tJ - o - >
b i [1 Executshle
Cads
l——" =

e T r,
o = = P
Farmal N a1
Domain : Problem Foemal Design Timsi Code
| EE Esign
Mudeling Hlael Setting Epectfication Tramafarm Cleperation
e Specification
D TR

I i Design T -F—l—“-

: 1 Lamgnage
Decislons 1 Chudce best
& Rabrmale i Cazes

P i L

)

Dﬁmﬂ:ﬂimm Appllcarks
Deenatn Enginess Spechicatinn
Dwarnaln Enginieer Wadal Reuse

Lirery

Figure 113 — Typical Transformation System[11]

While transformational programming has the obvious benefit of decreasing the chances for errors
in the implementation, there are aso other more subtle benefits. First, by developing the system in an
automated fashion from the specification, system maintainability is greatly increased because changes to
the system will also be made to the specification, not directly to the code. In the traditional software life
cycle, over half of the cost is attributed to software maintenance and modifications because they are done at
the code level. After a few rounds of modifications, the code has usually become unstable and is very
difficult to make further changesto. The original design information is usually lost and the documentation
has not been maintained, making it inadequate and outdated. The only recourse is an expensive
reengineering effort that includes recovering the design of the existing system. In transformational

programming, changes are made to the specification, and the code is automatically generated by re-

139

applying the transformations, most of which will not have changed since the last time through the

transformation process.

Another benefit of transformational programming is that it makes it easy to reuse portions of
previous software systems when abstract components can easily be adapted to the context of a new
software system. Instead of trying to reuse portions of the code, which can be difficult to deal with evenin
a modularized system, a developer can simply reuse portions of the specification, which are abstract and
easier to manipulate. Additionally, the specification may be contained in different analysis models, where

CASE tools can make the reuse of these models almost trivial.

A.2.2 Formalismsfor Multiagent Systems

Agents are a natural next step in software engineering, representing fundamentally new ways of
viewing complex distributed systems in the context of societies of cooperating autonomous components.
Since agents have unique properties, new formal representations must be developed in order to take
advantage of formal methods in the development of agent-oriented and multiagent systems. d’'lverno, et al.

[20] list the necessary attributes of formalisms for agents:

provide a precise and unambiguous language for specifying systems components and
behavior

address the needs of practical applications of agents, by being capable of expressing some
or all of various aspects of agency including, but not limited to, perception, action, belief,

knowledge, goals, motivation, intention, desire, motivation

help identify properties of agent systems against which implementations can be measured
and assessed

measure, evaluate, classify, and study implementations

They aso further detail attributes of a formalism for multiagent systems, as they add another
dimension to agent-oriented systems. They state that formalisms for multiagent systems should also deal
with the multiplicity of agents, group properties of agent systems, such as common knowledge and group

intentions, and interaction among agents, such as communication and cooperation. In a later paper,

140

d'lverno and Luck [21] extend the framework to include inter-agent relationships, and give an approach

using Z.

A.3 Summary

This appendix provided background information on previous research that supports this thesis.
The first three sections presented three multiagent engineering methodologies; Multiagent Systems
Engineering (MaSE), the Gaia Methodology, and MAS-CommonKADS. The analysis and design phases
were described for each methodology, as well as any guidance for transitioning from the analysis models to
the design models. The last section presented some background information on formal methods and

transformation systems.

141

Appendix B. Functions Used in the Transformations

This appendix provides formal definitions for some of the functions used in the transformationsin
Chapter I11. Each function is defined by pre- and post-conditions, and returns a Boolean value based on the

evaluation of the post-condition expression.

