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ABSTRACT 

Agent technology has received much attention in the last few years because of the advantages that 

multiagent systems have in complex, distributed environments.  For multiagent systems are to be effective, 

they must be reliable, robust, and secure.  AFIT’s Agent Research Group has developed a complete-

lifecycle methodology, called Multiagent Systems Engineering (MaSE),  for analyzing, designing, and 

developing heterogeneous multiagent systems.  However, developing multiagent systems is a complicated 

process, and there is no guarantee that the resulting system meets the initial requirements and will operate 

reliably with the desired behavior.   

The purpose of this research was to develop a semi-automated formal transformation system for 

the MaSE methodology, as one part of formal agent synthesis, that derives the system design based on the 

analysis.  Since each transform in the transformation system preserves correctness, the designer can be sure 

that the resulting system design is correct with respect to the system specification.  A secondary goal of this 

research was to develop a proof-of-concept module for agentTool that implements the transforms. 
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TRANSFORMING ANALYSIS MODELS INTO DESIGN 

MODELS FOR THE MULTIAGENT SYSTEMS 

ENGINEERING (MASE) METHODOLOGY 

I. Introduction 

A software engineer just received the requirements for a new computer system needed to support 

changing mission requirements in the midst of a hostile contingency.  The requirements for the system 

include components working cooperatively in a distributed heterogeneous environment, adapting to 

changing conditions, and using various types of media to communicate.  The warfighters must have the 

system by tomorrow morning for mission success.  The software engineer takes the requirements, and 

through some interaction with the user develops a formal specification for a multiagent system, taking 

advantage of some pre-existing components in a stored knowledge base.  After developing the system 

specification, the code for the system is automatically generated and a reliable and secure system is 

operationally deployed ahead of schedule. 

This is just an example of what could be reality in the near future with the use of software tools 

that generate executable code automatically from a high-level graphical specification of the system.  This 

type of next-generation technology could be the determining factor in whether or not our military can 

remain the most advanced and dominant military in the world throughout the next several decades.  

Documents such as Joint Vision 2010 [1] and Air Force 2025 [2] clearly detail the Air Force’s need for 

distributed C3I applications to achieve information superiority in the 21st Century.  If warfighters are going 

to trust computer systems in an increasingly complex information environment, then those systems must be 

reliable, robust, and secure.  This thesis merges two enabling technologies, agent technology and formal 
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methods, that can be used together in order to develop reliable distributed systems that operate in complex 

and dynamically changing environments. 

Agent technology has received much attention in the last few years because of advantages that 

agent systems have in complex, distributed environments.  As agent technology has matured and become 

more accepted in the software industry, agent-oriented (AO) software engineering has become an important 

topic for software system developers who wish to develop practical and reliable agent-based systems.  For 

agents to be useful in complex, distributed environments, they must work in cooperation with other agents, 

which is the domain of multiagent systems [3].  Engineering multiagent systems presents some unique 

challenges that are not found in Object-Oriented Software Engineering.  Sycara [4] attempts to capture 

some of these challenges: 

1. How to decompose problems and allocate tasks to individual agents. 

2. How to coordinate agent control and communications 

3. How to make multiple agents act in a coherent manner. 

4. How to make individual agents reason about other agents and the state of coordination. 

5. How to reconcile conflicting goals between coordinating agents. 

6. How to engineer practical multiagent systems. 

Methodologies for AO software engineering attempt to provide a solution to the sixth challenge 

and provide a framework for solving the first five.  There are currently only a few AO software engineering 

methodologies for multiagent systems, and many of those are still under development.  Additionally, most 

of the existing methodologies lack specific guidance on how to transform the specification of the system to 

the corresponding design.    

The focus of this thesis is to mature an existing AO software engineering methodology developed 

at AFIT by applying formal methods to produce a transformation system that semi-automatically derives 

the system design from the analysis.  A transformation can be thought of as a function, where a model or 

properties of a model are taken as input and the result is either a modified or an entirely new model.  In 

order to accomplish this, the relationships between the different models and the points at which design 
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decisions are made must be identified.  The result is a more completely defined and robust methodology 

that has precisely defined steps for designing a multiagent system based on the analysis specification.  

1.1 Background  

At AFIT, recent effort has focused around developing and maturing a methodology for developing 

multiagent systems, called Multiagent Systems Engineering (MaSE), that is intended to cover the complete 

life cycle of a multiagent system.  A full description of MaSE can be found in Appendix A, as well as [3, 5-

8].  This section presents a short overview of MaSE in order to provide the  foundation of the problem 

being addressed in this thesis.   

The MaSE methodology consists of the seven steps depicted in Figure 1.  The boxes represent the 

different models used in the steps and the arrows indicate the flow of information between the models.  

While similar to the waterfall approach, MaSE is also intended to be applied iteratively.  The first three 

steps represent the analysis phase of the methodology, while the last four steps represent the design phase.   

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architectue

Capturing Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

Roles
Concurrent

Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

 

Figure 1 – MaSE Methodology 
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1.1.1 Capturing Goals 

The first step in MaSE is Capturing Goals, where the system analyst takes the system 

requirements and develops a Goal Hierarchy Diagram, which is a structured set of system-level goals.  

Goals embody what the system is trying to achieve, and generally remain constant throughout the rest of 

the analysis and design process.  After roles have been identified, the analyst will assign each role a set of 

goals.  Intuitively, if all of the system requirements have been embodied as goals and all of the goals are 

being fulfilled by roles (which are later played by agents), the system should meet the initial requirements. 

1.1.2 Applying Use Cases 

Applying Use Cases is the next step in MaSE, where use cases are developed and then restructured 

as Sequence Diagrams.  Uses Cases are defined from the system requirements and are a narrative 

description of a sequence of events that capture desired system behavior.  Use Cases can be extracted from 

the requirements specification, user stories, or any other available source.  Each Use Case should describe a 

particular instance of how the system will be used.  Those sequences of interactions are then captured in the 

more structured representation of a Sequence Diagram.  Sequence Diagrams, as shown in Figure 2, capture 

a sequence of messages between the different roles being played in the system.  Sequence Diagrams 

provide a high-level view of how different roles interact to accomplish their goals, and are useful when 

constructing the tasks that each role has. 

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

 

Figure 2 – Sequence Diagram [5] 
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1.1.3 Refining Roles 

The next step is Refining Roles, where the analyst determines which roles will be played in the 

system and defines what tasks will be accomplished by each role.  The Sequence Diagrams along with the 

Goal Hierarchy Diagram give the analyst insight into what roles should be played in the system.  Each 

participant in the Sequence Diagrams is a candidate to become a role.  Roles are defined much like an actor 

in a play, or a position in an organization (President, Vice President, Manager, etc).  Each role must be 

responsible for accomplishing one or more goals in the Goal Hierarchy Diagram, and there must be at least 

one role responsible for each goal.   

In Refining Roles, a Role Model is used to graphically depict the roles in the system and the 

communication paths between those roles.  Role Models can also enable the reuse of roles from previous 

systems.  The basic idea is that patterns of agent roles are constructed, labeled, and archived.  When a new 

system is developed, the patterns are recognized and a Role Model can be re-applied from an archive, 

resulting in a collection of agent roles that satisfy a subset of the system goals.  As shown in Figure 3, the 

arrows on Role Models are paths of communication connecting roles, and the dots indicate multiplicity. 

 

Figure 3 – A Role Model[8] 

As part of defining the roles, the analyst also defines the tasks that each role has.  Tasks describe 

the behavior that a role must exhibit in order to accomplish its goal and are specified graphically using a 

finite state automaton as shown in Figure 4.  A single role may have multiple concurrent tasks that define 

the complete behavior of the role.  As a minimum, the messages in the sequence diagrams should also be 

messages being passed within a task.  Concurrent tasks can be used to implement complex communication 

protocols such as Contract Net, Dutch Auction, etc. [9].  This is a very important part of the analysis as it 

allows the user to define how the system components will coordinate and interact with each other, which is 

the strength of multiagent systems.  These tasks also lay the foundation for conversations between agent 

classes in the design phase of MaSE.   
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Figure 4 – Concurrent Task Diagram 

One important property of a task is that they are able to communicate with multiple tasks in order 

to accomplish their goals.  The tasks can belong to the same role, or they may belong to a different role.  

Tasks that belong to the same role can coordinate with each other through internal events.  In order for a 

task to communicate to a task of another role, events that represent external communication are specified 

using send and receive events.  These events are defined to send and retrieve messages from an implied 

message-handling component of the agent.  In Figure 4, the receive(register(source), IS) event on the 

transition from the idle state to the register state is an example of a receive event, and the 

send(acknowledge, IS) event on the transition from the register state to the idle state is an example of a send 

event. 

1.1.4 Creating Agent Classes 

Creating Agent Classes is the first step in the MaSE design phase.  Agent classes are defined from 

roles and an Agent Class Diagram is produced, as shown in Figure 5, that depicts the agent classes and the 

conversations between them.  In order to ensure that all system goals are being met, each role must be 

played by at least one agent class.  Thus the roles are the traceable link from the goals in the analysis phase 

to the agents in the design phase.  In general, there is a one-to-one mapping from roles to agents, where 

each role becomes an agent class.  There may be some instances however where the designer decides to 
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either combine multiple roles into an agent class, or allow a role to be played by more than one agent class.  

This is done either to share the capabilities and responsibilities of a role, or for performance enhancements 

by reducing communication overhead.  In an Agent Class Diagram, each rectangle represents an agent class 

and a directed line represents a conversation between the agent classes.  The arrows on the lines indicate 

the initiator and responder in the conversation. 

 

Figure 5 – Agent Class Diagram 

1.1.5 Constructing Conversations 

Constructing Conversations is the next step defined in MaSE, where the details of each 

conversation are defined from the tasks and sequence diagrams.  Conversations are detailed coordination 

protocols between two agents and consist of two Communication Class Diagrams, one each for the initiator 

and responder.  Conversations are at the heart of any multiagent system, as they detail how the different 

agents will communicate with each other.  Like tasks, Communication Class Diagrams are described by 

finite state automaton that define the states and transitions for each half of a conversation.  One example of 

a Communication Class Diagram is shown in Figure 6.  Conversations are defined to be point-to-point 

communication between just two agents.  Therefore, every event within the Communication Class Diagram 

is defined to be a message to or from the other agent instance participating in the conversation.  
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Conversations do not allow for communication with multiple agents simultaneously or for internal events 

to be exchanged with components internal to the agent. 

 

Figure 6 – Communication Class Diagram 

1.1.6 Assembling Agent Classes 

In Assembling Agent Classes, the internal components of an agent are defined.  Robinson [10] 

details how to assemble agents from a set of standard or user-defined architectures.  Each agent component 

is defined using an architectural modeling language combined with the Object Constraint Language.  This 

allows the user to define attributes and functions that belong to the agent.  Each component can also have a 

finite state automaton defining the dynamic characteristics of the component.  The events passed within a 

component’s dynamic model are limited to internal events with other components that belong to that agent.  

In the design phase, external communication is defined strictly through conversations, so there are no 

external send or receive events with other agents in the component’s dynamic model. 

1.1.7 System Deployment 

The final step defined in MaSE is System Deployment.  In this step, the designer develops a 

Deployment Diagram, which provides all of the detailed information necessary to deploy the system.  
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Deployment Diagrams define system parameters such as the actual number, types, and locations of the 

agents within the system.  Three dimensional boxes represent agents, and lines connecting them represent 

conversations between those agents.  A dashed-line box indicates that agents are housed on the same 

physical platform. 

1.1.8 agentTool 

In addition to the MaSE methodology, AFIT has developed a CASE tool named agentTool that 

serves as a validation platform and a proof of concept for MaSE.  agentTool has a graphical user interface 

that allows a user to develop a multiagent system using the analysis and design models as defined in MaSE.  

agentTool is also able to generate Java code for a system based on the design models.  Currently, the code 

generator is able to generate code for two different frameworks, agentMom and Carolina, but work is 

currently being done to integrate agentTool with the AFIT Wide Spectrum Object Modeling Environment 

that is looking at the more general code generation problem [11]. 

1.2 Problem 

One main goal of AFIT’s Agent Research Group has been to define a methodology specifically for 

formal agent system synthesis.  To accomplish such a goal, the analysis models must be transformed into 

the design models, and then the design models must undergo another series of transformations that produce 

executable code.  If each step in the transformation process preserves correctness, then the system engineer 

is guaranteed that the executable code is at least correct with respect to the analysis.  A transformation 

system should also be able to provide traceability from the system requirements through the development 

process to the final executable code.  In doing so, the system developer is able to verify that all of the 

system requirements have been fulfilled.  Furthermore, if the system engineer is able to adequately 

decompose the problem and capture the system behavior in the analysis phase then there is hope that 

undesirable system behavior, to which multiagent systems are prone, can be avoided. 
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The problem being addressed by this research is the development of formal user-assisted 

transformations for transitioning from analysis models to design models within the MaSE methodology.  

Feasibility is demonstrated by developing and integrating the appropriate software components in AFIT’s 

agentTool. 

While the basic concepts of roles and tasks are defined in MaSE, exactly how a designer should 

transform them into agent classes, conversations, and internal agent components has not fully been 

explored.  It is clear that roles are related to agent classes and the tasks that the roles perform are then 

related to the conversations between those agent classes.  Similarly, tasks are also related to agent class 

components and the transformation process may be able to derive some high-level definitions of those 

components from the tasks.  There is strong indication that much of the transformation process can be 

automated, with little user input.  The main focus of this research is defining exactly what those 

transformations are and what is the most suitable way to implement them.   

One difficulty in this transformation process revolves around the user being able to determine 

when coordination between two tasks is external communication and when it is internal to a role.  In order 

to facilitate this transformation system and overcome this problem, this research will also focus on how a 

user should specify coordination protocols.  A protocol defines a communication pattern designed to 

accomplish coordination between roles, or more specifically between tasks performed by those roles.  

Although protocols can be described through concurrent tasks [9], there may be another way to capture 

those protocols at a higher level of abstraction that would help determine the properties of the protocol and 

the tasks associated with it, which could be necessary information required for the transformation process.   

1.3 Scope 

This research effort will focus on defining the transformations that translate analysis models into 

design models for the MaSE methodology.  Particular attention is given to defining protocols and 

concurrent tasks and their relation to conversations and agent components.  Sufficiently complex examples 
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of multiagent systems that require open system protocols such as Contract Net, Dutch Auction, English 

Auction, etc. are used for demonstration purposes as well as several simple agent systems.   

The following are assumptions concerning the transformations being presented in this thesis: 

• The user has a good understanding of the MaSE methodology.  This research will not 

address how to determine goals, transform goals to roles, which protocols should be used 

for a given system specification, which tasks need to be defined based on roles, or when 

to combine multiple roles into a single agent class.   

• Transformations start with user-defined roles, tasks, and protocols so it is assumed that 

those models have been defined correctly.  If there is deadlock within the tasks, then 

there will also be a deadlock situation in the resulting conversations.   

• The transformations should use the current models and their semantics.  The semantics of 

the models will only be changed when there is ambiguity or inconsistency in the current 

definition of the semantics. 

• The transformations should not limit the design to a single platform or multiagent 

framework.  For example, a developer should be able to deploy the resulting design using 

both agentMom and Carolina. 

• The transformations should preserve correctness, but they do not need to create optimal 

solutions.  If optimality is desired, then either another set of optimizing transformations 

could be applied, or the user could manually manipulate the modes for optimization. 

1.4 Thesis Overview 

The remainder of this document is organized as follows.  Chapter 2 describes the approach taken 

for defining the relationships between the analysis and design model within MaSE, and presents the types 

that are used to formally define the transformations.  Chapter 3 presents the actual transformations as a 

three stage process and describes each transformation using a predicate logic statement.  Chapter 4 

describes how the transformations were demonstrated by implementing the transformations as a component 

of agentTool.  Chapter 5 discusses conclusions reached during this study and possible future research.  
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Appendix A has further background information that may assist the reader in understanding this thesis, and 

Appendix B presents functions used to define the transformations in Chapter III. 
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II. Problem Approach 

A formal transformation system can be defined as a series of small steps that manipulate one 

model into an alternative representation.  Each transformation must be deterministic in its execution and 

should not introduce inconsistencies between the two models.  This chapter describes the approach taken to 

define a formal transformation system that takes analysis models and produces the corresponding design 

models within the context of the MaSE methodology.  Specifically, this chapter explains the relationship 

between the models in the MaSE analysis and design phases, and presents an expanded Role Model in the 

analysis phase and a new organizational structure for agents and their components and conversations in the 

design phase.  

Before formal transformations can be defined over the MaSE analysis and design models, each 

model that is involved in the transformations must be formally defined and the semantics of the models 

clarified.  The models must have precise semantics so that the transformations can manipulate the models 

with predictable behavior.  The details of the models presented in this chapter also include attributes 

defined specifically for the transformations in Chapter III, and have no meaning outside of the context of 

the transformations.  Those attributes are not discussed in this chapter because they are not relevant to how 

the analysis models relate to the design models.  They will be explained as they are introduced in Chapter 

III. 

2.1 Expanding the Role Model 

The first step in defining a transformation system is to determine which parts of the initial model 

map to which parts in the resulting model.  The MaSE methodology makes it clear that the roles that an 

agent class plays, in conjunction with the communication paths between the roles’ tasks, determine the 

conversations each agent class will have.  However, further investigation proved this level of detail to be 

insufficient.  When an agent class plays more than one role, it may be the case that some of the 

communication between the roles that was specified as external communication between the roles can now 



 

 14

be internal communication within the agent.  Additionally, communication between tasks of the same role 

is not necessarily internal communication, but could in fact be external communication.  The analysis 

models in MaSE do not specifically deal with role instances and multiplicity. That is something typically 

left to the design phase.  However, the analyst may decide while developing the roles and their concurrent 

tasks that multiple instances of a single role will need to cooperatively work together in order to achieve 

some goal.  In such a case, the communication being specified is external communication between the 

different role instances. 

This deficiency led to an expanded view of the role model, as shown in Figure 7, that allows for a 

more detailed representation of the properties associated with roles and their tasks.  As in the traditional 

Role Model, roles are depicted as rectangles.  In the new Role Model, the goals that a role is responsible for 

are listed under the role.  This allows the analyst to ensure that all of the goals from the Goal Hierarchy 

Diagram have been assigned to a role.  Next, since roles may have one or more concurrent tasks associated 

with them, each task that a role has is denoted by an oval attached to the role.  The lines between the tasks 

denote communication protocols that occur between the tasks.  The protocols represent events that pass 

back and forth between the tasks, although which events are not specifically determined before the 

transformation process begins.  The arrows indicate which task is the initiator and which task is the 

responder in the protocol, with the arrow pointing from initiator to responder.  Solid lines indicate peer-to-

peer communication, which is external communication either between two tasks of different roles, or 

between two tasks of different instances of the same role.  External protocols involve messages being 

passed between roles and will become messages in a conversation between the agent classes that play those 

roles.  Conversely, dashed lines denote communication between two tasks that belong to the same role 

instance.  Roles are not allowed to share or duplicate a task.  If the analyst finds that two roles should have 

the same task, then further role decomposition needs to take place.  Shared tasks should be placed under a 

separate role, and those roles can then be combined back together into a single agent class in the design 

phase.   



 

 15

Client
goal1

Searcher
goal 4

Broker
goal2
goal3

Search Bid

RequestBidsFindSearcherManageSearchRequestSearch
Start Bidding

Contract NetMade BidStart Search

Found Searcher

Request Searcher

 

Figure 7 – Expanded Role Model 

2.2 Transforming Concurrent Tasks to Conversations and Components 

The next step in defining how to transform the analysis models into the design models was to 

determine the relationship between concurrent tasks and agent conversations and components.  When 

examining how the Role Model mapped into the Agent Class Diagram, some interesting discoveries were 

made.  First, when two roles are combined into a single agent class, the designer must determine whether 

the inter-role protocols should remain as external communication or if the communication that the protocol 

represents is now internal communication within the agent class.  Since external protocols represent 

messages that will pass between the agents, they will become one or more conversations.  The reason they 

may not be a single conversation is because the communication between the agents may not be continuous.  

There could be other coordinating communication that must take place internally, or with other agents.  

However, internal protocols (either initially defined or changed when roles are combined) will not result in 

conversations that represent that communication.  Secondly, if more than one agent class plays a role, then 

for each external protocol that involves that role, conversations will be created for each agent class that 

plays that role.  This means that there will be multiple instances of the same conversation between different 

agents in the system. 
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From experience using the MaSE methodology to develop several projects, concurrent tasks in the 

analysis phase do an excellent job in sufficiently capturing the coordination between the system roles.  

However, after transitioning to the design phase some of that coordination information was lost.  Even if 

the roles mapped one-to-one into agents, when conversations were created from the tasks, there seemed to 

be nothing left that tied the conversations together to coordinate their execution.  This was problematic 

when generating executable code from the design models.  The programmer was left looking back to the 

concurrent task models in the analysis phase to figure out how the conversations should be coordinated. 

The problem was that the finite state diagram that represented the task could include coordination 

with multiple tasks, both externally with many different roles as well as internally, while the conversations 

extracted from the tasks only dealt with the external communication between two agents at time.  The parts 

that contained the coordination between the conversations were being discarded, and MaSE gave no 

guidance for recapturing the missing pieces.  As a matter of fact, all internal events within the concurrent 

task diagrams were not being captured anywhere in the design phase.  The approach taken to resolve this 

problem is that when a role is played by an agent class, a component is created in that agent’s internal 

architecture for each of the role’s tasks.  The conversations can then be harvested from the component’s 

state diagram and replaced with an action on a transition that represents the execution of the conversation.  

The component’s own state diagram then retains the coordination that was previously missing, including 

passing internal events with other components of that agent class, as well as how the different 

conversations fit together. 

This change led to a slightly different model of the relationship between an agent, its components, 

and its conversations.  Since concurrent tasks are assumed to execute under their own thread of control and 

tasks now correspond to components, to maintain the analysis phase semantics the components must also 

execute under their own thread of control.  Furthermore, if the conversations are harvested from 

components, then the conversations will logically belong to components, not directly to agents.  Figure 8 

illustrates how the models in the analysis phase translate to the models in the design phase as well as the 

relationship between the design models. 
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Figure 8 – Model Influences 

This thesis does not propose that this is the only way to model the organizational structure of 

agents, components, and conversations in the design phase.  Rather it is an attempt to capture all of the 

information that is present in the analysis models and retain the same basic idea of a conversation, which is 

independent of the multiagent framework in which it will be implemented.  Some multiagent frameworks, 

such as Carolina [12], do not require that the conversations be broken out from the components.  All of the 

external messaging could be captured adequately in the finite state automaton from the task due to the way 

in which messaging is accomplished within the Carolina framework.  However, agentMom [13] is a 

multiagent framework that has a predefined class explicitly for implementing conversations.  In agentMom, 

conversations operate under their own thread of control and a separate socket connection is established for 

the communication of each conversation.  Therefore, the communication which conversations represent 
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(peer-to-peer) should be modeled independently from the internal events and messages that belong to other 

conversations. 

One side-effect of this approach is that the conversations that are harvested from the tasks may be 

small pieces that fit together to form the overall communication that takes place between two agents.  The 

reason that this communication will be broken up into multiple pieces is because there is other unrelated 

communication, either internal events or communication with another agent, that must take place in-

between the different pieces.  An alternative approach would be to capture all of the communication with 

another agent as a single conversation and allow the agent to somehow communicate with the conversation 

when other events that are unrelated to the conversation occur, such as internal events or communication 

with other agents.  Doing so would alter the definition of a conversation within the context of MaSE so that 

this agent-to-conversation communication could take place.  The approach that was chosen in this thesis 

seemed to be the most straightforward while still retaining the fundamental definitions of the models in the 

methodology.      

2.3 Model Definitions 

In order to define the models used in the transformations in Chapter III, each type in the models 

will be defined using an object format as demonstrated in Figure 9.  Square brackets [ and ] denote that the 

attribute is a sequence of the type, while curly brackets { and } are similarly used to represent sets.  In 

addition to defining the object types, graphical class diagrams using the Unified Modeling Language 

(UML) syntax are provided to give the reader a more complete picture of how the types in the models fit 

together.  In general, a class in the class diagram is represented by a single type that will be used in the 

transformations.  Aggregate components in the class diagrams become an attribute for the type that 

represents the parent class in the aggregate relationship. 
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 TypeName 
 
attributeA: AType 
attributeB: BType 

 

Figure 9 – Example Graphical Representation of a Type 

2.3.1 Analysis Models 

The Role Model and The Concurrent Task Models are the only models in the analysis phase of 

MaSE used in the transformation process.  The UML class diagram in Figure 10 shows the classes used to 

defined the Role Model and Concurrent Task Models.  The type StateTable, which is a component of the 

type Task is not defined in this section.  Since the Tasks, Components, and Conversations all use a 

StateTable to represent their dynamic properties, the StateTable is discussed at length in Section 2.3.3.   

Role
name : String
goals : {Goal}

StateTable

Task
name : String

0..*0..*

tasks

11

stateTable

Protocol
name : String
mode : "internal" | "external"

11

responder

11

initiator

 

Figure 10 – Class Diagram of the Expanded Role Model in MaSE 

The first model of interest in the analysis phase of MaSE is the Role Model.  Role Models 

describe the roles in the system, the tasks they have, and the protocols that capture the communication 

paths between the tasks.  A Role (Figure 11) is defined by its name, the set of goals it is responsible for, 

and a set of tasks that define how the role will accomplish its goals.  Each role in the system has a name 

that uniquely identifies it from any other role in the system. 
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 Role 
 
name: String 
goals: {Goal} 
tasks: {Task} 

 

Figure 11 – Role Type 

A Task (Figure 12) is defined by its name and a state table (equivalent to a state diagram) that is 

used to describe the behavior of that task.  Tasks must also have a name which uniquely identifies it from 

other tasks within the system.  As previously stated, a task can not be duplicated within the analysis phase.  

If a the analyst feels like a task will need to be shared by more than one agent class later in the design 

phase, then a separate role should be created to perform the task.  That role and its tasks can then be played 

by multiple agent classes. 

 Task 
 
name: String 
stateTable: StateTable 

 

Figure 12 – Task Type 

A protocol (Figure 13) is defined by the name of that protocol, the initiator and responder tasks, 

and the mode, that specifies whether the protocol is internal or external communication.  Multiple protocols 

in the Role Model may have the same name.  A protocol simply represents a sequence of events being 

passed between entities, roles in the analysis phase and then the agents that play those roles in the design 

phase.  Since the communication patterns are captured with the state diagrams in the tasks, the protocols 

more precisely capture the events being passed between the tasks of the roles, and likewise between the 

agent components and conversations.  The attributes initComp and respComp point to the agent 

components created that implement the tasks from the Role Model. 
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 Protocol 
 
name: String 
initiator: Task 
responder: Task 
mode: String 
initComp: Component 
respComp: Component 

 

Figure 13 – Protocol Type 

2.3.2 Design Models 

This section defines the types that make up the design models of MaSE, which include the Agent 

Class Diagram, the Component State Diagrams, and the Communication Class Diagrams.  The UML class 

diagram in Figure 14 shows the types used to define these models.  Again, since the StateTable type is also 

used in the tasks defined in the analysis phase, Section 2.3.3 is devoted to their explanation. 

Conversation
name : String

Role
name : String
goals  :  {Goal}

ConversationHalf
convID : String

11

initiator

11

responder

StateTable 11 stateTable

Agent
name : String

0..*0..*

conversations1..*1..* roles

Protocol
name : String
mode : "internal"  | "external"

Component
name : String

0..*0..*

convs

11

stateTable

1..*1..*

components

0..10..1

initComp

0..10..1
respComp

 

Figure 14 – Class Diagram  for the Types Used in the Design Phase of MaSE 

The first model in the design phase of MaSE is the Agent Class Diagram.  The Agent Class 

Diagram simply depicts the agent classes in the system, the roles those agents play, and the conversations 

between the agents.  Based on the discussion in Section 2.2, the way the pieces of the Agent Class Diagram 

fit together is a bit more complicated.   
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2.3.2.1 Agents 

An agent type represents the agents defined in the Agent Class Diagram.  An agent type (Figure 

15) is defined by its name, the roles it plays, the components it has, and the conversations it participates in.  

Each agent type has a name that uniquely identifies it from any other agent in they system. 

 Agent 
 
name: String 
roles: {Role} 
components: {Component} 
conversations: {Conversation} 

 

Figure 15 – Agent Type 

2.3.2.2 Components 

Component types (Figure 16) are defined by their name, a state table, and a set of conversation 

halves.  If a component is created from a task during the transformation process, its name comes from the 

task that it was created to implement.  Therefore, while there may be multiple agent classes that have 

components with the same name, no agent class will have two components that are named the same.  A 

component’s state table will initially be the same as the state table of the task it was created from, but after 

the transformation process it will only contain internal events and actions that the component must perform.  

The convs attribute is the set of ConversationHalfs that are extracted from the state table of the component. 

 Component 
 
name: String 
stateTable: StateTable 
convs: {ConversationHalf} 

 

Figure 16 – Component Type 
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2.3.2.3 Conversations 

Conversations (Figure 17) are made up of two ConversationHalfs, one that is the initiator and one 

that is the responder.  Each Conversation also has a name that uniquely identifies it within the system.  The 

ConversationHalf type (Figure 18) corresponds to the Communication Class Diagrams within MaSE, and is 

composed of a state table and a convID that is the name of the Conversation it belongs to.  The state table 

of a ConversationHalf details the external communication and internal actions that defines the behavior of 

one agent within a Conversation.   

 Conversation 
 
name: String 
initiator: ConversationHalf 
responder: ConversationHalf 

 

Figure 17 – Conversation Type 

 ConversationHalf 
 
stateTable: StateTable 
convID: String 

 

Figure 18 – ConversationHalf Type 

2.3.3 State Tables 

  Several key models within MaSE (Concurrent Task Diagram, Communication Class Diagram, 

and the dynamic model for Components) are defined using a finite state diagram, or equivalently a state 

table.  Each of these models are also key components to the transformation system defined in Chapter III.  

The state tables in the different models have various restrictions and slightly different semantics.  This 

section defines the state table types and explains the differences between the models.  The UML class 

diagram in Figure 19 gives a graphical overview of the different types used to define a StateTable and 

shows the different relationships between them.   



 

 24

 

Figure 19 – StateTable Class Diagram 



 

 25

A StateTable (Figure 20) is used to define the behavior of an entity through a set of states that it 

may be in at any point in time and the set of transitions that occur as the entity goes from one state to the 

next.  State tables also describe the communication patterns that take place between the different entities in 

the system through the events that are sent and received on the transitions. 

 StateTable 
 
states: {State} 
transitions: {Transition} 

 

Figure 20 – StateTable Type 

2.3.3.1 States 

A State (Figure 21) represents internal processing and is defined by a name and a sequence of 

actions that take place within the state.  Each state within a state table must have a unique name.  Upon 

entering a state, the sequence of actions will be executed in the given order.  The conversations attribute is 

only used during the transformations defined in Chapter III and holds the set of conversations that the state 

will be in. 

 State 
 
name: String 
actions: [Action] 
conversations: {Conversation} 

 
Figure 21 – State Type 

The beginning state of every state table is the start state.  In a state diagram this is represented by a 

solid circle, and in a state table it simply has the name “start”.  Every state table will continue execution 

until reaching the end state.  In a state diagram the end state is represented by solid circle inside a hallow 

circle, and in a state table it is the state named “end”. 
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2.3.3.2 Transitions 

Transitions specify how an entity moves from one state to another and define communication that 

takes place within the system.  A transition is typically defined by its origin and destination states, the 

received event that triggers the transition, a guard condition, a set of actions that take place (if allowed), 

and a set of transmission events.  In a state diagram, the syntax for the transition label would be: 

trigger [guard] / action(s) ^ transmission(s) 

For this thesis, a Transition type (Figure 22) is defined that is used for every model that has a state 

table, and is therefore usable throughout the transformation process in Chapter III.  The differences in the 

semantics for transitions are discussed for each model.  Several of the attributes shown for a transition 

(start, end, conversations, convNames, and protocols) are used only for the transitions in Chapter III.    

 Transition 
 
from: State 
receive: Event 
receiveEvent: ReceiveEvent 
guard: Boolean Expression 
to: State 
actions: [Action] 
sends: {Event} 
sendEvents: {SendEvent} 
start: Boolean 
end: Boolean 
conversations: {Conversation} 
convNames: {String} 
protocols: {Protocol} 

 

Figure 22 – Transition Type 

Transitions occur instantaneously and move the entity from one state to another (or possibly back 

to the same state).  A transition is enabled if all of the following conditions are true. 

1. The transition’s from state is the current state. 

2. The transition’s trigger event (if it has one) has been generated. 
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3. The transition’s guard condition (if it has one) evaluates to true. 

4. All actions in the transition’s from state have been completed 

If a transition does not have a trigger or a guard, both conditions are assumed to hold and the 

transition is enabled.  If there is no trigger, but there is a guard that is true, then the transition will also be 

enabled.   

2.3.3.2.1 Concurrent Task Diagram 

Concurrent Task Diagrams allow the user to define both internal and external events that take 

place between the tasks.  Therefore, the trigger for a transition can either be an event that is received 

internally (the receive attribute) or externally (the receiveEvent attribute).  A transition cannot have both.  

A transition can also have send events, both internal and external.  Once the transition is triggered, all 

transmission events are sent.  The sends attribute denotes the internal events that are sent and the 

sendEvents attribute denotes the external events that are sent.  All transmissions are assumed to take place 

instantaneously, so there is no implied ordering within the transmissions.  Therefore, multiple transmissions 

to a single task (i.e. that belong to the same protocol) are not allowed on the same transition.  As the state 

tables are designed and implemented, an ordering is necessarily applied to the transmissions because in 

reality they cannot take place instantaneously.  However, the order the transmissions are received is already 

defined in the analysis phase, because only one message can be received on a transition.  In order to receive 

two events, two transitions are required, and transitions are always enabled in a specific order.   

To illustrate why a transition cannot have two transmissions to the same task, first consider Figure 

23.  The transition has two SendEvents that we assume are being sent to the same task.  Figure 24 shows 

the corresponding state diagram with two different orderings for the  received events.  This situation is not 

allowed to avoid choosing the wrong order when the state diagram in Figure 23 is implemented. 

State1 State2
send(msg1, ag); send(msg2, ag)

 

Figure 23 – Transition with Two SendEvents to the Same Agent 
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State1 State2
receive(msg1, ag)

State3
receive(msg2, ag)

State1 State2
receive(msg2, ag)

State3
receive(msg1, ag)

 

Figure 24 – Two Orderings for ReceiveEvents 

Concurrent Task Diagrams also have special restrictions on where actions are allowed.  All actions 

are defined to take place within the states, so every transition’s actions attribute will be the empty 

sequence. 

2.3.3.2.2 Component State Table 

Each component for an agent has a state table that defines its behavior.  Any events on the 

transitions in the state table are defined to be internal events to other components of the same agent 

instance.  Therefore, the receiveEvent and sendEvents attributes will not be used.  During the 

transformation process in Chapter III, a Component is created for each task and starts with an identical 

StateTable that may have transitions with non-null receiveEvent or sendEvents attributes.  However, the 

transformation process removes those external events and create conversations with them, so that by the 

end of the transformation process, component state tables have only internal events defined by the receive 

and sends attributes. 

Some of the transformations in Chapter III also add actions to the transitions.  The semantics of 

actions on a transition is that once the transition is enabled, the actions are executed in the given order 

before any events are sent. 

2.3.3.2.3 Communication Class Diagram 

Communication Class Diagrams define the communication that takes place within a conversation 

between two agents.  Therefore, all events on the transitions represent external messages to or from the 

other agent participating in the conversation.  However, these messages are represented using the receive 
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(incoming message) and sends (outgoing messages) attributes, not receiveEvent or sendEvents like in the 

Concurrent Task Diagram.  Therefore, the transformation system must take the external events defined in 

the Concurrent Task Diagrams with the receiveEvent and SendEvent attributes and transform them into 

receive and sends that represent the same communication in the Communication Class Diagrams.  

Communication Class Diagrams also allow for actions on the transitions, that are defined to take place 

before any outgoing messages are sent. 

2.3.3.3 Actions and Events 

Actions represent the actual processing that takes place in the state table.  Actions can be used to 

represent internal reasoning, reading a percept from sensors, or causing an effector to make a change in the 

environment.  Originally, actions (or activities) were defined purely in the form of functions, where each 

function would have a number of input parameters and could return one result, either as a single value or as 

a tuple [5].  The syntax of an action was of the form: 

result = action-name(param1, param2, ... paramN) 

The definition of an action has since been expanded to allow tuple-to-tuple assignments, such as:   

<x,y> = position(object)  and  <a,b> = <x,y> 

The Action type is shown in Figure 25.  The lhs attribute of an action represents the left-hand-side 

of an assignment and is a sequence of strings that can be used to represent either a single value or a tuple.  

The rhs attribute is the right-hand-side of the assignment and is either a FunctionCall or another sequence 

of strings.    

 Action 
 
lhs: [String] 
rhs: FunctionCall | [String] 

 

Figure 25 – Action Type 
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FunctionCalls (Figure 26) represent processing being done by a role or agent within the action.  

FunctionCalls are defined by their name and a sequence of input parameters.  Parameters (Figure 27) are 

simply defined by a string that represents the parameter’s name.  Parameters would generally have a type 

and a value associated with the identifying name.  These are not necessary for the transformations in this 

thesis, however they would be required for future transforms that translate the design into code or another 

formal language syntax.  Similarly, the FunctionCall type would also reference a Function type (not defined 

here) that has pre- and post-conditions that define its behavior. 

 FunctionCall 
 
name: String 
parameters: [Parameter] 

 

Figure 26 – FunctionCall Type 

 Parameter 
 
name: String 

 

Figure 27 – Parameter Type 

Since Concurrent Task Diagrams distinguish internal events from external events, a different type 

is defined for each.  The ReceiveEvent type (Figure 28) was defined to represent external events that are 

received to trigger a transition in a Concurrent Task Diagram.  Each ReceiveEvent represents an event on a 

transition of the form receive(event, sender).  The event attribute represents the external message 

that is being received and the sender attribute represents the role instance that sent the message.  The 

protocols and convName attributes are only used in the transformations in Chapter III.  

 ReceiveEvent 
 
event: Event 
sender: String 
protocols: {Protocol} 
convName: String 

 

Figure 28 – ReceiveEvent Type 
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Just as the ReceiveEvent type was defined to represent an eternal event received in a Concurrent 

Task Diagram, a SendEvent type (Figure 29) was defined to represent an external event that is sent.  Each 

SendEvent represents an event on a transition of the form send(event, recipient).  Like a 

ReceiveEvent, a SendEvent also has an event attribute that represents the message being sent, but has a 

recipient attribute that defines who the message is being sent to.  If the recipient attribute is of the form 

“<list-name>”, then the recipient is a list of agents the message the will be sent to, and the SendEvent 

represents a multicast.  The protocols, conversations, and convName attributes were added for the 

transformations in Chapter III. 

 SendEvent 
 
event: Event 
recipient: String 
protocols: {Protocol} 
conversations: {Conversation} 
convName: String 

 

Figure 29 – SendEvent Type 

An Event (Figure 30) is used to define a message that is passed in the system, either internally or 

externally.  The name attribute represents the performative, which is the intent of the message, and the 

sequence of parameters represents the content of the message. 

 Event 
 
name: String 
parameters: [Parameter] 

 

Figure 30 – Event Type 

2.4 Summary 

This chapter described the approach taken for developing a formal transformation system that 

semi-automatically creates MaSE design models based on the analysis models.  This involved determining 

the relationships between the models and where input is required from the designer.  An expanded Role 
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Model for the analysis phase was presented, and the new organizational structure for the agents, 

components, and conversations in the design phase was described.  This chapter also presented each model 

used in the transformations by defining the individual types and their attributes, as well as the semantics 

and constraints for the models.  Chapter III follows the approach laid out in this chapter and presents the 

detailed transformations as a three-stage process. 
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III. Transformations 

Having defined the analysis and design models for MaSE in Chapter II, this chapter now develops 

the specific transformations that will use the Role Model and the Concurrent Task Diagrams to generate the 

Agent Class Diagram, the Communication Class Diagrams for the conversations between the agent classes, 

and the agent components that constitute the agents’ internal architectures.  The transformation system 

presented is actually a series of small steps that incrementally change the roles and tasks from the analysis 

phase into agent classes and their components and conversations in the design phase.  The process can be 

broken down into the three stages shown in Figure 31.  The transformations are designed to be applied in 

the order they are presented, although some of them are to be applied iteratively.   

Stage 1
• Determine the protocols for external events 
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in 
components
• Transform external events into internal events if they 
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to 
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

 

Figure 31 – Three Stages of the Transformation Process 
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Within this chapter, Section 3.1 defines the notations used to present the transformations.  Section 

3.2 describes the first stage of the transformation process, where the components for the agent classes are 

defined based on the user’s decision about which agent classes will play which roles.  Section 3.3 describes 

the second stage, centered around annotating the component state diagrams and matching external events in 

the different components that become the initial messages of the conversations.  Section 3.4 provides 

details for the last stage of the transformation process, where component state diagrams are prepared for the 

removal of the states and transitions that belong to conversations.  They are then removed and added to the 

state diagrams of the corresponding conversation halves.  

3.1 Formal Notations 

In order to formally define the transformations presented in this chapter, this section presents the 

notations used.  Each transformation is defined by a predicate logic equation of the form: condition ⇒ 

result, where the condition is the set of requirements that must be true for the transformation to take 

place, and the result describes what is guaranteed to be true after the transformation is performed.  This 

notation is similar to defining functions with pre-conditions and post-conditions.  These transformations 

describe what must take place, not how it must be done.  The types used in the transformations are the types 

described in Chapter II, and the following describes how they are used in this chapter:   

• The universe of discourse is the models in the system currently being developed 

• Sets are indicated by the pair of symbols { and }, and items in the set are separated by , 

when explicitly delineated 

• The Union of two sets is indicated by the symbol ?  

• The Intersection of two sets is indicated by the symbol n  

• The subset relationship is indicated by the symbol ⊆ 

• Sequences are indicated by the pair of symbols [ and ], and items in the sequence are 

separated by , when explicitly delineated and are assumed to appear in the order required 

by the sequence 
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• Sequence concatenation is indicated by the symbol ∩ 

• The symbol # is used to indicate the cardinality of a set or sequence 

• An element of a set is indicated by the symbol ∈ 

• The sub-field of a type is indicated by the dot notation, such as type.attribute  

• String concatenation is indicated by the symbol + 

• The tick symbol ’ indicates that the variable being referenced is the variable after the 

transformation 

3.2 Generating the Agent Model 

This section discusses the first stage of transformation process from the analysis phase to the 

design, highlighted in Figure 32.  Before these transformations can begin, the designer must have 

developed the Role Model and the Concurrent Task Diagrams in the analysis phase.  Additionally, the 

designer must define the initial set of agent classes, but only to the extent of deciding which set of roles 

each agent class will play, ensuring that each role is played by at least one agent class.  In this stage, the 

transformations must first determine to which set of protocols each external event belongs.  Then, 

components are created for agent classes to represent the tasks that the agent’s roles must perform.  Since 

the internal architecture of the agent consists of its components and their relationships, this step essentially 

derives the architecture of each agent based on the analysis models.  Whenever roles with an external 

protocol between their tasks are combined, the user may determine that that protocol is now internal 

communication within the agent.  When this happens, every external event that belongs to that protocol 

must be transformed into an internal event.  
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Stage 1
• Determine the protocols for external events 
• Create agent components from tasks
• Replicate protocols in Design between 
components
• Update the protocol set for external events in 
components
• Transform external events into internal events if 
they belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to 
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

 

Figure 32 – Stage 1 in the Transformation Process 

3.2.1 Determining Protocols for External Events 

In order to transform external events into internal events by declaring the protocol as internal, the 

protocols that each external event belongs to must first be determined.  The protocols that events belong to 

are also the primary factor in the second stage of the transformation process when transitions are labeled to 

denote the start and end of conversations.  Events, or the messages they represent, may belong to multiple 

protocols.  This may seem a little confusing at first, but the concept is simple.  Figure 33 shows an example 

of how a SendEvent could belong to multiple protocols.  The sets above each event are shown for purposes 

of the example and represent the set of protocols for that event.  Each of the transitions into State3 have 

ReceiveEvents that belong to different protocols.  The transition leaving State3 has a SendEvent that is a 

message sent in both protocols.  This scenario seems logical and states that it doesn’t matter which protocol 
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is currently being carried out when State3 is reached.  The variable y will be computed and then sent, 

regardless of the current protocol. 

State1

State2

State3
y = f(x) State4

receive(msg1(x), ag)

receive(msg2(x), ag)

^send(msg3(y), ag)

{P1}

{P2}

{P1, P2}

 

Figure 33 – SendEvent with Multiple Protocols 

The next three transformations are applied to the Role Model in the analysis phase and 

automatically determine for some cases if external events belong to a specific protocol.  However, there are 

cases where it is impossible to automatically determine if the analyst meant for an event to belong to a 

protocol or not.  In these ambiguous cases, the analyst will need to make that determination.  

Transformation 1 covers the case shown in Figure 34 that illustrates the condition that there are two tasks 

that have at least one set of corresponding events1 and those tasks have a protocol between them.  

Additionally, neither task has a protocol with another task that also has a corresponding event in its state 

table (denoted by an arrow with an X over it).  If these conditions hold, then the events must be part of the 

protocol, since there are no other protocols to which the events could belong.  Figure 34 also shows that the 

events within the tasks do not need to be unique.  If Task1 has more than one correspond event, they will 

all be labeled as belonging to Protocol 1. 