B.1 TheisAssigned Function

The isAssigned function is a recursive function that takes a SendEvent and a transition and looks

backward in the state table to see if an action was used to set the recipient of the send event.

function isAssigned(se : SendEvent, t : Transition, st : StateT able) returns Boolean
Precondition : true
Postcondition :
($a: Action, s: State - s st.statesUs=t.fromUal s.actionsUserecipientT alhs)
U($t2: Transition, re: ReceiveEvent - 121 st.transitions Ut2.to = t.from
Ure = t2.receiveEvent U (re.sender * se.recipient Ure = null)
U@ ($se2: SendEvent - se21 t2.sendEvents U se2.recipient = se.recipient)
U(($a:Action- al t2.actions UserecipientT alhs) UisAssigned(se, t2, st)))

B.2 TheusedlnAction Function

The usedinAction function returns true under three conditions. 1) the parameter’s name is used in
the action’s |hs tuple 2) the parameter’s name is used in a tuple in the action’s rhs and 3) the parameter is
used in a FunctionCall in the action’ s rhs.

function usedinAction(p : Parameter, a: Action) returns Boolean

Precondition : true

Postcondition :

$ param : String, f : FunctionCall -

param = p.name U (param 1 alhsUparam1 arhsU(f =arhsUpT f.parameters))

142

B.3 TheusedInTransition Function

The usedinTransition function returns true if the parameter given as input is also a parameter of
the transition’s receive Event, the Event of the receiveEvent, one of the send Events, the Event of one of
the sendEvents, or it is used in one of the transition’s actions. There was no formal definition given for the
Boolean expressions used in a transition’s guard condition. Boolean expressions can be represented in
whatever formal language is chosen. Therefore, the usedinGuard function is defined to return true if the
parameter is used somewhere in the guard condition.

function usedinTransition(p : Parameter, t : Transition) returns Boolean

Precondition : true
Postcondition :

$ e: Event, se: SendEvent, re : ReceiveEvent, a: Action -
(e=treceveUpT eparameters) U(el tsendsUpT eparameters)
U(re=t.receiveEvent Ue=reevent Up1 e.parameters)

U(sel tsendEventsUe=seevent UpT e.parameters)

U(al t.actions U usedinAction(p, a)

U usedInGuard(p, t.guard))

B.4 TheisNeeded Function

The isNeeded function is used to determine if a parameter needs to be supplied to an action that
starts a conversation. The function returns true if there is a transition belonging to the conversation that
uses a parameter and that parameter is not assigned within the conversation prior to being used. The
function also returns true if the parameter is used in an action in a state that belongs to the conversation,
and that parameter is not assigned prior to being used. The usedinAction() and usedinTransition()
functions are used as defined earlier, and the isAssigned() function returns true if the parameter has been
set in an action either in a state or on a transition before the parameter is used. This means that parameters
that are used in a conversation before explicitly being set must be supplied as a parameter when the

conversation is started.

143

function isNeeded(p : Parameter, convs: { Conversation}, st : StateTable) returns Boolean
Precondition: true
Postcondition:
($t: Transition -
t1 sttransitions U (convsn t.conversations® {}) UusedinTransition(p, t)
U @isAssigned(p, convs, st))
U($s: State, a: Action -
s1 st.statesU(convsn s.conversations® {}) Ual s.actions U usedinAction(p, a)

U @isAssigned(p, convs, st))

144

VITA

Lt Clint Houston Sparkman was born in September 1974 in Nacogdoches, Texas. He graduated
from The Colony High School in The Colony, Texas in June 1993, and he married Casey J. Hall on June
22, 1996. In December 1997, he received a Bachelor of Science degree in Computer Science from
Southern Methodist University, and was commissioned as a distinguished graduate through Detachment
835 AFROTC at the University of North Texas. Hisfirst assignment was to the Air Force Research Lab at
Kirtland AFB, New Mexico. In August 1999 he entered the Graduate School of Engineering and
Management, Air Force Institute of Technology. Upon graduation, Lt Sparkman will be assigned to the

690" Computer Systems Squadron, Air Intelligence Agency at Kelly AFB, Texas.