 

                                                           

1 A “corresponding events” refer to a SendEvent and a ReceiveEvent that have the same event (or message) parameter, 
e.g., send(do(x), ag) and receive(do(x), agent).  The do(x) parts represent the message being passed.  The events only 
need to have the same number of parameters (with matching types).  The names of the parameters do not need to 
match, nor do the identifiers (the recipient in the SendEvent and the sender in the ReceiveEvent). 
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Task1

1 or more matching
SendEvents

Task2

1 or more matching
ReceiveEvents

Protocol 1
X X

 

Figure 34 – Example of Transformation 1  

Transformation 1  

∀ t, t2 : Task, st, st2 : StateTable, trans, trans2 : Transition, se : SendEvent, re : ReceiveEvent,  

p : Protocol • 

( ((p.initiator = t ∧ p.responder = t2) ∨ (p.initiator = t2 ∧ p.responder = t)) ∧ st = t.stateTable  

∧ st2 = t2.stateTable ∧ trans ∈ st.transitions ∧ trans2 ∈ st2.transitions ∧ se ∈ trans.sendEvents  

∧ re = trans2.receiveEvent ∧ se.event = re.event  

∧ ¬(∃ t3 : Task, st3 : StateTable, trans3 : Transition, re2 : ReceiveEvent, p2 : Protocol •  

    p2 ≠ p ∧ t3 ≠ t2 ∧ st3 = t3.stateTable ∧ trans3 ∈ st3.transitions ∧ re2 = trans3.receiveEvent  

    ∧ ((p2.initiator = t ∧ p2.responder = t3) ∨ (p2.initiator = t3 ∧ p2.responder = t)) ∧ se.event = re2.event)  

∧ ¬(∃ t4 : Task ,st4 : StateTable, trans4 : Transition, se2 : SendEvent, p3 : Protocol • 

    p3 ≠ p ∧ t4 ≠ t ∧ st4 = t4.stateTable ∧ trans4 ∈ st4.transitions ∧ se2 ∈ trans4.sendEvents 

    ∧ ((p3.initiator = t2 ∧ p3.responder = t4) ∨ (p3.initiator = t4 ∧ p3.responder = t2)) ∧ se2.event = re.event) ) 

⇒ 

(re’.protocols = {p} ∧ se’.protocols = {p}) 

 

Transformation 2 covers the case illustrated in Figure 35, where there are two tasks that have at 

least one set of corresponding events and those tasks have a protocol between them.  This is no different 

than Transformation 1, except that now the ReceiveEvent must be unique within Task2, and it is acceptable 

for Task2 to have a protocol with another task that also has a corresponding SendEvent.  The reason this is 

still correct is that there is no other protocol to which the SendEvent(s) in Task1 can belong.  Furthermore, 

since the ReceiveEvent in Task2 is the only matching event for the SendEvent(s) in Task1, it must also 

belong to that protocol.  However, the ReceiveEvent in Task2 is not limited to the protocol with Task1.  If 

Task2 has another protocol with a different task that has a corresponding SendEvent, then the 

ReceiveEvent could also belong to that protocol. 
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Task1

1 or more matching
SendEvents

Task2

Only 1 matching
ReceiveEvent

Protocol 1
X OK

 

Figure 35 – Example of Transformation 2  

Transformation 2  

∀ t, t2, t3 : Task, st, st2, st3 : StateTable, trans, trans2 : Transition, se : SendEvent, re : ReceiveEvent,  

p : Protocol • 

( ((p.initiator = t ∧ p.responder = t2) ∨ (p.initiator = t2 ∧ p.responder = t)) ∧ st = t.stateTable  

∧ st2 = t2.stateTable ∧ trans ∈ st.transitions ∧ trans2 ∈ st2.transitions ∧ se ∈ trans.sendEvents  

∧ re = trans2.receiveEvent ∧ se.event = re.event  

∧ ¬(∃ trans3 : Transition, se2 : SendEvent • trans3 ∈ st.transitions ∧ se2 ∈ trans3.sendEvents  

    ∧ se2 ≠ se ∧ se2.event = se.event)  

∧ ¬(∃ t4 : Task ,st4 : StateTable, trans4 : Transition, se3 : SendEvent, p3 : Protocol • 

    p3 ≠ p ∧ t4 ≠ t ∧ st4 = t4.stateTable ∧ trans4 ∈ st4.transitions ∧ se3 ∈ trans4.sendEvents 

    ∧ ((p3.initiator = t3 ∧ p3.responder = t4) ∨ (p3.initiator = t4 ∧ p3.responder = t3)) ∧ se3.event = re.event) ) 

⇒ 

({p} ⊆ re’.protocols ∧ {p} ⊆ se’.protocols) 

 

Transformation 3 covers the case depicted in Figure 36 that is essentially the mirror image of 

Transformation 2.  There are two tasks that have at least one set of corresponding events and those tasks 

have a protocol between them.  Now the SendEvent must be unique within Task1, and it is acceptable for 

Task1 to have a protocol with another task that also has a corresponding ReceiveEvent.   

Task1

Only 1 matching
SendEvent

Task2

1 or more matching
ReceiveEvents

Protocol 1
OK X

 

Figure 36 – Example of Transformation 3  
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Transformation 3  

∀ t, t2, t3 : Task, st, st2, st3 : StateTable, trans, trans2 : Transition, se : SendEvent, re : ReceiveEvent,  

p : Protocol • 

( ((p.initiator = t ∧ p.responder = t2) ∨ (p.initiator = t2 ∧ p.responder = t)) ∧ st = t.stateTable  

∧ st2 = t2.stateTable ∧ trans ∈ st.transitions ∧ trans2 ∈ st2.transitions ∧ se ∈ trans.sendEvents  

∧ re = trans2.receiveEvent ∧ se.event = re.event  

∧ ¬(∃ trans3 : Transition, re2 : ReceiveEvent • trans3 ∈ st.transitions  

    ∧ re2 = trans3.receiveEvent ∧ re2 ≠ re ∧ re2.event = re.event)  

∧ ¬(∃ t4 : Task ,st4 : StateTable, trans4 : Transition, re3 : ReceiveEvent, p3 : Protocol • 

    p3 ≠ p ∧ t4 ≠ t ∧ st4 = t4.stateTable ∧ trans4 ∈ st4.transitions ∧ re3 = trans4.receiveEvent 

    ∧ ((p3.initiator = t3 ∧ p3.responder = t4) ∨ (p3.initiator = t4 ∧ p3.responder = t3)) ∧ re3.event = re.event) ) 

⇒ 

({p} ⊆ se’.protocols ∧ {p} ⊆ re’.protocols) 

 

After the first three transformations have been applied, there may still be some cases where, due to 

ambiguity, the transformations were unable to automatically determine that an event is intended to belong 

to a protocol.  In each case, the developer must determine whether or not the event belongs to the protocol.  

The ambiguous cases can be identified by an external protocol between two tasks with corresponding 

external events that were not automatically determined to belong to the protocol. 

Figure 37 illustrates the case where it is impossible to automatically determine to which protocols 

a SendEvent belongs.  Task1 has more than one SendEvent and participates in more than one protocol with 

other tasks that have corresponding ReceiveEvents.  Some of the SendEvents may belong to only one 

protocol and not the other, while some SendEvents could belong to both.  The developer has to make the 

determination. 

Task1

More than 1
matching SendEvents

Task3

1 or more matching
ReceiveEvents

Protocol 2
Task2

1 or more matching
ReceiveEvents

Protocol 1

 

Figure 37 – Ambiguous Protocols for SendEvents 
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Figure 38 is similar to Figure 37, and illustrates the case when it is impossible to automatically 

determine to which protocols a ReceiveEvent belongs.  The ReceiveEvents in Task1 may belong to 

Protocol1, Protocol2, or both.  

Task1

More than 1
matching ReceiveEvents

Task3

1 or more matching
SendEvents

Protocol 2
Task2

1 or more matching
SendEvents

Protocol 1

 

Figure 38 – Ambiguous Protocols for ReceiveEvents 

3.2.2 Creating Components for Agents from Tasks 

At this point, the designer must have already determined the set of roles each agent class will play.  

Transformation 4 states that for every task of every role that an agent plays, a component is created for that 

task.  The component’s state table is initially the same as the state table of the task for which it was 

generated, and the component’s name is the name of the task.  The rest of the transformation process is 

centered around these component state tables.    

As an example of how Transformation 4 creates components for agent classes, consider Figure 39 

as the Role Model created in the analysis phase.  If the developer decides in the design phase to create the 

agent classes with the roles shown in Figure 40, then Transformation 4 creates the components shown for 

the agents.  Since both agents play Role 2, there is a component created for each agent for Role 2’s Task 2.  

Figure 40 is not a MaSE diagram, but is presented to illustrate the internal agent components based on the 

initial Agent Class Diagram. 

Role 1 Role 3Role 2

Task 1 Task 3Task 2
Protocol 1 Protocol 2

 

Figure 39 – Role Model Example 
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Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2

 

Figure 40 – Agent Components Created From the Roles' Tasks 

Transformation 4  

∀ a : Agent, r : Role, t : Task •  

(r  ∈  a.roles ∧ t ∈ r.tasks)  

⇒  

(∃ c : Component • c ∈ a’.components ∧ c.stateTable = t.stateTable ∧ c.name = t.name)  

 

3.2.3 Replicating Protocols Between Components 

Next, for each protocol in the analysis, Transformation 5 creates corresponding protocols in the 

design.  Protocols in the analysis phase are defined between tasks.  Transformation 4 created agent 

components based on the roles that each agent plays and the tasks that those roles have, protocols in the 

design phase must be between the components created for those tasks.  Also, a role may be played by many 

different agent classes, and the tasks of that role are duplicated as components of all agents that play that 

role. Therefore, the protocols between those tasks are also duplicated for every component that was created 

from the task.  This is done so that the designer can define whether, for every protocol between roles that 

are combined together, that protocol is now internal instead of external.   

As an example of how the protocols might be duplicated in the design based on the Role Model 

and the roles chosen for agent classes, consider again our example from Figure 39 and Figure 40.  Figure 

41 takes the example one step further and illustrates how the protocols from the analysis phase are 

replicated in the design.  Since both Agent 1 and Agent 2 have a component created from Task 2, and both 

Protocol 1 and Protocol 2 involve Task 2, there are two instances of each protocol in the design between 
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each component.  The protocols shown in Figure 41 are illustrated purely for the purposes of the example.  

There is currently no model in MaSE that depicts protocols between agent components. 

Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2

Protocol 1

Protocol 1

Protocol 2

Protocol 2

 

Figure 41 – Agent Diagram Example 

Transformation 5  

∀ p: Protocol, r, r2 : Role, t, t2 : Task, c, c2 : Component, a, a2 : Agent • 

(r ∈ a.roles ∧ t ∈ r.tasks ∧ c ∈ a.components ∧ c.name = t.name ∧ p.initiator = t ∧ r2 ∈ a2.roles  

∧ t2 ∈ r2.tasks ∧ c2 ∈ a2.components ∧ c2.name = t2.name ∧ p.responder = t2) 

⇒ 

(∃ p2 : Protocol • p2.name = p.name ∧ p2.initiator = p.initiator ∧ p2.responder = p.responder  

∧ p2.initComp = c ∧ p2.respComp = c2 ∧ p2.mode = p.mode) 

 

At this point, the set of protocols for external events in the components are identical to the 

protocols defined between the tasks in the analysis phase.  The next two transformations update those 

protocols to denote the protocols between the components.  Transformation 6 converts the set of protocols 

for ReceiveEvents and Transformation 7 for SendEvents.  The previous examples are used to illustrate the 

importance of these transformations.  Assume that in Figure 39 there is an external event E in Task 2 that 

belongs to Protocol 1.  Figure 41 illustrates the agents, component, and components after Transformation 4 

and Transformation 5.  In Agent 2’s Task 2 component, the external event E must belong to the instance of 
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Protocol 1 between Agent 1’s Task 1 component and Agent 2’s Task 2 component, not to the other instance 

of Protocol 1 between Agent 1’s Task 1 and Task 2 components. 

Transformation 6  

∀ p, p2 : Protocol, t, t2 : Task, c : Component, st : StateTable, t : Transition, re : ReceiveEvent • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ p ∈ re.protocols ∧ p.initiator = p2.initiator  

∧ p.responder = p2.responder ∧ (p2.initComp = c ∨ p2.respComp = c) ) 

⇒ 

(p2 ∈ re’.protocols ∧ p ∉ re’.protocols) 

 

Transformation 7  

∀ p, p2 : Protocol, t, t2 : Task, c : Component, st : StateTable, t : Transition, se : SendEvent • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ p ∈ se.protocols ∧ p.initiator = p2.initiator  

∧ p.responder = p2.responder ∧ (p2.initComp = c ∨ p2.respComp = c) ) 

⇒ 

(p2 ∈ se’.protocols ∧ p ∉ se’.protocols) 

 

3.2.4 Transforming External Events into Internal Events 

For each pair of roles that are combined into an agent class, the designer must determine whether 

each protocol that exists between components of that agent is either internal or external.  This was also 

done for protocols between tasks of the same role in the analysis phase.  If a protocol is defined as internal, 

all external ReceiveEvents and SendEvents that belong to the protocol are converted into internal receive 

and send Events.  Transformation 8 describes how external SendEvents are converted to an internal Event 

in the sends clause, and Transformation 9 describes how an external ReceiveEvent is converted into an 

internal Event in the receive clause. 

For example, if the ReceiveEvent, receive(msg(x, y), agent), is part of a protocol that is determined 

to be internal, the event is changed to msg(x, y).  It should be noted that in order for an external event to be 

transformed into an internal event, every protocol that the event belongs to must be designated as internal.  
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If an event belongs to both internal and external protocols, an error has been made and it must be corrected 

before the transformation process can continue. 

Transformation 8  

∀ c : Component, p : Protocol, st : StateTable, t : Transition, se : SendEvent • 

( (p.initComp = c ∨ p.respComp = c) ∧ st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents  

∧ se.protocol = p ∧ p.mode = “internal”) 

⇒ 

(se.event ∈ t’.sends ∧ se ∉ t’.sendEvents) 

 

Transformation 9  

∀ c : Component, p : Protocol, st : StateTable, t : Transition, re : ReceiveEvent • 

( (p.initComp = c ∨ p.respComp = c) ∧ st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent  

∧ re ≠ null ∧ re.protocol = p ∧ p.mode = “internal”) 

⇒ 

(re.event = t’.receive ∧ t’.receiveEvent = null) 

 

3.3 Annotating Component State Diagrams  

Now that components have been created for the agent classes that represent the concurrent tasks 

from the analysis phase, the next stage of the transformation process (highlighted in Figure 42) is centered 

around annotating the component state tables for the removal of the conversations.  There are many 

different cases in which tasks can be defined in the analysis phase that make removing conversations 

problematic, such as events being received or sent on transitions that do not belong to the same 

conversation.  The transformations in this section first convert the component’s state tables into a canonical 

form to simplify harvesting the conversations from them.  Then the state tables are annotated to indicate 

where each conversation begins and ends.  Finally, the starting points for the conversations in the different 

component state diagrams are matched.  
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Stage 1
• Determine the protocols for external events 
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in 
components
• Transform external events into internal events if they 
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding 
events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to 
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

 

Figure 42 – Stage 2 in the Transformation Process 

3.3.1 Splitting Transitions 

Transitions in a component state table that have either multiple events that represent 

communication in different protocols, or some external and some internal communication, make it difficult 

to remove the conversations from the state table.  Since a transition can only have either an external 

ReceiveEvent or an internal Receive Event, there is a transformation that handles each case.  

Transformation 10 covers transitions that have an external ReceiveEvent.  The requirement for the 

transformation is that there is 1) an external ReceiveEvent and 2) either an internal send Event or an 

external SendEvent that belongs to a different set of protocols.  All external SendEvents that have the same 

protocols as the ReceiveEvent are placed on the first transition along with the receiveEvent, the guard 

condition, and the actions, all of which are defined to take place before any transmitted events.  The 
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internal send Events and the remaining external SendEvents with protocols that are different than the 

ReceiveEvent’s protocols are placed on the second transition. 

Transformation 10  

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent •  

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ re ≠ null  

∧ ( (∃ se : SendEvent •  se ∈ t.sendEvents ∧ re.protocols ≠ se.protocols) ∨ (∃ e : Event • e ∈ t.sends) ) ) 

⇒   

(∃ s : State,  t1, t2 : Transition, n : String • s ∈ st’.states ∧ s ∉ st.states ∧ t1 ∈ st’.transitions  

∧ t2 ∈ st’.transitions ∧ s.name = (“Null” + n) ∧ ¬ (∃ s2 : State • s ≠ s2 ∧ s.name = s2.name) ∧ s.actions = {}  

∧ t1.receive = null ∧ t1.receiveEvent = t.receiveEvent ∧ t1.guard = t.guard ∧ t1.actions = t.actions  

∧ t1.sends = {} ∧ t1.from = t.from ∧ t1.to = s ∧ ¬(∃ t3 : Transition • t3.to = s ∧ t1 ≠ t3) 

∧ (∀ se1 : SendEvent • (se1 ∈ t.sendEvents ∧ re.protocols = se1.protocols ) ⇔ se1 ∈ t1.sendEvents ) 

∧ t2.receive = null ∧ t2.receiveEvent = null ∧ t2.guard = null ∧ t2.actions = [ ] ∧ t2.sends = t.sends 

∧ (∀ se2 : SendEvent • (se2 ∈ t.sendEvents ∧ re.protocols ≠ se2.protocols) ⇔ se2 ∈ t2.sendEvents) 

∧ t2.from = s ∧ t2.to = t.to ∧ t ∉ st’.transitions ∧ ¬(∃ t3 : Transition • t3.from = s ∧ t2 ≠ t3) ) 

 

Figure 43 shows how Transformation 10 would split a transition.  The sets above the events 

represent the protocols to which the events belong.  The original transition has a ReceiveEvent that is part 

of protocol P1 and one SendEvent for protocol P1 and one SendEvent for protocol P2.  After the 

transformation, the SendEvent for P1 is placed on the first transition with the ReceiveEvent and the 

SendEvent for P2 is placed on the second transition.  The resulting transitions and null state are consistent 

with the semantics of the original transition.  In order for the original transition to take place, both the guard 

condition must be met and the do(a) message is received from ag1.  When the transition occurs the ack 

message is sent back to ag1, and the do(a) message is sent to ag2.  After the transformation, the guard must 

be true and the do(a) message must be received from ag1 for the first transition to take place, sending the 

ack message back to ag1.  There are no new actions that are done within the null state, and the second 

transition is automatically enabled, sending the do(a) message to ag2.   
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StateA
receive(do(a), ag1) [guard] ^send(ack, ag1); send(do(a), ag2)

receive(do(a), ag1) [guard] ^send(ack, ag1) ^send(do(a), ag2)

StateB

StateA Null StateB

{P1} {P1} {P2}

{P1} {P1} {P2}

 

Figure 43 – Example of Splitting a Transition 

As seen in the example shown in Figure 43, there was an ordering applied to the SendEvents.  

This is a design decision that is consistent with the original specification defined by the concurrent task 

diagrams.  Since the SendEvents belong to different protocols (see Section 2.3.3.2.1), they are received by 

different components.  Therefore, it makes no difference what order is chosen to send them.  The first event 

is sent to one component, followed by the next event to the other component.  Even if the different 

components belong to the same agent, they should both be waiting to receive the events, regardless of the 

order in which they are received. 

Transformation 11 covers transitions that have either an internal receive or send event.  The 

requirement for this transformation to take place is that there is 1) either an internally received or sent 

Event and 2) at least one external SendEvent in the sendEvents clause.  Any internal receive or send Events 

are placed on the first transition along with the original transition’s guard and actions.  The second 

transition simply contains the set of external SendEvents.    
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Transformation 11  

∀ c : Component, st : StateTable, t : Transition •  

(st = c.stateTable ∧ t ∈ st.transitions ∧ (t.receive ≠ null ∨ t.sends ≠ {}) ∧ t.sendEvents ≠ {}) 

⇒   

(∃ s : State,  t1, t2 : Transition, n : String • s ∈ st’.states ∧ s ∉ st.states ∧ t1 ∈ st’.transitions  

∧ t2 ∈ st’.transitions ∧ s.name = (“Null” + n) ∧ ¬(∃ s2 : State • s2 ≠ s ∧ s2.name = s.name) ∧ s.actions = {}  

∧ t1.receive = t.receive ∧ t1.receiveEvent = null ∧ t1.guard = t.guard ∧ t1.actions = t.actions  

∧ t1.sends = t.sends ∧ t1.sendEvents = {} ∧ t1.from = t.from ∧ t1.to = s ∧ t2.receive = null ∧ t2.sends = {}  

∧ t2.receiveEvent = null ∧ t2.guard = null ∧ t2.actions = [ ] ∧ t2.sendEvents = t.sendEvents ∧ t2.from = s  

∧ t2.to = t.to ∧ t ∉ st’.transitions ∧ ¬(∃ t3 : Transition • (t3.to = s ∧ t1 ≠ t3) ∨ (t3.from = s ∧ t2 ≠ t3) ) ) 

 

Figure 44 illustrates how Transformation 11 would split a transition that has both internal events 

and external SendEvents.  The original transition has both an internal receive and send Event, as well as an 

external SendEvent.  After the transformation only the internal events are placed on the first transition and 

the external SendEvents (in this case only one) are placed on the second transition.  Again, the state 

diagram after the transformation is consistent with the semantics of the original state diagram.  In both 

cases, do(a) must be internally received, the guard condition must be true, and the internal acknowledge 

event is sent, as well as the external SendEvent belonging to protocol P1.  The transmissions in the 

resulting state diagram have been ordered, but since the events are being sent to different components, they 

are still consistent with the original state diagram. 

StateA
do(a) [guard] ^ acknowledge; send(msg(a), ag)

do(a) [guard] ^ acknowledge ^send(msg(a), ag)

StateB

StateA Null StateB

{P1}

{P1}

 

Figure 44 – Example 2 of Splitting a Transition 
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3.3.2 Determining the Protocols for Transitions 

The next step of the transformation process is to annotate the component state tables to show 

where each conversation begins and ends.  In order to simplify this process, each transition is labeled with a 

set of protocols that represents the external protocols in which the transition may participate.  If a transition 

has a non-empty set of protocols, then the communication that takes place on that transition at any given 

time will be with only one of the protocols in the set, not all of them.  If a transition has an empty set of 

protocols, then either there is no external communication taking place, or there is communication with 

more than one agent that takes place.  Later, the set of protocols is the primary factor for determining where 

conversations start and end.   

Table 1 shows the rules for determining the set of protocols for a transition.  The first five columns 

show the properties for the transition being labeled.  Transformation 10 and Transformation 11 split up 

transitions with events that do not correspond to each other, so Table 1 shows the only possible 

combinations for the transition being labeled.  There will be no transitions with a) an internal receive Event 

and an external ReceiveEvent, b) an internal receive Event and external SendEvents, c) an external 

ReceiveEvent and internal send Events, d) a ReceiveEvent and SendEvents that don’t correspond (i.e. 

different protocols), or e) internal send Events and external SendEvents.   

An “x” in the table represents a “don’t care” in a traditional logic table.  Under the SendEvents 

column, “same protocols” means that every SendEvent on the transition has the same set of protocols, and 

“different protocols” means that not all SendEvents have the same set.  The “Union” label means that the 

set of protocols is the union of all protocol sets on transitions into the from state. 
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Table 1 – Rules for Determining a Transition’s Set of Protocols 

Transition being labeled Protocols for Protocols for Resulting Transformation
Transitions into Transitions out of Set of

receive ReceiveEvent guard sends SendEvents Actions the from state  the from  state Protocols
no yes x no x x x x ReceiveEvent's 12
no no x no same protocols x x x SendEvent's 13
no no x no different protocols x x x { } 14
no no x no to <list> x x x { } 15
yes no x x no x x x { } 16
x no x yes no x x x { } 16

no no x no no x != { } Union Union 17
no no x no no x { } x { } 18
no no x no no x x { } { } 18
no no x no no x x != Union { } 18  

 

Transformation 12 sets the protocols for all transitions that have a non-null receiveEvent attribute. 

Transformation 10 ensured that transitions with an external ReceiveEvent only have SendEvents that have 

the same set of protocols.  Therefore, it is certain that the set of protocols for the transition can be the same 

as that of the ReceiveEvent. 

Transformation 12  

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ re ≠ null ∧ t.receive = null ∧ t.sends = {}  

∧ ¬(∃ se : SendEvent • se ∈ t.sendEvents ∧ re.protocols ≠ se.protocols) ) 

⇒ 

t’.protocols = re.protocols 

 

If there is a transition with no internal events, no ReceiveEvent, and all external SendEvents have 

the same protocols, and the none of the recipients of the SendEvents is a list, then Transformation 13 sets 

the protocols of the transition to the SendEvents’ set of protocols.  While the set of protocols for the 

SendEvents may contain more than one protocol, it is assumed that the events that are sent belong to only 

one protocol at a time.  If there is at least one SendEvent with different protocols, then Transformation 14 

sets the protocols to the empty set, since that transition contains communication that may belong to two 

different protocols at the same time. 
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Transformation 13  

∀ c : Component, st : StateTable, t : Transition, se : SendEvent • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receiveEvent = null ∧ t.receive = null ∧ t.sends = {}  

∧ se ∈ t.sendEvents ∧ ¬isList(se.recipient)  

∧ ¬(∃ se2 : SendEvent • se2 ∈ t.sendEvents ∧ se2 ≠ se ∧ se2.protocols ≠ se.protocols) ) 

⇒ 

t’.protocols = se.protocols 

 

Transformation 14  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receive = null ∧ t.sends = {} 

∧ (∃ se1, se2 : SendEvent • se1 ≠ se2 ∧ se1 ∈ t.sendEvents ∧ se2 ∈ t.sendEvents  

    ∧ se1.protocols ≠ se2.protocols) )  

⇒ 

t’.protocols = {} 

 

If a transition has an external SendEvent to a list (a multicast), then Transformation 15 sets the 

transition’s protocols to the empty set, not because the transition contains communication to different 

protocols at the same time, but because a multicast implies simultaneous communication with a different 

instance of the protocol for each agent represented in the list.  The isList(String) function returns true if the 

string representing the recipient is of the form <list-name>.   

Transformation 15  

∀ c : Component, st : StateTable, t : Transition, se : SendEvent • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ isList(se.recipient) ) 

⇒ 

t’.protocols = {} 

 

Transformation 16 states that if a transition has an internal event, then the protocols set must be 

the empty set, denoting that no communication with external protocols takes place on the transition.  

Transformation 11 split transitions that had both internal and external events, so at this point any transitions 
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that have at least one internal event are assured to have no external events, and therefore belong to no 

external protocols. 

Transformation 16  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions  ∧ (t.receive ≠ null ∨ t.sends ≠ {}) ) 

⇒ 

t’.protocols = {} 

 

If there is a transition with no internal or external events that are received or sent, then the 

transition by itself gives no information as to what the protocols set should be.  It is not necessarily empty 

since the set of protocols represents the current communication that is taking place and is used in 

determining if a transition is the start or end of a conversation.  Other factors are used to determine the 

protocols of these transitions.  If every transition to or from the transition’s from state have non-empty 

protocols, and every transition leaving the from state contains the union of the protocols for all transitions 

into the from state, then Transformation 17 also makes the set of protocols for the transition in question the 

union of all protocols of the transitions into the from state.  Otherwise, there has been a change in the active 

protocol, and Transformation 18 gives the transition the empty set of protocols.   

Transformation 17  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receive = null ∧ t.receiveEvent = null ∧ t.sends = {}  

∧ t.sendEvents = {}  

∧ ¬(∃ t2 : Transition • t2 ∈ st.transitions ∧ t2 ≠ t ∧ t2.to = t.from ∧ t2.protocols = {})  

∧ ¬(∃ t3 : Transition • t3 ∈ st.transitions ∧ t2 ≠ t ∧ t3.from = t.from ∧ t3.protocols = {}) 

∧ (∀ t4 : Transition, p : Protocol • t4 ∈ st.transitions ∧ t4 ≠ t ∧ t4.from = t.from ∧ p ∈ t4.protocols  

    ∧ p ≠ null ⇔ (∃ t5 : Transition • t5 ∈ st.transitions ∧ t5.to = t4.from ∧ p ∈ t5.protocols) ) ) 

⇒ 

(∀ t6 : Transition • (t6 ≠ t ∧ t6.to = t.from) ⇒ t’.protocols = (t.protocols ?  t6.protocols) ) 
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Transformation 18  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receive = null ∧ t.receiveEvent = null ∧ t.sends = {}  

∧ t.sendEvents = {}  

∧ ( (∃ t2 : Transition • t2 ∈ st.transitions ∧ t2 ≠ t ∧ t2.to = t.from ∧ t2.protocols = {})  

    ∨ (∃ t3 : Transition • t3 ∈ st.transitions ∧ t3 ≠ t ∧ t3.from = t.from ∧ t3.protocols = {}) 

    ∨ ¬(∀ t4 : Transition, p : Protocol • t4 ∈ st.transitions ∧ t4.from = t.from ∧ p ∈ t4.protocols ∧ p ≠ null  

         ⇔ (∃ t5 : Transition • t5 ∈ st.transitions ∧ t5.to = t4.from ∧ p ∈ t5.protocols) ) ) ) 

⇒ 

t’.protocols = {} 

 

The next example illustrates how Transformation 17 determines the protocols for transitions that 

have no events.  Figure 45 shows a state diagram with three different transitions with no events.  The sets in 

the figure show the protocols for the transitions.  The transition leaving State1 is an automatic transition 

and has no events.  However, the only transition into State1 has {P1} as its set of protocols.  Since there is 

no indication that the active protocol has changed, Transformation 17 sets the protocols for the transition 

leaving State1 to {P1}.  In the same way, the transition leaving State2 receives the protocol set {P2}.  The 

resulting state diagram is shown in Figure 46.   

Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{P1}
receive(do1(a), ag)

{P2}
receive(do2(b), ag)

{P1, P2}
[c ≤ 0] ^send(sorry, ag)

[c > 0]

 

Figure 45 – Transitions With No Events 
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Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{P1}
receive(do1(a), ag)

{P2}
receive(do2(b), ag)

{P1, P2}
[c ≤ 0] ^send(sorry, ag)

[c > 0]

{P1} {P2}

 

Figure 46 – Protocols Determined for Two Transitions 

The more interesting case is the transition leaving the Eval state.  It only has a guard condition and 

no events, yet Transformation 17 determines that the set of protocols should be {P1, P2}, the union of the 

protocols of the transitions into the Eval state.  This is because the protocols of the other transition leaving 

the Eval state is also the union of the transitions into the Eval state (determined either by the first three 

transformations or by the designer), and there are no transitions into or out of the Eval state with an empty 

set of protocols.  The resulting state diagram is shown in Figure 47.  As you can see from this example, in 

order for these transformations to be executed correctly, all other transitions into or out of its from state 

must already be determined.  For example, the protocols for the transition out of the Eval state with only 

the guard condition could not be determined correctly if the protocols for the transitions into the Eval state 

had not already been determined. 
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Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{P1}
receive(do1(a), ag)

{P2}
receive(do2(b), ag)

{P1, P2}
[c ≤ 0] ^send(sorry, ag)

{P1, P2}
[c > 0]

{P1} {P2}

 

Figure 47 – Protocols Determined for All Transitions 

3.3.3 Start Label for Transitions 

Now that all transitions have a set of protocols, the next step is to determine where conversations 

begin and end.  There are many reasons to label a transition as the start of a new conversation.  However, 

since every transition already has its protocols set, the rules are greatly simplified.  The protocols indicate 

with whom the communication takes place.  The following six conditions indicate the start of a 

conversation by a change in who the agent is communicating with, which in most cases is due to a change 

in the protocols. 

1. A transition has a protocol not found in at least one transition into its from state 

(Transformation 19). 

2. A transition has a non-empty set of protocols that is different than another transition leaving 

the same state (Transformation 20). 

3. A transition has a non-empty set of protocols, yet lacks a protocol of another transition into its 

from state (Transformation 21). 

4. A transition has a non-empty set of protocols, and there is another transition into or out of its 

from state with an empty set of protocols (Transformation 22). 
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5. A transition has an empty set of protocols and at least one SendEvent (Transformation 23). 

6. A transition has a SendEvent whose recipient was previously determine by an action 

(Transformation 24). 

Transformation 19 states that when a transition has a protocol in its set of protocols that is not 

found in at least one transition into its from state, then the transition must be the start of a new 

conversation.  In this case, the transition has communication that belongs to a protocol not previously 

active, so the communication to the newly active protocol will be a new conversation.  The most obvious 

example of this is when there is a complete change in the set of protocols from one transition to the next.  

Figure 48 illustrates another example of when Transformation 19 would label a transition as the start of a 

conversation.  The sets indicate the protocols set for the transitions, and the letter S over the transition 

indicates it has been labeled as the start of a conversation.  The attributes of the transitions are not shown in 

these examples, because it is only the set of protocols that matters in these transformations.  In the portion 

of the state diagram shown in Figure 48, the transition leaving State1 has both P1 and P2 as protocols, but it 

also has P3 and there is no transition into State1 with P3 as a protocol, so the transition becomes the start of 

a conversation. 

State1
{P1} {P1, P2, P3}

{P2}

S
 

Figure 48 – Example of Transformation 19  

Transformation 19  

∀ c : Component, st : StateTable, t : Transition, p : Protocol • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {} ∧ p ∈ t.protocols 

∧ ¬(∃ t2 : Transition • t2 ∈ st.transitions ∧ t2.to = t.from ∧ p ∈ t2.protocols) ) 

⇒ 

t’.start = true  
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Transformation 20 states that if there is a transition with a non-empty set of protocols leaving a 

state and there is another transition with different protocols leaving the same state, then the transition must 

be the start of a conversation.  These transitions cannot be the continuation of a previous conversation, 

because they have different protocols that may be active when leaving the from state.  Figure 49 illustrates 

one example of how Transformation 20 would label a transition as the start of a conversation.  In the 

example, there are two transitions with different protocols both leaving State1.  These transitions must be 

the start of conversations because it is unclear which transition would be enabled from State1 and therefore 

which protocol would be active in communication. 

State1
{P1} {P1}

{P2}

S

S

 

Figure 49 – Example of Transformation 20  

Transformation 20  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {} 

∧ (∃ t2 : Transition • t2 ∈ st.transitions ∧ t2.from = t.from ∧ t2.protocols ≠ t.protocols) ) 

⇒ 

t’.start = true  

 

Transformation 21 states that if there is a transition with at least one protocol leaving a state and 

that transition lacks a protocol that another transition into the from state has, then the transition is the start 

of a conversation.  The protocol that is missing for the transition leaving the from state may be the active 

protocol for the transition into the from state, so that conversation cannot continue and another one must 

begin.  In the previous example, Figure 49 illustrates an instance where Transformation 21 would be 

applied.  Since the transition with protocols {P2} leaving State1 does not have P1 as a protocol, and the 

transition into State1 does, the transition leaving State1 is the start of a conversation, regardless of the fact 

that there is another transition leaving State1 with different protocols. 
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Transformation 21  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {} 

∧ (∃ t2 : Transition, p : Protocol • t2 ∈ st.transitions ∧ t2.to = t.from ∧ p ∈ t2.protocols ∧ p ∉ t.protocols )) 

⇒ 

t’.start = true  

 

Transformation 22 states that when a transition is labeled with at least one protocol and there is 

another transition either from or into its from state that has no protocols, then the transition is the start of a 

conversation.  If there is a transition into the from state with an empty set of protocols, then it is possible 

that the transition was the one taken, and the protocol activated on the transition leaving the state must 

represent communication to a new agent.  If there is a transition out of the from state with an empty set of 

protocols, then no transition leaving the from state can continue any previous conversation because the 

transition with no protocols may be the one taken. 

As an example, consider Figure 50, where the transition leaving State1 is labeled with only 

protocol P1 and there is another transition with an empty set of protocols that is also leaving State1.  

Transformation 22 labels the transition with protocols {P1} as the start of a conversation.  If the transition 

with no protocols was not present, then the transition leaving State1 with protocols {P1} would be 

guaranteed to continue the conversation. 

State1
{P1} {P1}

{}

S

 

Figure 50 – Example of Transformation 22   



 

 60

Transformation 22  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {} 

∧ (∃ t2 : Transition • t2 ∈ st.transitions ∧ (t2.to = t.from ∨ t2.from = t.from) ∧ t2.protocols = {})  

⇒ 

t’.start = true  

 

Transformation 23 states that if a transition labeled with no protocols has a SendEvent, then the 

transition starts a new conversation.  This covers the following two possibilities:  

1. The transition has more than one SendEvents and they have different recipients. 

2. The transition has a SendEvent to a list. 

In each case, there is communication with more than one agent.  Therefore, there are multiple 

instances of conversations that take place on the transition, and the conversations result in simple “single-

transition” conversations.  Later, Transformation 26 also labels these transitions as the end of the 

conversation. 

Transformation 23  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.sendEvents ≠ {} ∧ t.protocols = {}) 

⇒ 

t’.start = true  

 

Transformation 24 simply states that if there is an action, either in a state or on a transition, that 

determines the recipient of a SendEvent on a subsequent transition, then the transition starts a new 

conversation.  In most cases, that action will occur in the transition’s from state, but there could be states 

and transitions between the setting of that variable and its use in the SendEvent.  The 

isAssigned(SendEvent, Transition, StateTable) function is defined in Appendix B, and takes care of these 

cases by recursively searching back from the transition to determine if there is an action that sets the 

recipient of the SendEvent.   Figure 51 shows one example where Transformation 24 would apply.  There 
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is an action in State1 that sets the recipient of the SendEvent on the transition leaving that state.  Since the 

action just determined who the communication in the SendEvent would be with, the transition is the start of 

a new conversation. 

State1
ag = top(list)

^send(msg, ag)
S

 

Figure 51 – Example of Transformation 24  

Transformation 24  

∀ c : Component, st : StateTable, t : Transition, se : SendEvent • 

(st = c.stateTable ∧ t ∈ st.transitions  ∧ se ∈ t.sendEvents ∧ isAssigned(se, t, st) ∧ t.protocols ≠ {}) 

⇒ 

t’.start = true  

 

3.3.4 End Label for Transitions 

In the same way that the set of protocols for transitions are used to determine the start of 

conversations, they are also used to determine where conversations end.  The following four conditions 

indicate the end of a conversation. 

1. A transition has a protocol not found in a transition leaving its to state (Transformation 25). 

2. A transition has an empty set of protocols and at least one SendEvent (Transformation 26). 

3. A transition has a non-empty set of protocols and there is a start transition leaving its to state 

(Transformation 27). 

4. A transition to the end state has a non-empty set of protocols (Transformation 28). 

Transformation 25 states that if there is a transition with a protocol and there is another transition 

leaving its to state that does not also have that protocol, then the transition must be the end of a 

conversation because that protocol might not continue to have active communication.  Figure 52 shows an 

example of how Transformation 25 would apply.  The transition into State1 has P1 as a protocol, but the 
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transition leaving State1 has the empty set as its set of protocols.  Thus, the transition with protocols {P1} 

is labeled as the end of a conversation. 

State1
{P1} {}

E
 

Figure 52 – Example of Transformation 25 

Transformation 25  

∀ c : Component, st : StateTable, t : Transition, p : Protocol • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ p ∈ t.protocols ∧ p ≠ null 

∧ ¬(∀ t2 : Transition • t2 ∈ st.transitions ∧ t.to = t2.from ∧ p ∈ t2.protocols) 

⇒ 

t’.end = true 

 

Transformation 26 is the corresponding transformation to Transformation 20, and designates any 

transition with an empty set of protocols and at least one external SendEvent as the end of a conversation.  

As stated earlier this occurs when either 1) there are external SendEvents with different recipients or 2) 

there is a SendEvent to a list.  Each case represents multiple conversation instances that take place on the 

transition, so the transition is both the start and end of the conversation(s). 

Transformation 26  

∀ c : Component, st : StateTable, t : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.sendEvents ≠ {} ∧ t.protocols = {}) 

⇒ 

t’.end = true 

 

Transformation 27 is straightforward, and states that if a transition has a non-empty set of 

protocols and its to state is the from state of a transition that is marked as the start of a new conversation, 

then that transition is the end of the conversation.  This must be the case so that the next conversation can 

start.  
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Transformation 27  

∀ c : Component, st : StateTable, t, t2 : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ t.protocols ≠ {} ∧ t.to = t2.from ∧ t2.start = true) 

⇒ 

t’.end = true 

 

Transformation 28 describes the last reason that a transition can be labeled the end of a 

conversation, which is when a transition has a non-empty set of protocols and its to state is the end state.  It 

is obvious in this situation that the conversation must end because the state table ends.  

Transformation 28  

∀ c : Component, st : StateTable, t : Transition, s : State • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ null ∧ s ∈ st.states ∧ s = t.to ∧ s.name = “end”) 

⇒ 

t’.end = true 

 

3.3.5 Matching Conversation Halves 

After all of the components’ state diagrams have been annotated, the different conversation halves, 

as annotated, must be matched.  As the events are matched, they are given the same convName.  Events 

may be matched with more than one corresponding event, so in practice, every matching set of events 

would receive the same conversation name, which may ripple through as new matches are made.  Once all 

conversation halves have been matched, Conversations can be created to represent the communication.  

The protocols between the components provide a way to determine to which component the corresponding 

halves belong.  The next two transformations define how, in some cases, the different conversation halves 

can be automatically matched.  The transformations are very similar to the transformations used to 

determine the set of protocols for external events.  Again, not all matches can be made automatically.  In 

some cases, the developer must determine whether a message in a SendEvent is actually meant to be 

received by a ReceiveEvent in another component.   
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Transformation 29 is essentially the same as Transformation 2.  It covers the conditions illustrated 

in Figure 53, where there is a protocol between two components that have corresponding events.  One 

component has at least one corresponding SendEvent, and the other component has only one corresponding 

ReceiveEvent.  The component with the SendEvent cannot have a protocol with another component that 

has a corresponding ReceiveEvent, while the component with the unique ReceiveEvent may have a 

protocol with another component with a corresponding SendEvent. 

Component1

Has 1 or more matching
SendEvents on a transition

Component2

Has only 1 matching
ReceiveEvents on a transition

Protocol 1X OK

 

Figure 53 – Example of Transformation 29 

Transformation 29  

∀ c1, c2 : Component, p : Protocol, st1, st2 : StateTable, t1, t2 : Transition, se : SendEvent,  

re : ReceiveEvent • 

(st1 = c1.stateTable ∧ st2 = c2.stateTable ∧ t1 ∈ st1.transitions ∧ t2 ∈ st2.transitions 

∧ ((c1 = p.initComp ∧ c2 = p.respComp) ∨ (c1 = p.respComp ∧ c2 =p.initComp)) 

∧ t1.start = true ∧ t2.start = true ∧ se ∈ t1.sendEvents ∧ re = t2.receiveEvent ∧ se.event = re.event 

∧ ¬(∃ p2 : Protocol, c3 : Component, st3 : StateTable, t3 : Transition, se2 : SendEvent •  

     p2 ≠ p ∧ ((p2.initComp = c3 ∧ p2.respComp = c2) ∨ (p2.initComp = c2 ∧ p2.respComp = c3)) 

     ∧ c3 ≠ c1 ∧ st3 = c3.stateTable ∧ t3 ∈ st3.transitions ∧ se2 ∈ t3.sendEvents  

     ∧ se2.event = re.event) 

∧ ¬(∃ t3 : Transition, se2 : SendEvent • t3 ≠ t1 ∧ t3 ∈ st1.transitions ∧ se2 ∈ t3.sendEvents  

 ∧ se2.event = se.event) ) 

⇒ 

(∃ newName : String • se’.convName = newName ∧ re’.convName = newName) 

 

Transformation 30 is essentially the same as Transformation 3 and the mirror image to 

Transformation 29.  The conditions for the transformation to apply are illustrated in Figure 54, where the 

SendEvent must be unique and its component is allowed to have a protocol with another component that 

has a corresponding ReceiveEvent.  The ReceiveEvent in the other component is not required to be unique, 

but that component cannot have a protocol with another component with a corresponding SendEvent. 
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Component1

Has only 1 matching
SendEvents on a transition

Component2

Has 1 or more matching
ReceiveEvents on a transition

Protocol 1OK X

 

Figure 54 – Example of Transformation 30 

Transformation 30  

∀ c1, c2 : Component, p : Protocol, st1, st2 : StateTable, t1, t2 : Transition, se : SendEvent,  

re : ReceiveEvent • 

(st1 = c1.stateTable ∧ st2 = c2.stateTable ∧ t1 ∈ st1.transitions ∧ t2 ∈ st2.transitions 

∧ ((c1 = p.initComp ∧ c2 = p.respComp) ∨ (c1 = p.respComp ∧ c2 =p.initComp)) 

∧ t1.start = true ∧ t2.start = true ∧ se ∈ t1.sendEvents ∧ re = t2.receiveEvent ∧ se.event = re.event 

∧  ¬(∃ p2 : Protocol, c3 : Component, st3 : StateTable, t3 : Transition, re2 : ReceiveEvent •  

     p2 ≠ p ∧ ((p2.initComp = c3 ∧ p2.respComp = c1) ∨ (p2.initComp = c1 ∧ p2.respComp = c3)) 

     ∧ c3 ≠ c2 ∧ st3 = c3.stateTable ∧ t3 ∈ st3.transitions ∧ re2 = t3.receiveEvent ∧ re2.event = se.event) 

∧ ¬(∃ t3 : Transition, re2 : ReceiveEvent • t3 ≠ t2 ∧ t3 ∈ st2.transitions ∧ re2 = t3.receiveEvent 

     ∧ re2.event = re.event) )  

⇒ 

(∃ newName : String • se’.convName = newName ∧ re’.convName = newName) 

 

In many cases this transformation will not be sufficient.  As mentioned earlier, the user will have 

to match up many events that cannot be determined automatically.  However, this is not the only problem 

that may arise after matching up the conversation halves.  One problem that may exist is that there may be 

two events matched as the beginning of a conversation, but the rest of the events are out of order or do not 

correspond.  In this case, an error has been made, either because the definitions of the state tables for the 

tasks in the analysis phase were incorrect, or because the user decided to match up a SendEvent with a 

ReceiveEvent that was not really intended to correspond as a message passing between them. 

Another problem that may result after the component state tables have been annotated is that the 

corresponding state tables might have been annotated differently so that the conversation halves do not 

match.  This will be evident when there is a start transition in a component with either a SendEvent or 

ReceiveEvent, and there is no start transition in the state table of the component that participates in the 
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protocol with the corresponding event.  This will happen when one of the components has coordination 

with other components or other agents that causes different start and end transitions.  In this case, the 

appropriate start and end labels will need to be added to the state tables so that they match up.   

Figure 55 shows one example where two state diagrams have been annotated differently.  The 

dashed arrows show the two events that should match up as the beginning of conversations.  However, only 

the first event will be matched.  In the top state diagram, there is no start label for the second transition with 

the ReceiveEvent even though in the bottom state table the transition with the corresponding SendEvent is 

already labeled as a start transition.  The annotations do not match up is because in the bottom state 

diagram there are internal events that take place in the middle of the transitions with external events, 

requiring two conversations instead of one.  When the developer determines that second set of events 

match, a start label is added to the second transition in the top state diagram and a new conversation name 

is given to the transitions for the new match.  

State1
^send(msg1(x), ag)

S
receive(msg2(y), ag)

E

State1
receive(msg1(x), ag)

S ^send(msg2(y), ag)
E

State2

State3 SE

^compute(x) inform(y)

 

Figure 55 – Two State Diagrams Annotated Differently 

Since this last process may involve adding new start labels to transitions, Transformation 27 

would now be reapplied so that any needed end labels would also be added to the state tables on transitions 

in front of the new start transitions. 
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3.3.6 Splitting Transitions with a ReceiveEvent and Multiple Conversation Names 

As conversations are matched, it may be the case that a transition that has a non-empty set of 

protocols can end up with ReceiveEvent that starts one conversation and a SendEvent that starts another 

conversation.  Transformation 10 only split up transitions that had a ReceiveEvent and at least one 

SendEvent with different protocols.  Consider the example in Figure 56.  The sets above the transitions 

represent the set of protocols and the convName for the events.  Although both events in the top state 

diagram belong to the same protocol, they become the first messages in two different conversations 

because of the way that the bottom state diagram was annotated due to the internalMsg(x) event on the 

transition between State1 and State2. 

receive(msg1(x), ag) ^ send(ack, ag)
S E

^ send(msg1(x), ag)
S E State1 State2

receive(ack, ag)
S E

^ internalMsg(x)

{P1}conv1 {P1}conv2

{P1}conv1 {P1}conv2

 

Figure 56 – Transition with a ReceiveEvent and Multiple Conversation Names 

Transformation 31 splits transitions that are labeled as the start of a conversation but have a 

ReceiveEvent that starts one conversation and a SendEvent that starts another conversation.  As mentioned, 

Transformation 10 made sure the only SendEvent on a transition with a ReceiveEvent has the same 

protocols.  Furthermore, since a transition cannot have multiple SendEvents to the same entity (i.e. the 

protocols are the same), then we can also be certain at this point in the transformation process that there can 

only be one SendEvent on transitions that have a ReceiveEvent.  When Transformation 31 splits up the 

transition, a new null state is created that becomes the to state of the original transition, and a new transition 

is added from the new null state to the original to state.  The ReceiveEvent is left on the original transition 

with any guard and actions.  The single SendEvent is placed on the new transition, and its set of protocols 

is the same as the original transition.  The original transition is given the end label, and the new transition is 
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given the start label.  Additionally, if the original transition had the end label, so will the new transition 

with the SendEvent. 