145

Form Approved
REPORT DOCUMENTATION PAGE OME No. O704-0188

The public reperting burden for this collection of information &5 estimased to average | hour per respanse, including the tima far reviewing ingineotions, ssafching ﬁﬂﬂmﬁ‘ data Bources,
qgatherng and maintalning the data nended, and sempletng and reviewing the collection of informaticn. Send commants regarding this bunden astimate or any ather aspect of this colleation
ot infermation, including suggestions for reducing the burdan, fo Department of Defenss, Washinglan Haadquarters Services, Directorate for intormation Qparations and Bapons
[O704-01B8), 1216 Jeftarson Davis Highway, Suite 1204, Arlingtan, WA 23202-4302, Respondenis shiuld be gears that notwithetanding any othar pravision of law, no parson shall ba
sublact to any penalty for falling to comply with a collection of information if it doss not display a currently valid OMB conirol numbar.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE /DD-MM-YYYY] |2. REPORT TYPE 3. DATES COVERED (From - Tol
20-03-2001 Master's Thesis APR 2000 - Mar 2001
4. TITLE AND SUBTITLE S5a. CONTRACT NUMBER

TRANSFORMING ANALYSIS MODELS INTO DESIGN MODELS FOR
THE MULTIAGENT ENGINEERING SYSTEMS (MASE)
METHODOLOGY 5b. GRANT NUMBER

Bc. PROGRAM ELEMENT NUMBER

6. AUTHORI(S) Ed. PROJECT NUMBER

Clint Houston Sparkman

Ge. TASK NUMBER

Bf. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES] B. PERFORMING ORGANIZATION

Air Force Institute of Technology REPORT NUMBER
ggrsmuaﬂ Ptﬁtf:eli?%lg; Enﬁmeermg and Management (AFIT/EN) ARG RN MR
Wright-Patterson AFB OH 45433-7763

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY MAME(S) AND ADDRESS(ES)

AFOSR/NM

Atin: Dr. Robert L. Herklotz

801 N. Randolph St., Room 732 7 SPONSORMONITOR'S REPORT |
Arlington, VA 22203-1977 e Sy TRy OGP

Phone: 703-696-8421/6565
Fax: 703-696-8450
12, DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
Maj Scott A, DeLoach, Assistant Professor of Computer Science and Engineering, 785-3636x4622, scott.deloach@afit.edu

14. ABSTRACT
Agent technology has received much attention in the last few years because of the advantages that multiagent systems have in

complex, distributed environments. For multiagent systems are to be effective, they must be reliable, robust, and secure. AFIT's
Agent Research Group has developed a complete-lifecycle methodology, called Multiagent Systems Engineering (MaSE), for
analyzing, designing, and developing heterogeneous multiagent systems, However, developing multiagent systems is a complicated
process, and there is no guarantee that the resulting system meets the initial requirements and will eperate reliably with the desired
behavior.

The pux;pose of this research was to develop a semi-automated formal transformation system for the MaSE methodology, as ong
part of formal agent synthesis, that derives the system design based on the analysis. Since each transform in the transformation
system preserves correctness, the designer can be sure that the resulting system design is correct with respect to the system
specification. A secondary goal of this research was to develop a proof-of-concept module for agentTool that implements the
transforms.

15. SUBJECT TERMS
Software Engineering, Agent, Transformations, Formal, Methodology, Components, Conversations, agentTool, State Table

16. SECURITY CLASSIFICATION OF: 17, LIMITATION OF |18, NUMEER |19a, NAME OF RESFONSIBLE FERSON
a. REFORT | b. ABSTRACT | c. THIS PAGE | ABSTRACT E:GES Maj Scott A. DeLoach
UNCLASS | UNCLASS | UNCLASS U 161 15b. TELEPHONE NUMBER fincfude arss codel
785-3636 x4622

Standard Form 288 (Rev. 8/98)
Prascribed by ANSI Sid. Z33.18