Transformation 31  

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.start = true ∧ t.protocols ≠ {} ∧ t.receiveEvent = re ∧ re ≠ null  

∧ (∃ se : SendEvent • se ∈ t.sendEvents ∧ se ≠ null ∧ se.convName ≠ null ∧ se.convName ≠ re.convName) ) 

⇒ 

(t’.end = true ∧ t’.sendEvents = {}  

∧ (∃ s : State, t2 : Transition, num : String • s ∉ st.states ∧ s ∈ st’.states ∧ s.name = “Null” + num  

    ∧ s.actions = [ ]  ∧ t2 ∉ st.transitions ∧ t2 ∈ st’.transitions ∧ t2.receive = null ∧ t2.receiveEvent = null  

    ∧ t2.guard = null ∧ t2.actions = [ ] ∧ t2.sends = [ ] ∧ t2.sendEvents = [se] ∧ t2.protocols = t.protocols  

    ∧ t2.start = true ∧ t2.from = s ∧ t2.to = t.to ∧ t’.to = s ∧ (t.end = true ⇒ t2.end = true)  

    ∧ ¬(∃ s2 : State • s2 ∈ st’.states ∧ s2 ≠ s ∧ s2.name = s.name) ) ) 

 

Continuing with our example from Figure 56, Transformation 31 changes the state diagram to that 

shown in Figure 57.  Breaking up the transition was straightforward, and now the messages for the two 

conversations are on two different transitions, but still in the same order as that of the original transition.   

receive(msg1(x), ag)S E

^ send(msg1(x), ag)
S E State1 State2

receive(ack, ag)
S E

^ internalMsg(x)

{P1}  conv1 {P1}  conv2

{P1}  conv1 {P1}  conv2

Null1
^send(ack, ag)

S E

 

Figure 57 – State Diagrams After Transformation 31  

3.3.7 Creating Conversations 

Once the different halves of the conversations have been matched up in the component state 

tables, “empty” conversations can be created based on the conversation names given to the transitions.  The 

conversations will initially be empty because no ConversationHalf objects exist yet that hold the state 
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tables for the initiator and responder parts of the conversation.  The ConversationHalfs will be created for 

the conversations during the third stage of the transformation process, when the conversations are harvested 

from the components. 

As events within component state tables are matched as the beginning of conversations, an event 

may be matched to several other corresponding events.  For every matching pair of events for a given 

conversation name, a conversation with a unique name is created between the agents of those components.  

As an example, Figure 58 shows four agents and three conversations between them.  The conversations are 

given unique names because of the compound definition that MaSE uses for conversations2.  While each 

half of the conversations must send/receive the same messages in the same order, the state tables do not 

need to be equivalent.  There may be different actions within the states or on the transitions, as well as 

different states, etc.  In other words, the messages sent and received within the components of Agent2 and 

Agent3 must be the same and in the same order so that they both correspond to the messages within 

Agent1’s component.  However, the state tables may still be different and therefore require unique 

conversations. 

Agent1 Agent2

Agent4 Agent3

conv1-1

conv1-2

conv1-3  

Figure 58 – Duplicate Conversations Between Agents 

In order to further illustrate this point, Figure 59 shows the state diagrams for the components of 

Agent2 and Agent3 annotated for conv1-1 and conv1-2 respectively.  The transitions and events in the two 

state diagrams are identical.  However, the actions in the states used to compute y call different functions, 

so the state diagrams are not equivalent and therefore require different conversations. 
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State1
y = f1(x)

receive(msg1(x), ag)
S

^send(msg2(y), ag)
E

State1
y = f2(x)

receive(msg1(x), ag)
S

^send(msg2(y), ag)
E

 

Figure 59 – State Diagrams with Different Actions in State1 

3.3.8 Propagating the Set of Conversations 

Once all component state tables have been annotated and conversations have been assigned to the 

start transitions, the set of conversations needs to be propagated to all of the states and transitions belonging 

to the conversations.  Transformation 32 does just that and is intended to be applied iteratively, beginning 

with all of the start transitions.  The transformation no longer needs to be applied when it reaches all 

transitions that are labeled as the end of a conversation. 

Figure 60 continues with an earlier example to demonstrate how Transformation 32 propagates the 

set of conversations from the start transitions until an end transition is reached.  The sets above the 

transitions represent the set of conversations that the transitions belong to.  The S and E labels on the 

transitions represent the start and end of conversations respectively.  In the example, the two transitions 

leaving the Idle state are the start of two different conversations named conv1 and conv2.  The transition 

leaving State1 receives the set of conversations from the transition into State1, which is {conv1}.  The 

transition leaving State2 likewise receives the set {conv2}.  The two conversations merge at the Eval state, 

and the transitions leaving the Eval state receive {conv1, conv2} as conversations, the union of the two 

sets. 

                                                                                                                                                                             

2 In MaSE, conversations are defined by two state tables, one for the initiator and one for the responder.  Therefore, the 
conversations are defined not only by the messages that pass between the agents, but also by the actions that take 
place in the states and on the transitions to perform the necessary processing.   
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Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{conv1}
receive(do1(a), ag)

{conv2}
receive(do2(b), ag)

{conv1, conv2}
[c ≤ 0] ^send(sorry, ag)

{conv1, conv2}
[c > 0]

{conv1} {conv2}

S S

E

E

 

Figure 60 – Example of Propagating the Set of Conversations 

Transformation 32  

∀ c : Component, st : StateTable, t, t2 : Transition, s : State • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ s = t.to ∧ s = t2.from  

∧ t.end = false) 

⇒ 

(s’.conversations = s.conversations ?  t.conversations  

∧ t2’.conversations = t2.conversations ?  t.conversations) 

 

3.4 Harvesting the Conversations 

Once the component state tables have been fully annotated and the different conversation halves 

have been matched, the next stage in the transformation process, highlighted in Figure 61, is to first prepare 

the conversations to be removed and then to actually remove them and replace them with an action on a 

transition that performs that conversation.   
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Stage 1
• Determine the protocols for external events 
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in 
components
• Transform external events into internal events if they 
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple 
states
• Prepare variables in conversations that belong 
to the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

 

Figure 61 – Stage 3 in the Transformation Process 

3.4.1 Combining Conversation End States 

The approach for harvesting the conversations from the component state tables is to replace the 

states and transitions that belong to the conversation with a transition that has an action to perform the 

conversation.  However, if a conversation can end in more than one state, replacing the conversation with a 

single transition is impossible without first modifying the state table so that the conversation will always 

exit to a single state.  This section describes how this modification is done while preserving the semantics 

of the model.  Before the individual transformations are presented, consider the following example.  Figure 

62 illustrates a portion of a state diagram annotated as a conversation with multiple states that the end 

transitions exit to (State 2 and State 3).   
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State1

State3

State2
receive(msg2(y), ag)

receive(msg3(z), ag)

^send(msg1(x), ag)
S

E

E

Wait

 

Figure 62 – Conversation with Multiple Exit States 

Figure 63 shows the state diagram after the transformations execute.  All end transitions now have 

the same to state, which is a newly created null state.  Additionally, there is an action on each end transition 

that sets a BRANCH variable unique to each transition, and for each end transition there is a corresponding 

transition to the original to state with a guard testing the value of the BRANCH variable.  The reason 

“parent.BRANCH” is used in the action will be explained later.  This change in the state diagram maintains 

the semantics of the original state diagram.  For example, if the receive(msg2(y),ag) ReceiveEvent is 

received while in the Wait state, the original state diagram will transition to State2.  In the state diagram 

after the transformations, if the same receive(msg2(y), ag) is received while in the Wait state, the state 

diagram will transition to the new Null1 state.  However, the BRANCH variable is set to 1 and there is an 

automatic transition from state Null1 to State2 with a guard condition “BRANCH == 1”.  

State1

State3

State2

receive(msg2(y), ag) / parent.BRANCH = 1

receive(msg3(z), ag) / parent.BRANCH = 2

^send(msg1(x), ag)S

E

E

Null1Wait

[BRANCH == 1]

[BRANCH == 2]

 

Figure 63 – State Diagram After Transformations 

In order to simplify the transformations, this process is broken into three different transformations.  

If the transitions out of an annotated conversation are to different states, then the first step is to create a new 
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null state for each exiting transition and set the to state to the new null state.  Also a new automatic 

transition is created from the null state to the original to state.  This change is consistent with the semantics 

of the original state table.  There is nothing new being done and the flow of actions and events remains the 

same.  These modifications are found in Transformation 33.  Using the example for this section and 

beginning with the state diagram in Figure 62, Transformation 33 alters the state table into the form shown 

in Figure 64 

Transformation 33  

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ t.end = true  

∧ t.to = s ∧ s2 ∈ st.states ∧ t2.end = true ∧ t2.to = s2 ∧ t2 ≠ t ∧ s2 ≠ s  

∧ t.conversations ⊆ t2.conversations)  

⇒ 

(∃ s3 : State, t3 : Transition, n : String • s3 ∈ st’.states ∧ s3 ∉ st.states ∧ s3.name = (“Null” + n)  

∧ s3.conversations = {} ∧ ¬(∃ s4 : States • s4 ≠ s3 ∧ s4 ∈ st’.states ∧ s4.name = s3.name)  

∧ s3.assignments = {} ∧ t’.to = s3 ∧ t3 ∈ st’.transitions ∧ t3.from = s3 ∧ t3.to = t.to  

∧ t3.receive = null ∧ t3.receiveEvent = null ∧ t3.guard = null ∧ t3.sends = {} ∧ t3.sendEvents = {}  

∧ t3.actions = [ ] ∧ t3.protocols = {} ∧ t3.conversations = {} 

∧ ¬(∃ t4 : Transition • t4 ∈ st’.transitions ∧ t4.to = s3 ∧ t4 ≠ t’) 

∧ ¬(∃ t5 : Transition • t5 ∈ st’.transitions ∧ t5.from = s3 ∧ t5 ≠ t3) )  

 

State1

State3

State2
receive(msg2(y), ag)

receive(msg3(z), ag)

^send(msg1(x), ag)
S

E

E

Wait

Null2

Null1

 

Figure 64 – State Diagram After Transformation 33  

Now that all transitions that end the conversation exit to null state, the null states need to be 

combined so that the conversation exits to a single state.  Before this is done, there must be some way to 

determine which transition was taken as the conversation completed.  Transformation 34 does this by 
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adding an action to each exiting transition of the form “parent.BRANCH = x”, where x is a unique integer 

for each transition.  The reason “parent.BRANCH” is used in the left hand side of the action is because the 

variable being set will be checked within the component after the conversation is removed from it.  

Additionally, for each transition out of the null states the guard condition “BRANCH == x” is added, where 

x corresponds to the x in the action on the transition into the state.  Here, “parent.” does not need to be 

prepended to the BRANCH variable because this transition will remain in the component’s state table and 

the BRANCH variable belongs to the component.  Continuing with the current example, Transformation 34 

would alter the state diagram in Figure 64 into the state diagram shown in Figure 65. 

Transformation 34  

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ t.end = true ∧ t.to = s  

∧ s2 ∈ st.states ∧ t2.end = true ∧ t2.to = s2 ∧ t2 ≠ t ∧ s2 ≠ s ∧ t.conversations ⊆ t2.conversations)  

⇒ 

(∃ a : Action, num : String • t’.actions = (t.actions ∩ a) ∧ a.lhs = [“parent.BRANCH”] ∧ a.rhs = [num] 

∧ ¬(∃ t3 : Transition, a2 : Action • t3 ∈ st’.transitions ∧ t’ ≠ t3 ∧ a ∈ t3.actions 

    ∧ (t.conversations n  t2.conversations n  t3.conversations) ≠ {})  

∧ (∀ t4 : Transition • t4 ∈ st.transitions ∧ t4.from = t.to ⇒ t4’.guard = “BRANCH == “ + num)  ) 

 

State1

State3

State2

receive(msg2(y), ag) 
/ parent.BRANCH = 1

receive(msg3(z), ag)
/ parent.BRANCH = 2

^send(msg1(x), ag)
S

E

E

Wait

Null2

Null1
[BRANCH == 1]

[BRANCH == 2]

 

Figure 65 – State Diagram After Transformation 34  

Now that each exiting transition has been uniquely labeled with an action and there is a guard 

condition on the transition out of the null state, Transformation 35 merges all of the null states that the 

conversation exits to into a single null state, that becomes the to state of all of the exiting transitions and the 
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from state of all transitions out of the null states.  The set of null states that the conversation once exited to 

are removed.  In the current example, Transformation 35 changes the state diagram in Figure 65 into its 

final state, as shown in Figure 66.   

Transformation 35  

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State  • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ t.end = true ∧ t.to = s  

∧ s2 ∈ st.states ∧ t2.end = true ∧ t2.to = s2 ∧ t2 ≠ t ∧ s2 ≠ s ∧ t.conversations ⊆ t2.conversations)  

⇒ 

(∃ s3 : State, n : String • s3 ∈ st’.states ∧ s3 ∉ st.states ∧ s3.name = (“Null” + n) ∧ s3.conversations = {}  

∧ s3.actions = [ ] ∧ t’.to = s3 ∧ t2’.to = s3 ∧ ¬(∃ s4 : State • s4 ∈ st’.states ∧ s4 ≠ s3 ∧ s4.name = s3.name)  

∧ (∀ t3 : Transition • (t3 ∈ st.transitions ∧ (t3.from = s ∨ t3.from = s2) ) ⇒ t3’.from = s3) ) 

 

State1

State3

State2

receive(msg2(y), ag) / parent.BRANCH = 1

receive(msg3(z), ag) / parent.BRANCH = 2

^send(msg1(x), ag)S

E

E

Null3Wait

[BRANCH == 1]

[BRANCH == 2]

 

Figure 66 – State Diagram After Transformation 35  

3.4.2 Preparing Variables and Parameters 

The next step in preparing the state tables for removal of conversations deals with variables and 

parameters used within a conversation that are also used outside of that conversation.  The semantics of 

variables in a conversation are that they are local to the conversation.  Therefore, any variable that is 

accessed within a conversation and is also used elsewhere in the state table must belong to the “parent” 

component. 

If a transition that belongs to a conversation has a receive event with parameters that are used 

anywhere else besides locally to the conversation, then there must be an action to set each parameter in the 
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parent component.  Otherwise, the event will be received in the conversation, but the component and the 

other conversations that belong to the component that also must know about the parameters in the event 

will not have visibility to it.  Transformation 36 covers the case when there is a state that does not belong to 

the conversation and has an action that uses the parameter, and Transformation 37 takes care of cases 

where there is another transition that does not belong to the conversation and uses that parameter. 

All of the transformations in this section use one of two functions defined in Appendix B.  The 

usedInAction(Parameter, Action) function returns true if the parameter is used in the action’s left hand side, 

right hand side, or as a parameter of its right hand side function.  The usedInTransition(Parameter, 

Transition) function returns true if the parameter is a parameter of any of the events on the transition, used 

in the guard condition, or used in an action on the transition. 

Transformation 36  

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent, e : Event, s : State,  

a : Action, p : Parameter, param : String • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ e = re.event ∧ p ∈ e.parameters  

∧ param = p.name ∧ s ∈ st.states ∧ a ∈ s.actions ∧ (t.conversations n  s.conversations = {})  

∧ usedInAction(p, a) ) 

⇒ 

(∃ a2 : Action • t’.actions = t.actions ∩ a2 ∧ a2.lhs = [“parent.” + param] ∧ a2.rhs = [param]) 

 

Transformation 37  

∀ c : Component, st : StateTable, t, t2 : Transition, re : ReceiveEvent, e : Event, p : Parameter,  

param : String • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ e = re.event ∧ p ∈ e.parameters  

∧ param = p.name ∧ t2 ∈ st.transitions ∧ (t.conversations n  s.conversations = {})  

∧ usedInTransition(p, t2) ) 

⇒ 

(∃ a2 : Action • t’.actions = t.actions ∩ a2 ∧ a2.lhs = [“parent.” + param] ∧ a2.rhs = [param])\ 

 

As an example, consider Figure 67 that shows a state table with an annotated conversation.  The 

start transition for the conversation receives the message msg1(x).  There is also another transition in the 
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state table that is not part of the conversation with an internal event that has x as one of its parameters.  

Therefore, the parameter x must belong to the component, not just to the conversation, so an action is added 

to the start transition and the resulting state diagram is shown in Figure 68. 

State1
y = f2(x)

receive(msg1(x), ag)
S

^send(msg2(y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

 

Figure 67 – State Diagram Before Transformation 37  

State1
y = f2(x)

receive(msg1(x), ag) / parent.x = x
S

^send(msg2(y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

 

Figure 68 – State Diagram After Transformation 37  

In addition to parameters in received events in conversations, if a states that belongs to a 

conversation has an action that uses a variable and that variable is also used or set anywhere else in the 

component, then the variable must be prepended with “parent.” to indicate that it is a variable that belongs 

to the parent component.   Transformation 38 makes sure this is done when the variable is used in another 

state not in the conversation, and Transformation 39 covers the case when the variable is used in a 

transition that does not belong to the conversation. 
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Transformation 38  

∀ c : Component, st : StateTable, s, s2 : State, a, a2 : Action, p : Parameter, param : String • 

(st = c.stateTable ∧ s ∈ st.states ∧ a ∈ s.actions ∧ param = p.name ∧ s2 ∈ st.states ∧ a2 ∈ s2.actions  

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters ) ∧ (s.conversations n  s2.conversations = {})  

∧ usedInAction(p, a2)) 

⇒ 

(p’.name = “parent.” + param ∧ param’ = p’.name) 

 

Transformation 39  

∀ c : Component, st : StateTable, s : State, a : Action, p : Parameter, param : String, t : Transition • 

(st = c.stateTable ∧ s ∈ st.states ∧ a ∈ s.actions ∧ param = p.name ∧ t ∈ st.transitions 

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (s.conversations n  s2.conversations = {})  

∧ usedInTransition(p, t) ) 

⇒ 

(p’.name = “p.” + param ∧ param’ = p’.name) 

 

Continuing with the previous example, State1 in Figure 68 has an action that computes y based on 

the parameter x.  Since x and y are used as parameters in the internalBackup(x, y, ag) event, that variable 

must belong to the parent component.  The resulting state diagram is shown in Figure 69 

State1
parent.y = f2(parent.x)

receive(msg1(x), ag) / parent.x = x
S

^send(msg2(y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

 

Figure 69 – State Diagram After Transformation 39  

The next two transformations are essentially the same as Transformation 38 and Transformation 

39, except that the actions with the variables to be prepended with “parent.” are on transitions within a 

conversation, not states. 
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Transformation 40  

∀ c : Component, st : StateTable, t : Transition, s : State, a, a2 : Action, p : Parameter, param : String • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ a ∈ t.actions ∧ param = p.name ∧ s ∈ st.states ∧ a2 ∈ s.actions  

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (t.conversations n  s.conversations = {})  

∧ usedInAction(p, a2)) 

⇒ 

(p’.name = “parent.” + param ∧ param’ = p’.name) 

 

Transformation 41  

∀ c : Component, st : StateTable, a : Action, p : Parameter, param : String, t, t2 : Transition • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ a ∈ t.actions ∧ param = p.name ∧ t2 ∈ st.transitions  

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (t.conversations n  s.conversations = {})  

∧ usedInTransition(p, t2) ) 

⇒ 

(p’.name = “parent.” + param ∧ param’ = p’.name) 

 

The last condition where special preparations must be made for variables is when there is a 

transition that belongs to a conversation that has a SendEvent with a parameter that is used outside of the 

annotated conversation.  Transformation 42 covers the case when the parameter is also used in an action 

within a state that does not belong to the conversation, while Transformation 43 covers the case when the 

variable is used in another transition that does not belong to the same conversation.  The result of the 

transformations is that the parameter is prepended with “parent.” to indicate that it belongs to the parent 

component. 

Transformation 42  

∀ c : Component, st : StateTable, t : Transition, se : SendEvent, e : Event, s : State, a : Action,  

p : Parameter • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ e = se.event ∧ p ∈ e.parameters ∧ s ∈ st.states  

∧ a ∈ s.actions ∧ (t.conversations n  s.conversations = {}) ∧ usedInAction(p, a) ) 

⇒ 

p’.name = “parent.” + p.name 
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Transformation 43  

∀ c : Component, st : StateTable, t, t2 : Transition, se : SendEvent, e : Event, p : Parameter • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ e = se.event ∧ p ∈ e.parameters  

∧ t2 ∈ st.transitions ∧ (t.conversations n  t2.conversations = {}) ∧ usedInTransition(p, t2) ) 

⇒ 

p’.name = “parent.” + p.name 

 

Continuing with our example, the parameter y is used in the SendEvent send(msg2(y), ag) on the 

transition leaving State1.  However, y is also used in the internalBackup(x, y, ag) event on a transition that 

does not belong to the conversation.  Transformation 43 changes y in the SendEvent to parent.y to indicate 

that it belongs to the parent component.  The resulting state diagram is shown in Figure 70. 

receive(msg1(x), ag) / parent.x = x
S

^send(msg2(parent.y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

State1
parent.y = f2(parent.x)

 

Figure 70 – State Diagram After Transformation 43  

3.4.3 Initiator Conversation Halves 

In a component state table, the initiator half of a conversation is indicated by a start transition with 

no ReceiveEvent, but that does have at least one SendEvent.  There are two possible cases that must be 

considered when dealing with the initiator sides of the conversations.  The first case is that the transition 

could have a non-empty set of protocols, which also implies there is a single conversation name.  

Transformation 44 deals with this case, and creates a transition with a single action that represents the 

execution of the conversation.  The other case is when a start transition has an empty set of protocols.  This 

happens when a transition has SendEvents to different recipients or there is a SendEvent that is a multicast.  

Transformation 45 handles this case and creates an action on the transition for each conversation that is 
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indicated by the set of conversation names.  The following steps will be taken when performing these 

transformations: 

• A new transition is added to component’s state diagram.  The transition’s from state is the 

start transition’s from state, and the transition’s to state is the end transition’s to state. 

• The guard condition from the initial transition of the conversation is added to the 

transition and removed from the conversation’s transition.  This is done so that the 

conversation is only instantiated if the guard condition is true. 

• An action is added to the transition for each conversation that is started on the transition.  

The action instantiates each conversation, and when the conversation completes, the 

action is done, thus preserving the original semantics of the state table. 

• The recipient in the first SendEvent in the conversation is added as the first parameter to 

the action’s function call, and all variables used in the conversation before they are set, as 

defined by isNeeded() in Appendix B, are added as parameters to the action. 

Transformation 44  

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ s2 ∈ st.states  

∧ t.protocols ≠ {} ∧ t.start = true ∧ t2.end = true ∧ t.from = s ∧ t2.to = s2 ∧ t.receiveEvent = null  

∧ t.conversations ⊆ t2.conversations ∧ (∃ se : SendEvent • se ∈ t.sendEvents ∧ se ≠ null) ) 

⇒ 

(∃! t3 : Transition, a : Action, f : FunctionCall, num : String • t3 ∈ st’.transitions ∧ t3 ∉ st.transitions  

∧ t3.from = t.from ∧ t3.to = t2.to ∧ t3.guard = t.guard ∧ t’.guard = null ∧ t3.conversations = {}  

∧ t3.actions = [a] ∧ a.lhs = null ∧ a.rhs = f ∧ (#(t.conversations) > 1) ⇒ f.name = se.convName + num 

∧ ¬(∃ t4 : Transition, a2 : Action, f2 : FunctionCall • t4 ∈ st’.transitions ∧ t4 ≠ t3 ∧ a2 ∈ t4.actions  

     ∧ a2.rhs = f2 ∧ f2.name = f.name)  

∧ (#(t.conversations) = 1) ⇒ f.name = t.conversations[1].name ∧ f.parameters[1] = se.recipient  

∧ (∀ p : Parameter • isNeeded(p, t.conversations, st) ⇒ f’.parameters = f.parameters ∩ p) )  

 

In order to more fully describe Transformation 44, consider the state diagram shown in Figure 71.  

The set above the transitions indicate the conversations to which the transitions belong.  The transition from 

the start state to State1 is indicated as the start of the conversation, and since there is only a SendEvent and 

no ReceiveEvent, it must be the initiator half of the conversation.  Figure 52 shows the state diagram after 
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Transformation 44 creates the new transition from the start state to the end state.  The action was given the 

name of the conversation because there was a single conversation being started.  The variable x is passed as 

a parameter for the action to perform the conversation because x is sent in a message before its value has 

been determined by an action in the conversation.  Similarly, variables used in an action, either in a state or 

on a transition, before they have been set within the conversation will also be provided as parameters to the 

function for that conversation.  The exception to this rule is when a variable is used before it is set, but was 

prepended with “parent.” by one of the earlier transformations.  In this case, the variable does not need to 

be provided when the conversation is instantiated, because the variable is already referencing the parent 

component. 

State1
{conv1-1}

^send(msg1(x), ag)
S

{conv1-1}
receive(msg2(y), ag)

E
 

Figure 71 – State Diagram Before Transformation 44  

State1
{conv1-1}

^send(msg1(x), ag)
S

{conv1-1}
receive(msg2(y), ag)

E

/ conv1-1(ag, x)
 

Figure 72 – State Diagram After Transformation 44  

The next example demonstrates how Transformation 44 creates a transition and an action if the 

start transition has a non-empty protocols set, but there are multiple conversations in its conversations set.  

This means that the SendEvent matched up with multiple ReceiveEvents as the start of the conversation.  

Figure 74 shows the state diagram after Transformation 44 has added the transition from the start state to 

the end state with the action named conv1-1_2.  There is a single action placed on the transition even 

though there are two possibilities for which conversation actually takes place when the action is executed.  

While the responder halves’ state diagrams may not be identical, from the initiator’s point of view the 

messages they pass are the same so only one action is necessary.  The recipient of the first SendEvent (ag) 
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is supplied as a parameter to the function call and will be the parameter that actually determines which 

conversation is started.  

State1
{conv1-1, conv1-2}
^send(msg1(x), ag)

S
{conv1-1, conv1-2}
receive(msg2(y), ag)

E
 

Figure 73 – State Diagram Before Transformation 44  

State1
{conv1-1, conv1-2}
^send(msg1(x), ag)

S
{conv1-1, conv1-2}
receive(msg2(y), ag)

E

/ conv1-1_2(ag, x)
 

Figure 74 – State Diagram After Transformation 44  

Transformation 45  

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ s ∈ st.states ∧ s2 ∈ st.states ∧ t.protocols = {} ∧ t.start = true  

∧ t.end = true ∧ t.from = s ∧ t.to = s2 ∧ t.receiveEvent = null ∧ t.sendEvents ≠ {} ) 

⇒ 

(∃! t3 : Transition • t3 ∈ st’.transitions ∧ t3 ∉ st.transitions ∧ t3.from = s ∧ t3.to = s2  

∧ t3.guard = t.guard ∧ t’.guard = null ∧ t3.conversations = {}  

∧ (∀ cname: String • (cname ∈ t.convNames  

    ∧ (∃ se : SendEvent • se ∈ t.sendEvents ∧ se.convName = cname) )  

    ⇒  

    (∃ a : Action, f : FunctionCall, num : String • t3’.actions = t3.actions ∩ a ∧ a.lhs = null ∧ a.rhs = f  

     ∧ (#(se.conversations) > 1) ⇒ f.name = se.convName + num 

     ∧ ¬(∃ t4 : Transition, a2 : Action, f2 : FunctionCall • t4 ∈ st’.transitions ∧ t4 ≠ t3 ∧ a2 ∈ t4.actions  

      ∧ a2.rhs = f2 ∧ f2.name = f.name) 

     ∧ (#(se.conversations) = 1) ⇒ f.name = se.conversations[1].name ∧ f.parameters[1] = se.recipient  

     ∧ (∀ p : Parameter • isNeeded(p, se.conversations, st) ⇒ f’.parameters = f.parameters ∩ p) ) ) ) 

 

Transformation 45 is also be described by way of an example.  Figure 75 shows a simple state 

diagram where there is a transition with SendEvents that start different conversations.  The sets above the 
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transitions are the conversations sets for the SendEvents, not the transitions.  The first SendEvent starts 

conv1-1, while the second SendEvent starts either conv2-1 or conv2-2 based on ag2, the recipient.  Figure 

76 shows the state diagram after Transformation 45 adds the new transition from the start state to the end 

state.  The new transition has two actions, one named conv1-1 that was added for the first SendEvent on the 

original transition, and the other named conv2-1_2 that was added for the second SendEvent on the original 

transition with conversations conv2-1 and conv2-2.   Only one action was used for the latter for the same 

reasons previously described. 

^send(msg1(x), ag); send(msg2(y), ag2)
S

{conv1-1}

E

{conv2-1, conv2-2}

 

Figure 75 – State Diagram Before Transformation 45  

^send(msg1(x), ag); send(msg2(y), ag2)
S

{conv1-1}

E

{conv2-1, conv2-2}

/ conv1-1(ag, x); conv2-1_2(ag2, y)
 

Figure 76 – State Diagram After Transformation 45 

3.4.4 Responder Conversation Halves 

In a component state table, the responder half of a conversation is indicated by a transition with 

the start label that also has a ReceiveEvent.  For responder conversation halves, Transformation 46 creates 

a transition and an action to instantiate the conversation as follows: 

• A new transition is added to component’s state diagram.  The transition’s from state is the 

from state of the transition with the start label.  The transition’s to state is the to state of 

the end transition in the conversation. 

• The guard condition from the initial transition of the conversation is added to the 

transition and removed from the original transition. 
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• The external ReceiveEvent from the initial transition of the conversation is added to the 

transition.  This means that when the component receives this first message it will know 

to start the corresponding conversation. 

• An action is added to the transition to create the conversation.  Again, the conversation 

ends before the action is finished and the next state is entered. 

• All parameters in the conversation that are used somewhere else, as defined by the 

isNeeded() function in Appendix B, are added as parameters to the action. 

Transformation 46  

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State, re : ReceiveEvent, cid : String • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ s2 ∈ st.states  

∧ t.conversations ⊆ t2.conversations ∧ t.start = true ∧ t2.end = true ∧ t.from = s ∧ t2.to = s2  

∧ re = t.receiveEvent ∧ re ≠ null) 

⇒ 

(∃ t3 : Transition, a : Action, f : FunctionCall, num : String • t3 ∈ st’.transitions ∧ t3.from = t.from  

∧ t3.to = t2.to ∧ t3.guard = t.guard ∧ t’.guard = null ∧ t3.convIDs = {} ∧ t3.receiveEvent = t.receiveEvent  

∧ t3’.actions = t3.actions ∩ a ∧ a.lhs = null ∧ a.rhs = f  

∧ (#(t.conversations) > 1) ⇒ f.name = re.convName + num 

∧ ¬(∃ t4 : Transition, a2 : Action, f2 : FunctionCall • t4 ∈ st’.transitions ∧ t4 ≠ t3 ∧ a2 ∈ t4.actions  

     ∧ a2.rhs = f2 ∧ f2.name = f.name) 

∧ (#(t.conversations) = 1) ⇒ f.name = t.conversations[1].name ∧ f.parameters[1] = re.sender 

∧ (∀ p : Parameter • isNeeded(p, t.conversations, st) ⇒ f’.parameters = f.parameters ∩ p) )  

 

An example is used to more fully explain Transformation 46.  Figure 77 show a state diagram that 

has a transition with a ReceiveEvent that is the start of conversation conv1-1.  The sets above the 

transitions show the set of conversations to which the transitions belong.  Figure 78 shows the state 

diagram after Transformation 46 adds the new transition from the start state to the end state with the 

original ReceiveEvent and the action to start conv1-1.  The ReceiveEvent is added to the transition only to 

indicate that the external message has arrived.  Without the ReceiveEvent on the new transition, there is no 

trigger that associates the receipt of the message to the transition being activated.  The component itself 

does not handle the message, but instead calls the function that performs the conversation.  The 

conversation will handle the message as the first message in the conversation. 
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State1
y = f(x)

{conv1-1}
receive(msg1(x), ag)

S
{conv1-1}

^send(msg2(y), ag)
E

 

Figure 77 – State Diagram Before Transformation 46 

State1
y = f(x)

{conv1-1}
receive(msg1(x), ag)

S
{conv1-1}

^send(msg2(y), ag)
E

receive(msg1(x), ag)/conv1-1(ag)
 

Figure 78 – State Diagram After Transformation 46 

Figure 79 shows the same state diagram as in the previous example, but this time the 

ReceiveEvent has been matched to two different SendEvents and therefore there are two conversations 

(conv1-1 and conv1-2) that may be started by receiving the msg1(x) message from the start state.  As in the 

case with the initiator conversations, a single transition and single action are used because from this agent’s 

point of view  the conversations are the same.  Figure 80 shows that state table after Transformation 46. 

State1
y = f(x)

{conv1-1, conv1-2}
receive(msg1(x), ag)

S
{conv1-1, conv1-2}
^send(msg2(y), ag)

E
 

Figure 79 – State Diagram Before Transformation 46 

State1
y = f(x)

{conv1-1, conv1-2}
receive(msg1(x), ag)

S
{conv1-1, conv1-2}
^send(msg2(y), ag)

E

receive(msg1(x), ag)/conv1-1_2(ag)
 

Figure 80 – State Diagram After Transformation 46 
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3.4.5 Moving States and Transitions From Components to Conversations 

At this point every annotated conversation in the component state tables has a transition with an 

action to replace the states and transitions of the conversations.  Transformation 47 creates the 

ConversationHalfs that contain the state tables for the initiator and responder halves of the conversations.  

The states and transitions that belong to those ConversationHalfs will then be removed from the component 

state tables and added to the ConversationHalf state tables by Transformation 48 through Transformation 

50. 

Transformation 47  

∀ c : Component, st : StateTable, t : Transition, conv : Conversation • 

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.start = true ∧ conv ∈ t.conversations) 

⇒ 

(∃ ch : ConversationHalf • ch ∈ c’.convs ∧ ch.convID = conv.name  

∧ ((t.receiveEvent = null) ⇒ conv.initiator = ch) ∧ ((t.receiveEvent ≠ null) ⇒ conv.responder = ch) ) 

 

Transformation 48 duplicates states from component state tables for every conversation half to 

which they belong.  Since states and transitions can belong to more than one conversation, as they are 

added to the conversation half’s state table the conversation is removed from its set of conversations.  Only 

when that set is empty (i.e., when it has been added to the state tables of all necessary conversation halves) 

are the state or transition removed from the component state table. 

Transformation 48  

∀ c : Component, conv: Conversation, ch : ConversationHalf, st, st2 : StateTable, s : State • 

(st = c.stateTable ∧ st2 = ch.stateTable ∧ ch ∈ c.convs ∧ s ∈ st.states  

∧ (ch = conv.initiator ∨ ch = conv.responder) ∧ conv ∈ s.conversations) 

⇒ 

(s ∈ st2’.states ∧ conv ∉ s’.conversations ∧ ( (#(s’.conversations) = 0) ⇒ s’ ∉ st’.states) ) 

 

When a transition has SendEvents that belong to different conversations it is handled as a special 

case.  Transformation 49 states that if the transition has SendEvents that have different conversations, then 
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a transition with only the SendEvents that belong to that conversation half will be added to the conversation 

half’s state table.  If there are no SendEvents with different conversations, then Transformation 50 adds the 

entire transition to the conversation half’s state table. 

Transformation 49  

∀ c : Component, conv : Conversation, ch : ConversationHalf, st, st2 : StateTable, t : Transition • 

(st = c.stateTable ∧ st2 = ch.stateTable ∧ ch ∈ c.convs ∧ t ∈ c.transitions  

∧ (ch = conv.initiator ∨ ch = conv.responder) ∧ conv ∈ t.conversations ∧ t.protocols = {}) 

⇒ 

(∃ t2 : Transition • t2 ∈ st2’.transitions ∧ t2.guard = null ∧ t2.receive = null ∧ t2.receiveEvent = null  

∧ t2.sends = {} ∧ t2.actions = [ ] ∧ t2.start = true ∧ t2.end = true 

∧ (∀ se : SendEvent • (se ∈ t.sendEvents ∧ conv ∈ se3.conversations) ⇒ se ∈ t2.sendEvents)       

∧ conv ∉ t’.conversations ∧ ( (#(t’.conversations) == 0) ⇒ t’ ∉ st’.transitions) ) 

 

Transformation 50  

∀ c : Component, conv : Conversation, ch : ConversationHalf, st, st2 : StateTable, t : Transition • 

(st = c.stateTable ∧ st2 = ch.stateTable ∧ ch ∈ c.convs ∧ t ∈ st.transitions  

∧ (ch = conv.initiator ∨ ch = conv.responder) ∧ conv ∈ t.conversations ∧ t.protocols ≠ {}) 

⇒ 

(t ∈ st2’.transitions ∧ cid ∉ t’.conversations ∧ ( (#(t’.conversations) == 0) ⇒ t’ ∉ st’.transitions) ) 

 

As the transitions are added to the state tables of the conversation halves, the events on the 

transitions are either ReceiveEvents or SendEvents.  However, events in the Communication Class 

Diagrams that make up the conversations use events in the receive and sends clauses.  Therefore, 

Transformation 51 changes any ReceiveEvent into an Event in the receive clause, and Transformation 52 

changes SendEvents into Events in the sends clause. 
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Transformation 51  

∀ ch : ConversationHalf, st : StateTable, t : Transition, re : ReceiveEvent • 

(st = ch.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ re ≠ null) 

⇒ 

(t’.receive = re.event ∧ t’.receiveEvent = null) 

 

Transformation 52  

∀ ch : ConversationHalf, st : StateTable, t : Transition, se : SendEvent • 

(st = ch.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ se ≠ null) 

⇒ 

(se.event ∈ t’.sends ∧ se ∉ t’.sendEvents) 

 

The last step in the transformation process is to add the start and end states to the state tables of 

the conversation halves.  These are simple transformations.  Whenever a transition is a start transition, then 

Transformation 53 creates a start state that is that transition’s from state.  Likewise, if a transition is has the 

end label, then Transformation 54 creates an end state that is that transition’s to state. 

Transformation 53  

∀ ch : ConversationHalf, st : StateTable, t : Transition • 

(st = ch.stateTable ∧ t ∈ st.transitions ∧ t.start = true) 

⇒ 

(∃ s : State • s.name = “start” ∧ s ∈ st’.states ∧ t’.from = s) 

 

Transformation 54  

∀ ch : ConversationHalf, st : StateTable, t : Transition • 

(st = ch.stateTable ∧ t ∈ st.transitions ∧ t.end = true) 

⇒ 

(∃ s : State • s.name = “end” ∧ s ∈ st’.states ∧ t’.to = s) 
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3.5 Summary 

This chapter used formal predicate logic equations to present the transformations that generate the 

MaSE design models from the analysis models. The transformation system was broken down into a three-

stage process.  The first stage created the agent components from the concurrent tasks based on the roles 

given to the agents in the Agent Class Diagram.  Other activities in this stage include determining protocols 

for eternal events in the Concurrent Task Diagrams, replicating protocols in the design, and transforming 

external events into internal events in the components if the designer determines the protocol they belong to 

is internal.  The second stage annotated component state diagrams for the start and end of conversations 

and matching the events in the different components that start the conversations.  The last stage added the 

states and transitions from the components to their appropriate conversation halves, removing them from 

the components and replacing them with a transition and an action that performed the conversation.  

Chapter IV describes how the transformation system was demonstrated by implementing them in AFIT’s 

agentTool. 
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IV. Demonstration 

Chapter III used predicate logic equations to define a formal transformation system that creates the 

MaSE design models based on the analysis models.  This chapter outlines how the transformations were 

implemented and integrated with AFIT’s agentTool multiagent development environment.  Section 4.1 

provides an overview of the three-stage transformation process.  Section 4.2 details how the 

transformations were implemented in agentTool.  Finally, Section 4.3 steps through an example and 

illustrates how the transformations incrementally create the agent components and conversations from the 

Role Model and Concurrent Task Diagrams.    

4.1 Transformation System Overview 

Chapter III described, in detail, how the transformation system can be thought of as the three-stage 

process shown in Figure 81.  Before the transformations can take place, the developer must analyze the 

system and develop a Role Model, which defines the roles that are present in the system, and a set of 

concurrent tasks, which the roles perform to accomplish their goals.  The developer must also decide which 

agent classes will be in the system and the roles that each agent class will play.  During the first stage of the 

transformation process, the components for the agent classes are created based on the roles assigned by the 

developer.  The set of protocols for each external event is also determined.  The second stage centers 

around annotating the component state diagrams and matching external events in the different components 

that become the initial messages of a conversation.  During the last stage of the transformation process the 

component state diagrams are prepared for the removal of the states and transitions that belong to 

conversations.  They are then removed and added to the state diagrams of the corresponding conversation 

halves.  As they are removed from the components they are replaced with a single transition that has an 

action that starts the conversation. 
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Stage 1
• Determine the protocols for external events 
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in 
components
• Transform external events into internal events if they 
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to 
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

 

Figure 81 – Three Stages of the Transformation Process 

4.2 Integration with agentTool 

In order to demonstrate the transformations defined in Chapter III, a transformation system was 

implemented as part of the agentTool development environment using the Java programming language.  

The implementation maintained the three-stage approach.  Figure 82 shows the menu that was added to 

agentTool’s menu bar.  The menu item Add Agent Components corresponds to the first stage of the 

transformation process, Annotate Component State Diagrams corresponds to the second stage, and Create 

Conversations corresponds to the third stage.  If the developer selects Create Conversations from the menu 

without having previously selected the first two, then they are done automatically before the conversations 

are created.  As previously stated, before the transformations can take place the Role Model must already 

exist and there must be at least one agent class that plays each role.   
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Figure 82 – Transformation Menu in agentTool 

4.2.1 Transformation Classes 

To implement the transformations, Java classes were defined for the transformations.  In most 

instances each transformation class represents a single transformation from Chapter III.  However, there 

were times when it was possible to combine several transformations into a single class.  For example, 

Transformation 19 through Transformation 24 all add start labels to transitions.  A class named 

Transform19 was created that represented all of these transformations.  When a transformation class is 

instantiated, the constructor calls its execute method, which is where the transformation is actually 

performed.   

When the user makes a selection from the transformation menu, a class is instantiated that 

represents that stage of the transformation process, which in turn creates instances of the transformation 

classes that execute during that stage.  For example, when the user selects Create Components from the 

transformation menu, a class named Stage1 is instantiated.  Upon creation, the Stage1 object instantiates, in 

order, the classes implementing Transformation 1 through Transformation 9. 
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The transformations are formally defined in Chapter III using universal and existential 

quantification.  In most cases, a loop is used to implement universal quantification over a variable, and a 

method call is used to implement existential quantification.  Therefore, the transformations that use 

universal quantification over several variables have several nested loops that drill down through the tree to 

test each combination of the variables.  An alternate approach would have been to use a visitor pattern [14] 

to walk the tree, but implementing the transformations would have been more difficult and harder to 

understand.   

4.2.2 Model Classes 

The architectural structure of agentTool already had classes for roles, tasks, state tables, etc.  

These are referred to as the ATsystem classes.  However, a new package was created with Java classes for 

each of the types defined in Chapter II and used in the transformations in Chapter III.  This was done for 

two reasons.  First, this made implementing the transformations straightforward.  Many of the 

transformations are non-trivial and translating the formal representations into code was much easier using 

classes that had the same names and attributes.  Secondly, the ATsystem classes were created only to hold 

the information needed to visually represent the models and did not have the required granularity of detail 

required to perform the transformations.  For example, the transmissions on a transition are represented by 

a single string.  They do not distinguish between different events or whether the events are external or 

internal, much less the parameters of the events.  Creating the new classes in a separate package kept the 

transformations loosely coupled to the existing architectural design for agentTool, whereas altering the 

ATsystem classes would have risked injecting errors into the existing code.  Each new class created for the 

transformations held a pointer to the corresponding ATsystem class, and made updates to it whenever 

necessary.   

4.3 Example 

This section steps through an example to demonstrate how the transformation system implemented 

in agentTool creates agent components and conversations from the Role Model and the Concurrent Task 
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Diagrams.  The example does not demonstrate every possible situation that may arise, but demonstrates 

many of the most common situations encountered while transforming a well-analyzed multiagent system.  

This section also describes the mechanism for prompting the user for design decisions necessary to 

complete the transformation process. 

4.3.1 Starting Point – Role Model and Initial Agent Classes 

The Role Model for a multiagent system is shown in Figure 83, which is the starting point for the 

transformation process.  The Role Model is fairly simple, with only three roles, each with a single task.  

The Manager role is responsible for bidding out certain search tasks using the ContractNet protocol.  The 

Bidder role is responsible for bidding on the different tasks and then requesting a search from the Searcher 

role via the SearchRequest protocol.  The Searcher role uses mobility to search for the request from the 

Bidder.   

 

Figure 83 – Role Model 

Figure 84 shows the state diagram that represents the Manager role’s FulfillSearchRequests task.  

The task is basically the initiator half of the Contract Net protocol.  When there is a task to bid out, a 

multicast announcement is sent to the list of bidders.  The manager then accepts bids until a set time has 
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expired.  The manager determines the winner, sending that agent a message to start the task.  Every other 

role in the list is sent a sorry message.  The manager then waits for the results from the bidder, displaying 

them when they are received. 

 

Figure 84 – FulfillSearchRequest Task for the Manager Role 

The Bid task for the Bidder role is shown in Figure 85.  This task is started automatically and 

enters an idle state until it receives announcement for a new task.  The bidder then determines if it should 

submit a bid on the task, sending the bid if it is acceptable.  Once the bid has been placed, the bidder waits 

for a message from the manager that indicates if it won the task or not.  If it did not, then it transitions back 

to the idle state.  However, if it receives a start message, then it sends a message to the searcher to do the 

search.  When it receives the results from the searcher, they are forwarded back to the manager that 

requested them. 
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Figure 85 – Bid Task for the Bidder Role 

Figure 86 defines the Search task for the Searcher role.  The task is started upon receipt of a 

do(task) message from a bidder.  The searcher then determines if it needs to move in order to do the task.  

If it does, then it attempts to move.  If the move fails, then it sends a sorry message to the bidder.  

However, if the move is successful or the searcher doesn’t need to move, then it searches based on the 

given task.  The searcher then sends the results back to the bidder if there are any, or sends a sorry message 

if there are none.   

Another important requirement for the transformation process to begin is that the developer must 

determine the initial agent classes and the roles they play.  For this example, one SearchManager agent 

class plays the Manager role and the MobileSearcher agent class plays both the Bidder and Searcher roles.  

This will be important as the agent components are created during the first stage of the transformation 

process.  The initial Agent Class Diagram is shown in Figure 87.   
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Figure 86 – Search Task for the Searcher Role 

 

Figure 87 – Initial Agent Class Diagram 
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4.3.2 Stage One – Creating Agent Components 

Now that the Role Model and the initial Agent Class Diagram have been defined, the first stage of 

the transformation process can begin.  This stage will determine the protocols for external events, create 

agent components based on the roles they play, and allow the user to determine the mode of some protocols 

in the design. 

4.3.2.1 Determining the Protocols for External Events 

The first transformations in stage one try to identify the protocols for the external events.  In most 

cases, this process requires no input from the user.  However, in some instances it is impossible to 

automatically determine in which protocols the events were meant to belong.  Before the developer is asked 

to make any decisions about protocols for events, the dialog in Figure 88 is displayed as information on 

what is about to happen next. 

 

Figure 88 – Ambiguous Protocols Dialog 

In the example, there are two events for which the transformations could not automatically 

determine the protocols.  The Bid task for the Bidder role receives two different external sorry events, one 

from the Manager role and another from the Searcher role.  The developer is asked to make the decision for 

the events one at a time.  As shown in Figure 89, the transition with the event in question is highlighted in 

the Bid task and another window is displayed for the developer to select the protocols for that event.  The 

first external event presented to the developer is the receive(sorry(task), mgr) event.  This event belongs to 

the ContractNet protocol between the Manager role and the Bidder role, so that protocol is chosen. 
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Figure 89 – First Protocol Decision 

The next external event for which the developer must determine the protocols is the 

receive(sorry(reason),search) message, shown in Figure 90.  Since that event belongs to the SearchRequest 

protocol between the Bidder and Searcher roles, that is the protocol selected. 
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Figure 90 – Second Protocol Decision 

4.3.2.2 Determining the Mode for the SearchRequest Protocol 

Since the developer determined that a single agent class could play both the Bidder and Searcher 

roles, the developer must decide if the protocols between tasks of those roles are still external, or if they are 

now meant to be internal communication.  The SearchRequest protocol is the only protocol that falls into 

this category, and is meant to be internal communication.  When the dialog shown in Figure 91 is 

displayed, the “Internal” button is chosen, and every event that belongs to the SearchRequest protocol in 

the Bid and Search components are changed into internal events.   
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Figure 91 – Dialog to Choose a Protocol’s Mode 

When determining the mode for protocols in the design phase, it is possible for the user to make a 

mistake.  Once the developer is finished determining the mode for protocols, if any event belongs to both 

an external and internal protocol, an error has been made.  The developer will be notified, all of the 

protocols for that event will be reset to external, and the developer will be asked again to determine the 

mode for the protocols. 

4.3.2.3 Agent Components 

The result of the first stage of the transformation process is that components are created for the 

agent classes based on the roles they play.  The state diagram for the component is initially the same as that 

of the task it implements.  If there are any external events that belong to protocols that the developer 

determines to be internal communication, the events are transformed into internal events. 

In the example, a component named FulfillSearchRequests was created for the SearchManager 

agent.  The component’s state diagram is the same as the Manager role’s FulfillSearchRequests task, so it is 

not shown again.  Figure 92 shows the state diagram for the Bid component created for the MobileSearcher 

agent.  Every event that belongs to the SearchRequest protocol has been changed into an internal event.  

Every remaining external event belongs to the ContractNet protocol with the SearchManager agent.  Figure 

93 shows the Search task that was created for the MobileSearcher agent.  Since every event was determined 

to belong to the SearchRequest protocol and that protocol was then determined to be an internal event, 

every event within the component was changed into an internal event. 
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Figure 92 – MobileSearcher Agent’s Bid Component  

 

Figure 93 – MobileSearcher Agent’s Search Component 
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4.3.3 Stage Two – Annotating Component State Diagrams 

Now that every agent now has components with state diagrams, the second stage focuses on 

annotating the components to show where conversations will begin and end.  This stage will also match up 

the events that become the initial messages of the conversations. 

4.3.3.1 Matching up the First Messages of the Conversations 

Although not the first transformations that take place during phase two of the transformation 

process, the first interaction requires the developer to determine if events in different components 

correspond.  In most cases this can be done automatically, but as with determining the protocols for events, 

there are some cases where only the developer can make the determination.  In these cases, a window is 

displayed with the state diagrams of both components that contain the events in question, as well as the 

Role Model from the analysis phase for reference.  The transitions in the state diagrams that contain the 

events are highlighted, and developer is asked if the events correspond to each other. 

In the example, there are three cases where the transformations can not automatically determine 

that the events corresponded.  The first case, shown in Figure 94, involves the aBid(task, cost) message 

from the Bid component of the MobileSearcher agent to the FulfillSearchRequests component of the 

SearchManager agent.  These events were intended to correspond, so the “YES” option is chosen. 

The two other cases, shown in Figure 95 and Figure 96, involve the start(task, cost) and 

sorry(task) messages respectively, both from the FulfillSearchRequest component of the SearchManager 

agent to the Bid component of the MobileSearcher agent.  As in the first case, these events were also meant 

to correspond, so the “YES” option was chosen for each case. 



 

 106 

 

Figure 94 – First Event Match Decision 

 

Figure 95 – Second Event Match Decision 
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Figure 96 – Third Event Match Decision 

4.3.3.2 Annotated Component State Diagrams 

The result of the second stage of the transformation process is that all of the component state 

diagrams have been annotated, and the events that represent the beginning of conversations have been 

matched.   

The annotated state diagram for the FulfillSearchRequests component is shown in Figure 97.  The 

letter “S” at the beginning of a transition denotes where a conversation will begin, and the letter “E” at the 

end of a transition represents the end of a conversation.  The states and transitions between the start and end 

labels will be removed from the component and placed in the conversation state diagrams in the next stage 

of the transformation process.  There are many different conversations that emerge from this component, 

mainly because of the multicast messages that are sent in the ContractNet protocol. 
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Figure 97 – Annotated FulfillSearchRequests Component 

The annotated state diagram for the Bid component is shown in Figure 98.  Again, the letters “S” 

and “E” denote the beginning and end of conversations that will be removed from the components during 

the next phase.  There are also three new null states that were added during this stage of the transformation 

process.  The new null states in the diagram are the result of splitting up the transitions that had both 

internal and external events, which allowed for a clear delineation of where the conversations begin and 

end.   

Since the Search component for the MobileSearcher agent did not have any external events left 

after the first stage of transformations, the component remained unchanged during this stage. 
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Figure 98 – Annotated Bid Component 

4.3.4 Stage Three – Creating Conversations 

At this point, all component state diagrams have been annotated and the initial messages of the 

annotated conversations have been matched.  The last stage of the transformation process moves the states 

and transitions from the components to their appropriate Conversation Class Diagrams, replacing them with 

a transition that has an action to do the conversation.  Figure 99 shows the Agent Class Diagram after the 

conversations have been added between the agents.  The transformations gave the conversations generic but 

unique names. 

The state diagram for the SearchManager agent’s FulfillSearchRequests component after 

harvesting the conversations is shown in Figure 100, and the MobileSearcher agent’s Bid component is 

shown in Figure 101.  As shown in each diagram, the states and transitions that belong to the conversations 

are no longer in the component, but the state diagram that remains defines how the different conversations 

are coordinated together. 
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Figure 99 – Agent Class Diagram with Conversations 

 

Figure 100 – FulfillSearchRequests Component After Stage Three 
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Figure 101 – Bid Component After Stage Three 

Each conversation shown in the Agent Class Diagram now has the appropriate states and 

transitions in the initiator and responder halves, but only one conversation will be examined for the sake of 

brevity.  Figure 102 shows the Communication Class Diagram for the initiator half of Conversation13-1.  

The state and transitions were added from the Bid component to create this is a very simple state diagram, 

where the MobileSearcher agent sends the aBid(parent.task, parent.cost) message and then receives the 

acknowledgement of the bid.  The parameters task and cost for the aBid message were prepended with 

“parent.” to indicate that they belong to the parent (Bid) component, rather than the conversation. 

Figure 103 shows the Communication Class Diagram for the responder half of Conversation13-1, 

harvested from the FulfillSearchRequests component.  The aBid(task, cost) message is received and then an 

acknowledge message is sent in return.  Also to note in the state diagram are the new actions and prepended 

variables.  The parent.task=task action was added to the transition from the start state to the update state to 

set the variable named task in the parent component because it was received as a message parameter in this 

conversation and is either used within the parent component (FulfillSearchRequests), or within another 
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conversation that belongs to the parent component.  Similarly, the bidList variables in the update state’s 

second action were changed to parent.bidList, indicating that the bidList variable also belongs to the parent 

(FulfillSearchRequests) component.   

 

Figure 102 – Initiator Half of Conversation13-1 

 

Figure 103 – Responder Half of Conversation13-1 
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4.4 Summary 

This chapter described how the transformation system defined in Chapter III was successfully 

integrated with AFIT’s agentTool multiagent development environment.  An example was also presented to 

show the input required from the developer as design decisions, as well as the output from each stage of the 

transformation process.  
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V. Conclusions and Future Work 

The previous chapters of this thesis described a semi-automatic formal transformation system for 

the MaSE methodology that generates agent components and conversations in the design phase from the 

Role Model and Concurrent Task Diagrams in the analysis phase.  This chapter summarizes the 

conclusions from the previous chapters and suggests areas of future work that will enhance or extend this 

research. 

5.1 Conclusions 

The transformation system described in the previous chapters successfully accomplished the 

objectives established at the outset of this research.  The transformations provide a correct and robust 

methodology for generating MaSE design models from the analysis models without losing any information 

from the analysis phase.  A key contribution of the research in this thesis is that the MaSE methodology has 

necessarily matured and expanded.  In order to develop formal transformations between the different 

models, the models had to be fully defined and the relationships between the models had to be identified.  

The transformation system was developed as a three-stage process that incrementally forms the 

design models from the analysis models.  The first stage creates the initial components for the agent classes 

based on the roles they play.  Each agent component implements a task from the Role Model.  

Transformations in this stage also determine the protocols in which external events are passed.  The second 

stage determines where conversations logically take place within the agent components, annotating the 

state tables accordingly.  External events that constitute the first messages passed in the conversations are 

also matched, in some cases automatically and in others by the developer.  The last stage of the 

transformation process creates the conversations between the agents based on the way the agent 

components are annotated.  The states and transitions that belong to the conversations are removed from the 

component state tables and placed in state tables for the appropriate conversation halves.  When the states 
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and transitions are removed from the component state tables, they are replaced with a transition that has an 

action that starts the conversation. 

The transformation system is predominantly an automatic process, requiring only a few key design 

decisions from the system developer.  There are many benefits from using an automated process that is 

known to preserve correctness from one model to the next.  One key advantage offered by the 

transformation process is that it provides clear traceability between the analysis and design, simplifying the 

verification process.  The developer also has much more confidence that no inconsistencies or errors 

occurred during the design process.  Furthermore, when implemented in a development environment such 

as agentTool, the transformations allow the developer to maintain the system in the more abstract analysis 

models and regenerate the design when any changes are made.  How many times during a software 

development project are the models in the analysis phase forgotten once the project enters the design 

phase?  In many cases, there is simply not enough time or manpower to maintain the consistency between 

the models in the two phases.  The transformation system presented in this thesis can eliminate that 

problem for system developers using the MaSE methodology. 

5.2 Future Research Areas 

The work done in this thesis brought to light many related areas where more work is still required.  

This section presents those areas of future work that would benefit not only the ongoing research being 

done at AFIT, but would have overarching impact on the development of multiagent systems and formal 

methods for software engineering as a whole. 

5.2.1 Transformation Enhancements 

While the transformation system defined in this thesis fully addressed the need to automate the 

transition between the analysis and design phases of the MaSE methodology, there are many other areas 

where the transformation system could be enhanced and expanded.  The transformations were designed to 

be applied in the order they are presented.  Throughout this process, the developer may be required to make 
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some decisions that affect the eventual system design.  The transformations were implemented in agentTool 

accordingly, but the transformation system is a one-way process.   

In order for the developer to be able to more effectively maintain the system at the analysis phase, 

the design decisions that the user makes should be maintained so they can be “undone”, “redone”, or 

“replayed” when applying the transformations.  Most effective would be the ability to “step through” the 

decisions, similar to a web browser or program debugger.  Currently, if the user needs to change the 

analysis of the system and desires to reapply the transformations, the developer has to make the same 

design decisions again during the transformation process.  Being able to “replay” the previous design 

decisions would greatly enhance the interactive process.  Furthermore, if a mistake is made while applying 

the transformations in agentTool, the developer is unable to stop, backup, and fix the mistake.  The process 

must be started again from the very beginning.  This is where “undo” and “redo” functionality would be of 

great benefit. 

The transformation system could also be expanded by defining a set of transformations that 

automatically determine the attributes and methods for the agent components.  These transformations 

should be straightforward, and would provide the user a more complete view of the internal design of the 

agent classes.  The user could then supply information for the attribute types, function return types, 

function parameter types, and function pre- and post-conditions.  Automated verification procedures could 

then be applied to the design to check for things like type-matching, etc.  In addition, this would also 

provide the requisite formality for transforming the design into another formal language representation, and 

would improve the quality of the code that can be automatically generated from the design. 

The last suggestion for further enhancements to the transformations deals with optimality.  The 

scope of this thesis included defining transformations that preserved correctness, but in many cases 

optimality was forsaken for simplicity.  One example is the way that conversations are created.  After 

applying the transformations, there may be two conversations between two agents that do exactly the same 

thing.  The current transformations do not even check for this, much less try to fix it.  One possible 

approach to this problem is to add an additional set of transformations that optimize the design.   
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5.2.2 Formal Transformations for Mixed-Initiative Systems 

The transformation process defined in this thesis can be thought of as a mix-initiative process 

because the developer is required to make various design decisions as the transformations are applied.  

However, none of the formal transformations capture the mixed-initiative aspect of the transformation 

process.  They simply assume that the interaction takes place at the right time and the data is available 

when needed.  Is there a way to formally capture the required user interaction and incorporate it into the 

rest of the transformation process? 

Formalizing the mixed-initiative aspect of a system could have even greater implications for other 

system that have more complicated user interaction patterns, especially in systems where user interaction is 

critically important.  For example, a mixed-initiative strategic or tactical planning system should be able to 

provide the utmost confidence to the user that the system will always perform correctly.  Part of that 

performance includes interaction with the user.  If that interaction does not take place, or if it takes place in 

the wrong order, there could be dire consequences if the user is unaware of the error.  The ability to 

formally capture the interaction and incorporate that with the rest of the system design could prove to be 

invaluable. 

5.2.3 Formal Proof 

While many example cases, simple and complex, were used to test the transformation system, 

there is no way to test every case to make sure that the transformations are absolutely correct and complete.  

The only way to ensure correctness and completeness is to develop a formal proof of the transformations, 

but in doing so would require even more rigorous formal definitions of the MaSE models and their 

properties.  Developing a formal proof is no small task, and an automated tool that could identify any 

“missing” pieces in the formal representations of the models would be very useful, however developing 

such a tool may not be feasible.  Even if the transformations are proved correct, there is still the matter of 

translating the formal representation of the transformation system into code, providing more than enough 

opportunity for error in the implementation.  In that sense, unless there is also some automated method for 
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implementing verifiably correct transformations, the effort necessary to prove that the transformations are 

correct may have diminishing returns. 

5.3 Summary 

This research addresses the critical need for more reliable multiagent systems, which may be one 

way to provide information superiority for the Air Force and the Department of Defense during the 21st 

Century.  Formal transformation systems reduce mistakes made during design and implementation of 

complex multiagent systems.  No longer do system engineers have to hope that their design corresponds to 

the analysis, thus fulfilling the system requirements.  Combining the work here with research done in the 

past, present, and future, provides the foundation necessary for developing multiagent systems that reliably 

operate in complex, distributed environments. 
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Appendix A. Background 

This appendix provides background information to assist the reader in understanding the concepts 

that are foundational to this thesis.  The material is divided into two sections.  In the first section (A.1), 

three different methodologies for developing multiagent system will be reviewed with respect to both the 

analysis and design phases.  Particular attention will be paid to the guidance given for transitioning from 

analysis to design and the possibilities for automating this process for each methodology.  In the second 

section (A.2), formal methods and transformation systems will be reviewed. 

A.1 Multiagent System Methodologies 

Agent technology has received a great deal of attention in the last few years, and as a result, the 

industry is beginning to develop methodologies for the development of multiagent systems.  There are 

currently only a few complete and well defined methodologies for multiagent systems, and many of those 

lack guidance for transitioning from the analysis phase to the design phase. 

The first phase of any software development is the analysis phase, which is the most crucial step 

to developing a system that meets the user’s requirements and behaves in the desired manner.  The 

objective of the analysis phase is to transform the requirements into some abstract representation of the 

system that can then be translated into a more concrete design.  The analysis of a system should capture 

how the system will perform, i.e. what it does, not how it does it.  Since multiagent systems have different 

characteristics than traditional software systems due to their distributive, cooperative nature, many of the 

analysis techniques attempt to capture those unique characteristics through the idea of roles, protocols, 

interactions, and organizations. 

After the analysis phase, the design phase traditionally takes what the system has been modeled to 

do and define how the system will do it.  The output of the design phase should be a set of models at a 

sufficiently low level of abstraction that they can be easily implemented.  The step of transitioning from 
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analysis to design is critical because without clearly defined methods of doing so, a design could be 

developed that is inconsistent with the analysis, therefore introducing errors into the system.     

A.1.1 Multiagent System Engineering Methodology 

At AFIT, recent research has focused around developing and maturing the Multiagent Systems 

Engineering (MaSE) methodology that is intended to cover the complete life cycle of a multiagent system 

[3, 5-8].  Although MaSE is still being refined, it is probably the most complete and well defined 

methodology that has been developed for multiagent systems.  MaSE is comprised of the 7 steps shown in 

Figure 104.  The boxes represent the different models used in the steps and the arrows indicate a flow 

between the models.  However, MaSE is also intended to be applied iteratively.  The first three steps 

together represent the analysis phase of the methodology, while the last three steps represent the design 

phase.  It should also be noted that many of the models in the methodology are closely related to each other 

and provide a fine level of granularity in detail from the beginning of the analysis to the end of the design, 

sometimes blurring the lines between traditional analysis and design. 

In general, the analysis phase is devoted to capturing the goals of the system and then defining 

roles which will accomplish those goals through a set of concurrent tasks.  In the design phase, agent 

classes are defined to play the roles, and conversations are used to describe the detailed communication 

protocols that the agent classes have with each other.  The designer also develops a deployment strategy 

through the use of a Deployment Diagram, which details on what platforms individual agent instances will 

reside and what communication paths exist between the different agents.   
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Figure 104 – Phases in the MaSE Methodology 

A.1.1.1 Capturing Goals 

The first step in MaSE is Capturing Goals, where the system analyst takes the system 

requirements and develops a Goal Hierarchy Diagram (shown in Figure 105), which is a structured set of 

system-level goals.  Goals are defined as some system-level objective within the context of MaSE, and 

embody what the system is trying to achieve, and generally remain constant throughout the rest of the 

analysis and design process.   A goal is typically a declaration of system intent, and phrased like “The 

system shall …”  Since MaSE uses a goal-driven approach, every action within the system must support a 

specific goal. 

Capturing Goals is made up of two sub-steps.  First, goals are identified from the initial system 

context, which is the collection of anything given to the analyst that is a starting point for system analysis.  
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Next, the goals are analyzed and structured into a Goal Hierarchy Diagram that is used later in the analysis 

phase.  After roles have been identified, each role will be assigned some set of the goals.  Intuitively, if all 

of the system requirements have been embodied as goals and all of the goals are being fulfilled by roles 

(which later become agents), then the system will meet the initial requirements. 

1. Detect and notify
administrator of
host violations.

1.1.3a/1.1.2a
Ensure the admin

receives notification.

1.1.1  Determine if
files have been

deleted or modified.

1.1.2  Detect user
attempts to modify

files.

1.1.3  Notify
administrator of

violations.

1.2.1  Determine if
invalid user tries to

login

1.2.2  Notify
administrator of
login violations

1.1  Detect & notify
admin of system file

violations.

1.2  Detect and
notify administrator
of login violations.

 

Figure 105 – Goal Hierarchy Diagram [5] 

A.1.1.2 Applying Use Cases 

Applying Use Cases is the next step in MaSE, where use cases are developed and then restructured 

as Sequence Diagrams.  Uses cases are defined from the system requirements and are a narrative 

description of a sequence of events that capture desired system behavior.  Use cases can be extracted from 

the requirements specification, user stories, or any other available source.  Each use case should describe a 

particular instance of how the system will be used.  It is important to capture both positive and negative use 

cases.  Positive use cases describe what should happen during normal system operation, while failure use 

cases capture the desired sequence of events in the case of a breakdown or failure. 

Once the system analyst has a representative set of Use Cases, those sequences of interactions are 

then captured in a more structured representation of a Sequence Diagram.  Sequence Diagrams, as shown in 
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Figure 106, capture a sequence of messages between the different roles being played in the system.  

Sequence Diagrams provide a high-level view of how different roles interact to accomplish their goals, and 

are useful when constructing the tasks that each role has.  The boxes at the top of the diagram represent 

system roles and the arrows between the lines represent events passed between roles.  Time is assumed to 

flow from the tip of the diagram to the bottom. 

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

 

Figure 106 – Sequence Diagram [5] 

A.1.1.3 Refining Roles  

The next step is Refining Roles, where the analyst determines which roles will be played in the 

system and defines what tasks will be accomplished by each role.  The Sequence Diagrams along with the 

Goal Hierarchy Diagram give the analyst insight into what roles should be played in the system.  Each 

participate in the Sequence Diagrams is a candidate to become a role.  Roles are defined much like an actor 

in a play, or a position in an organization (President, Vice President, Manager, etc).  Each role must 

responsible for accomplishing one or more goals in the Goal Hierarchy Diagram, and there must be at least 

one role responsible for each goal.  Since roles form the foundation for creating agent classes and they 

represent the system goals from the analysis phase, they serve as a link between what the system is 

supposed to do (the analysis phase and goals) and how it accomplishes it (the design phase and agent 

classes).  
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In Refining Roles, a Role Model is used to graphically depict the roles in the system and the 

communication paths between those roles.  Role Models can also enable the reuse of roles from previous 

systems.  The basic idea is that patterns of agent roles are constructed, labeled, and archived.  When a new 

system is developed, the patterns are recognized and a Role Model can be re-applied from an archive, 

resulting in a collection of agent roles that satisfy a subset of the system goals.  As shown in Figure 107, the 

arrows on Role Models are paths of communication connecting roles, and the dots indicate multiplicity. 

 

Figure 107 – A Role Model [8] 

As part of defining the roles, the analyst also defines the tasks that each role has.  .  Tasks describe 

the behavior that a role must exhibit in order to accomplish its goal and are specified graphically using a 

finite state automaton as shown in Figure 108.  A single role may have multiple concurrent tasks that define 

the complete behavior of the role.  As a minimum, the messages in the sequence diagrams should also be 

messages being passed within a task.  Concurrent tasks can be used to implement complex communication 

protocols such as Contract Net, Dutch Auction, etc. [9].  This is a very important part of the analysis as it 

allows the user to define how the system components will coordinate and interact with each other, which is 

the strength of multiagent systems.  These tasks also lay the foundation for conversations between agent 

classes in the design phase of MaSE. 

 

Figure 108 – Sample Task in MaSE 
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In order for tasks to execute concurrently, all tasks are assumed to start execution under a separate 

thread of control upon startup of the role and continue until the role terminates or an end state is reached.  

Activities take place within the states and specify functions carried out by the role.  One important property 

of a task is that they are able to communicate with multiple tasks in order to accomplish their goals.  The 

tasks can belong to the same role, or they may belong to a different role.  Tasks that belong to the same role 

can coordinate with each other through internal events.  In order for a task to communicate to a task of 

another role, events that represent external communication are specified using send and receive events.  

These events are defined to send and retrieve messages from an implied message-handling component of 

the role. 

A.1.1.4 Creating Agent Classes 

Creating Agent Classes is the first step in the design phase of MaSE.  Agent classes are defined 

from roles and an Agent Class Diagram is produced, which depicts the agent classes and the conversations 

between them at a high level.  An agent class is a template for an agent that will operate within the system, 

and is analogous to an object class in object oriented software engineering.  When the system is deployed, 

the agents in the system will be actual instances of an agent class.  Agent classes are defined by the roles 

they will play and the conversations they will participate in. 

In order to ensure that all system goals are being met, each role must be played by at least one 

agent class.  This will ensure that all of the goals in the analysis phase are traceable to agents in the design 

phase.  In general, there is a one-to-one mapping from roles to agents where each role becomes an agent 

class.  There may be some instances however where the designer decides to allow an agent class to play 

multiple roles, with the roles changing dynamically during execution.  The designer may also allow a role 

to be played by more than one agent class.  These design decisions is are made either to share the 

capabilities and responsibilities of a role (allowing more than one agent class to play a role), or for 

performance enhancements by reducing communication overhead (combining multiple roles into an agent 

class).   



 

 128 

In addition to defining the agent classes in the system, the designer must also identify the 

conversations those agent classes must participate in.  The details of the conversations are left to the next 

step, Constructing Conversations, described in Section A.1.1.5.  The conversations that an agent class must 

participate in can are derived from the external communications paths defined between the roles it plays.  If 

roles A and B are defined by concurrent tasks that communicate with each other and agent 1 plays role A 

and agent 2 plays role B, then there must be a conversation between agent 1 and 2 to implement the 

communication described between roles A and B. 

The product of this step is an Agent Class Diagram, as shown in Figure 109.  Each rectangle 

represents an agent class and a directed line represents a conversation between the agent classes.  The 

arrows on the lines indicate the initiator and responder in the conversation.  An Agent Class Diagram is 

similar to object-oriented diagrams with two exceptions.  First, agents are defined by the roles they play 

rather than by attributes and methods.  Secondly, all relationships between classes are conversations that 

may take place between two agent classes. 

 

Figure 109 – Agent Class Diagram 
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A.1.1.5 Constructing Conversations  

Constructing Conversations is the next step defined in MaSE.  This step can actually happen 

before, after, or in parallel with the next step, Assembling Agents.  The two steps are closely related, and it 

may be beneficial to alternate between them.  In the previous step, Creating Agent Classes, the designer 

developed the Agent Class Diagram, which simply identified the agent classes and the conversations they 

have.  The goal of this step is to define the details of those conversations. 

Conversations are detailed coordination protocols between two agents and consist of two 

Communication Class Diagrams, one each for the initiator and responder.  Conversations are at the heart of 

any multiagent system, as they detail how the different agents will communicate with each other.  Like 

tasks, Communication Class Diagrams are finite state automaton that define the states and transitions for 

each half of a conversation.  One example of a Communication Class Diagram is shown in Figure 110.   

 

Figure 110 – Communication Class Diagram 

As described in Section A.1.1.4, the roles that an agent class plays determine the set of 

conversations an agent class participates in.  Likewise, the details of the conversations are derived from the 

tasks associated with those roles.  Since tasks can capture communication between multiple roles as well as 
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communication with other tasks internal to its role, a task will likely be broken into more than one 

conversation.  Conversations are defined to be point-to-point communication between just two agents, and 

every event within the Communication Class Diagram is defined to be a message to or from the other agent 

instance participating in the conversation.  Conversations do not allow for communication with multiple 

agents simultaneously or internal events to be exchanged with components internal to the agent. 

A.1.1.6 Assembling Agent Classes 

In Assembling Agent Classes, the internal components of an agent are defined.  This is a two-step 

process by first defining the agent architecture and then defining the components that make up that 

architecture.  When constructing an agent architecture, the designer can either use a pre-existing 

architecture from a set of architecture style templates or design a custom architecture from scratch.  Each 

architecture is built using components, which are also either custom-built or reused from an existing 

component library.   

Each agent component is defined using an architectural modeling language combined with the 

Object Constraint Language.  This allows the user to define attributes and functions that belong to the 

agent.  Each component can also have a finite state automaton defining the dynamic characteristics of the 

component.  The events passed within a component’s dynamic model will be limited to internal events with 

other components that belong to that agent.  There will not be any external send or receive events with 

other agents in the component’s dynamic model.  That is all accomplished through conversations. 

A.1.1.7 System Deployment 

The final step defined in MaSE is System Deployment.  In this step, the designer takes the agent 

classes defined previously and instantiates actual agents.  A Deployment Diagram is used to show all of the 

detailed information necessary to deploy the system, including numbers, types, and locations of agents 

within a system.  An example of a Deployment Diagram can be found in Figure 111.  The three 
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dimensional boxes are agents and the connecting lines between them represent conversations between those 

agents.  A dashed-line box indicates that agents are housed on the same physical platform. 

 

Figure 111 – Deployment Diagram [8] 

Deployment Diagrams offer the designer an opportunity to tune the system by defining various 

configurations of agents and computers to maximize available processing power and network bandwidth.  

If the user has not specified the particular number of components or the specific computers on which 

certain agents must reside, the designer should consider the communication and processing requirements 

when assigning agents to computers.  If two agents have a high degree of communication, then the designer 

may decide to deploy them on the same machine.  However, overloading a machine with too many agents 

reduces the advantages of distribution gained using the agent paradigm.  Furthermore, the designer may 

decide to dedicate a machine to a single agent if that agent has high processing requirements. 

A.1.1.8 Transitioning from Analysis to design - MaSE 

Not only does MaSE provide guidance from the analysis to design phase, but it provides guidance 

throughout the entire development process.  The models in each step are clearly influenced by models in 

previous steps due to strong relationships between the information being presented in them.  Specifically, it 
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is clear that roles are related to agent classes and the tasks that the roles perform are then both related to the 

conversations between those agent classes and to some aspects of the agent’s internal components.  Since 

there are such strong relationships between the models in this methodology and there is clear guidance on 

making the transition from analysis to design, this methodology has the most promise for automation.  

While there are still many places where the developer has to make design decisions, once those decisions 

are made, going from one model to the next should be straightforward transformations. 

A.1.2 Gaia Methodology 

Another recent attempt at developing a full methodology for both analysis and design of a 

multiagent system is the Gaia methodology by Wooldrige, Jennings, and Kinney [15].  This methodology 

was developed for systems with a relatively small number (less than 100) of heterogeneous, autonomous 

agents attempting to maximize some global quality measure.  Each agents services and the relationships 

they have with other agents are assumed to be static and will not change during run-time. 

A.1.2.1 Analysis Phase - Gaia 

The highest level of abstraction that the analysis phase attempts to capture is the organization of 

the system, which is a collection of roles that have relationships with one another and take part in 

systematic, institutionalized patterns of interactions with other roles (shown in Figure 112). 

 System 
 

Safety 
Properties 

Protocols Permissions Responsibilities 

Roles 

Liveness 
Properties  

Figure 112 – Abstract Analysis Hierarchy [15] 
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The Gaia methodology views the system as a society or organization, and the elements of that 

society are defined as roles.  Roles are a natural abstraction for a multiagent system and are analogous to a 

typical company structure.  A company has roles such as “president”, “vice-president”, and “manager” all 

arranged in some hierarchical fashion.  The idea of a role is not a static representation because someone 

acting as one role may later (or at the same time) also play the part of a different role.  Roles are initially 

captured in a prototypical roles model, which will be incrementally expanded and fully elaborated by the 

end of the analysis phase.   

A role is defined by four attributes: responsibilities, permissions, activities, and protocols.  

Responsibilities determine the functionality of a role and may be their key attribute.  An example 

responsibility associated with the role of mail clerk might be to deliver and pick up mail to and from each 

required office.  Responsibilities are divided into two types:  liveness properties (something good that 

should happen) and safety properties (or invariants).  Permissions are the “rights” associated with a role 

and identify the resources that are available to a role in order to achieve its responsibilities.  In multiagent 

systems, these permissions tend to be information resources.  Activities of a role are computations 

associated with a role that may be carried out by the agent without interacting with other agents.  Protocols 

define the way that a role can interact with other roles, for example “Dutch auction”, “English auction”, or 

“Contract Net”.  A protocol definition consists of the following attributes: purpose, initiator, responder, 

inputs, outputs, and processing.  After protocols have been identified, an interaction model is produced 

which captures the recurring patterns of inter-role interaction.   

A.1.2.2 design Phase - Gaia 

In the Gaia methodology, the goal of the design phase is a little different than the traditional 

interpretation.  The analysis model is transformed into a sufficiently low level of abstraction so that 

“traditional design techniques” can be applied to implement the agents.  During the design phase, the 

designer will generate three models: the agent model, services model, and the acquaintance model.   
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The agent model documents the various agent types in the system.  An agent type can be thought 

of as a set of agent roles.  A designer can choose to package a number of closely related roles in the same 

agent type for the purpose of convenience and sometimes for better efficiency.  The Gaia agent model also 

documents the run-time cardinalities of agent instances.   

The services model identifies the services associated with each agent role and specifies the main 

properties of these services.  Specifically, the inputs, outputs, pre-conditions, and post-conditions of each 

service are identified.  Inputs and outputs are derived from the protocols model and pre- and post-

conditions are derived from the safety properties of a role.   

The acquaintance model simply defines the communication links that exist between agent types.  

They do not define what messages are sent or when messages are sent.  This doesn’t really seem to exploit 

the power inherent to multiagent systems, which is their ability to coordinate with each other through the 

idea of conversations or sequences of messages.   

A.1.2.3 Transitioning from Analysis to design – Gaia 

While the Gaia methodology gives sound guidance for developing the design models from the 

analysis models, the resulting design is still at a rather high level of abstraction.  The methodology gives no 

real guidance on how to transform the design models into a sufficiently low-level of design to implement 

the system.  The methodology needs to be expanded to either incorporate lower level design models or 

provide more guidance on how to refine the current models to a “traditional” system design.  With such a 

lack of detail given, it would be very difficult to try and automate this process.  To automate the generation 

of the design models described in this methodology would be of little use. 

A.1.3 MAS-CommonKADS 

Another complete multiagent system methodology that has been proposed by Iglesias, Garijo, 

Gonzalez, and Velasco is the MAS-CommonKADS methodology [16].  This methodology extends 

CommonKADS for multiagent systems by adding techniques from object oriented methodologies and 
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protocol engineering.  The general software process combines a risk-driven approach with a component-

based approach.  

A.1.3.1 Analysis Phase - MAS-CommonKADS  

The first phase of analysis is Conceptualization, where the analyst determines use cases from the 

initial user requirements and then formalizes them with Message Sequence Charts.  The purpose of this 

phase is to capture roles and to develop an initial understanding of the interactions that must take place 

between those roles.  After the Conceptualization phase, a requirements specification of the system will be 

generated through the development of six models, each consisting of constituents (the entities to be 

modeled) and relationships between the constituents.  

The first model is the Agent model, which specifies the agent characteristics such as reasoning 

capabilities, skills (sensors / effectors), services, agent groups and hierarchies (both modeled in the 

organization model). The second model is the Task model that describes the tasks that the agents can carry 

out through description of goals, decompositions, ingredients and problem-solving methods.  The third 

model, the Expertise model, describes the knowledge (information sources) needed by the agents to achieve 

their goals.  The fourth model is the Organization model that describes the organization into which the 

MAS is going to be introduced and the social organization of the agent society.  The Coordination model is 

the fifth model, which describes the conversations between agents: their interactions, protocols and 

required capabilities.  The last model, the Communication model, details the human-software agent 

interactions and the human factors for developing these user interfaces. 

There are no examples of the models in this methodology, but it does describe how these models 

are developed in a risk-driven way through the following five steps.  The first step is Agent modeling, 

where you develop the initial instances of the agent model for identifying and describing the agents.  The 

next step is Task modeling, where tasks are decomposed and the goals and ingredients of the tasks for each 

agent are determined.  The third step is Coordination modeling, where the coordination model for 

describing the interactions and coordination protocols between the agents is developed.  The fourth step is 



 

 136 

Knowledge modeling, where the knowledge on the domain, the agents (knowledge needed to carry out the 

tasks and their proactive behavior) and the environment (beliefs and inferences of the world, including the 

rest of the agents) is modeled.  The last step is Organization modeling, where the organization model is 

developed.  Depending on the type of project, it may be necessary to model the organization of the 

enterprise into which the MAS is going to be introduced to study the feasibility of the proposed solution.  

In this case, two instances of the organization model are developed: before and after the introduction of the 

MAS.  This model is also used to model the software agent organization.   

A.1.3.2 design Phase - MAS-CommonKADS 

From the initial set of models defined in the analysis phase, a design model is produced that is 

subdivided into three sub models, the Agent Network design, Agent design, and Platform design.  The 

Agent Network design model describes the infrastructure of the MAS and consists of network, knowledge 

and coordination facilities.  The agents that maintain this infrastructure are also defined, depending on the 

required facilities such as network facilities (agent name service, register and subscription service, transport 

/ application protocols, etc.), knowledge facilities (ontology servers, knowledge representation language 

translators, etc.), and coordination facilities (coordination protocols, protocol servers, group management 

facilities, police agents, etc.). 

The Agent design model defines the appropriate architecture for each agent, and agents can be 

introduced or subdivided according to pragmatic criteria.  Each agent is subdivided in modules for user 

communication (from communication model), agent communication (from coordination model), 

deliberation and reaction (from expertise, agent and organization models), and external skills and services 

(from agent, expertise and task models). 

The last model is the Platform design model where the decisions on software (multiagent 

development environment) and hardware that are needed for the system are captured.   
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A.1.3.3 Transitioning from Analysis to design – MAS-CommonKADS 

While there are some indications of what models in the analysis phase affect the models in the 

design phase, exactly how they are related is not specified.  In fact, there are no examples of some of the 

analysis models and no examples of the design models.  Without more concrete information on the models 

and how they relate to each other, one can only speculate on how easy it would be to automate the process 

of transforming the analysis models into design models. 

A.2 Formal Methods 

Computer systems continue to grow in scale, functionality and complexity, increasing the 

likelihood of subtle errors.  A major goal of software engineering is to enable developers to construct 

systems that operate reliably despite this complexity.  One way of achieving this goal is by using formal 

methods, which are mathematically based languages, techniques and tools for specifying and verifying such 

systems.  While formal methods do not necessarily guarantee correctness, they can greatly increase our 

understanding of a system by revealing inconsistencies, ambiguities, and incompleteness that might 

otherwise go unnoticed [17].   

Hall [18] uses the term formal methods to describe the use of mathematics in software and details 

the main activities in using formal methods: 

• writing a formal specification 

• proving properties about the specification 

• constructing a program be mathematically manipulating the specification 

• verifying a program by mathematical argument 

The first step, writing a formal specification, may be the most important part of formal 

development.  A formal specification gives an unambiguous, precise definition of exactly what the system 

is intended to do, and is the foundation for all other activities relating to formal development.  For many 
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projects, this is the only part of the development that is formal.  The major benefit of using formal methods 

to write a system specification is that they require the analyst to more fully understand the system because 

errors and ambiguities become blatantly obvious. 

Once a formal specification has been developed, since the specification is mathematical in nature, 

the developer can prove things about the specification, as well as the program.  These proofs may deal with 

the consistency of the specification, the completeness of operation definitions, or that the specification will 

meet certain key requirements.  For safety-critical systems, these proofs may be of great importance.  In 

any case, errors at this stage are more costly than implementation errors, so proofs of these properties are 

correspondingly more important than proofs of implementation. 

If a developer wants to implement a system formally, instead of writing the program and then 

trying to prove that it meets the specification, the program is constructed through a transformation system, 

described below.  Since the each step of the transformation system is provably correct, then the program is 

correct by construction and can be mathematically verified. 

A.2.1 Transformational Programming 

Within the recent developments in formal methods, a new paradigm for software development has 

emerged, transformational programming, in which software is developed, modified, and maintained at the 

specification level, and then automatically transformed into production-quality software [19].  The basic 

idea behind a transformation system is to take a formal specification for the system and apply a series of 

correctness-preserving transformations that translate the system specification into a system design and then 

into executable code.  If each transformation preserves correctness, the resulting system is guaranteed to be 

correct, but only with respect to the specification.  If the specification is not correct, neither will resulting 

design and code be correct. 

Hartrum and Graham [11] describe a semi-automated software synthesis process using a 

transformation system shown in Figure 113.  First, domain knowledge is stored in a formal domain model.  

Then a formal specification for a specific problem is generated by an application engineer from the domain 
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model.  The developer will then apply a series of transformations, each of which are verified to preserve the 

correctness of the system, to produce a formal design specification.  Finally, further transformations are 

applied to generate the executable code. 

 

Figure 113 – Typical Transformation System [11] 

While transformational programming has the obvious benefit of decreasing the chances for errors 

in the implementation, there are also other more subtle benefits.  First, by developing the system in an 

automated fashion from the specification, system maintainability is greatly increased because changes to 

the system will also be made to the specification, not directly to the code.  In the traditional software life 

cycle, over half of the cost is attributed to software maintenance and modifications because they are done at 

the code level.  After a few rounds of modifications, the code has usually become unstable and is very 

difficult to make further changes to.  The original design information is usually lost and the documentation 

has not been maintained, making it inadequate and outdated.  The only recourse is an expensive 

reengineering effort that includes recovering the design of the existing system.  In transformational 

programming, changes are made to the specification, and the code is automatically generated by re-
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applying the transformations, most of which will not have changed since the last time through the 

transformation process. 

Another benefit of transformational programming is that it makes it easy to reuse portions of 

previous software systems when abstract components can easily be adapted to the context of a new 

software system.  Instead of trying to reuse portions of the code, which can be difficult to deal with even in 

a modularized system, a developer can simply reuse portions of the specification, which are abstract and 

easier to manipulate.  Additionally, the specification may be contained in different analysis models, where 

CASE tools can make the reuse of these models almost trivial. 

A.2.2 Formalisms for Multiagent Systems 

Agents are a natural next step in software engineering, representing fundamentally new ways of 

viewing complex distributed systems in the context of societies of cooperating autonomous components.  

Since agents have unique properties, new formal representations must be developed in order to take 

advantage of formal methods in the development of agent-oriented and multiagent systems.  d’Iverno, et al. 

[20] list the necessary attributes of formalisms for agents: 

• provide a precise and unambiguous language for specifying systems’ components and 

behavior 

• address the needs of practical applications of agents, by being capable of expressing some 

or all of various aspects of agency including, but not limited to, perception, action, belief, 

knowledge, goals, motivation, intention, desire, motivation 

• help identify properties of agent systems against which implementations can be measured 

and assessed 

• measure, evaluate, classify, and study implementations 

They also further detail attributes of a formalism for multiagent systems, as they add another 

dimension to agent-oriented systems.  They state that formalisms for multiagent systems should also deal 

with the multiplicity of agents, group properties of agent systems, such as common knowledge and group 

intentions, and interaction among agents, such as communication and cooperation.  In a later paper, 
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d’Iverno and Luck [21] extend the framework to include inter-agent relationships, and give an approach 

using Z. 

A.3 Summary 

This appendix provided background information on previous research that supports this thesis.  

The first three sections presented three multiagent engineering methodologies; Multiagent Systems 

Engineering (MaSE), the Gaia Methodology, and MAS-CommonKADS.  The analysis and design phases 

were described for each methodology, as well as any guidance for transitioning from the analysis models to 

the design models.  The last section presented some background information on formal methods and 

transformation systems. 
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Appendix B. Functions Used in the Transformations 

This appendix provides formal definitions for some of the functions used in the transformations in 

Chapter III.  Each function is defined by pre- and post-conditions, and returns a Boolean value based on the 

evaluation of the post-condition expression. 

B.1 The isAssigned Function 

The isAssigned function is a recursive function that takes a SendEvent and a transition and looks 

backward in the state table to see if an action was used to set the recipient of the send event.     

function isAssigned(se : SendEvent, t : Transition, st : StateTable) returns Boolean 

Precondition : true 

Postcondition :  

 (∃ a : Action, s : State • s ∈ st.states ∧ s = t.from ∧ a ∈ s.actions ∧ se.recipient ∈ a.lhs) 

 ∨ (∃ t2 : Transition, re : ReceiveEvent • t2 ∈ st.transitions ∧ t2.to = t.from  

      ∧ re = t2.receiveEvent ∧ (re.sender ≠ se.recipient ∨ re = null)  

      ∧ ¬ (∃ se2 : SendEvent • se2 ∈ t2.sendEvents ∧ se2.recipient = se.recipient) 

      ∧ ( (∃ a : Action • a ∈ t2.actions ∧ se.recipient ∈ a.lhs) ∧ isAssigned(se, t2, st) ) )  

 

B.2 The usedInAction Function 

The usedInAction function returns true under three conditions: 1) the parameter’s name is used in 

the action’s lhs tuple 2) the parameter’s name is used in a tuple in the action’s rhs and 3) the parameter is 

used in a FunctionCall in the action’s rhs.  

function usedInAction(p : Parameter, a : Action) returns Boolean 

Precondition : true 

Postcondition :  

 ∃ param : String, f : FunctionCall •  

 param = p.name ∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ (f = a.rhs ∧ p ∈ f.parameters) )  
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B.3 The usedInTransition Function 

The usedInTransition function returns true if the parameter given as input is also a parameter of 

the transition’s receive Event, the Event of the receiveEvent, one of the send Events, the Event of one of 

the sendEvents, or it is used in one of the transition’s actions.  There was no formal definition given for the 

Boolean expressions used in a transition’s guard condition.  Boolean expressions can be represented in 

whatever formal language is chosen.  Therefore, the usedInGuard function is defined to return true if the 

parameter is used somewhere in the guard condition. 

function usedInTransition(p : Parameter, t : Transition) returns Boolean 

Precondition : true 

Postcondition : 

 ∃ e : Event, se : SendEvent, re : ReceiveEvent, a : Action • 

 (e = t.receive ∧ p ∈ e.parameters) ∨ (e ∈ t.sends ∧ p ∈ e.parameters)  

 ∨ (re = t.receiveEvent ∧ e = re.event ∧ p ∈ e.parameters) 

 ∨ (se ∈ t.sendEvents ∧ e = se.event ∧ p ∈ e.parameters) 

 ∨ ( a ∈ t.actions ∧ usedInAction(p, a)  

 ∨ usedInGuard(p, t.guard) ) 

 

B.4 The isNeeded Function 

The isNeeded function is used to determine if a parameter needs to be supplied to an action that 

starts a conversation.  The function returns true if there is a transition belonging to the conversation that 

uses a parameter and that parameter is not assigned within the conversation prior to being used.  The 

function also returns true if the parameter is used in an action in a state that belongs to the conversation, 

and that parameter is not assigned prior to being used.  The usedInAction() and usedInTransition() 

functions are used as defined earlier, and the isAssigned() function returns true if the parameter has been 

set in an action either in a state or on a transition before the parameter is used.  This means that parameters 

that are used in a conversation before explicitly being set must be supplied as a parameter when the 

conversation is started. 
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function isNeeded(p : Parameter, convs : {Conversation}, st : StateTable) returns Boolean 

Precondition: true 

Postcondition:  

 (∃ t : Transition • 

     t ∈ st.transitions ∧ (convs n  t.conversations ≠ {}) ∧ usedInTransition(p, t)  

     ∧ ¬isAssigned(p, convs, st) ) 

 ∨ (∃ s : State, a : Action • 

     s ∈ st.states ∧ (convs n  s.conversations ≠ {}) ∧ a ∈ s.actions ∧ usedInAction(p, a) 

     ∧ ¬isAssigned(p, convs, st) ) 
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