

TRANSFORMING ANALYSIS MODELS

INTO DESIGN MODELS FOR THE
MULTIAGENT SYSTEMS ENGINEERING

(MASE) METHODOLOGY

THESIS

Clint H. Sparkman, 1st Lieutenant, USAF

AFIT/GCS/ENG/01M-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/01M-12

TRANSFORMING ANALYSIS MODELS INTO DESIGN

MODELS FOR THE MULTIAGENT SYSTEMS

ENGINEERING (MASE) METHODOLOGY

THESIS

Presented to the faculty of the Graduate School of Engineering & Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Clint H. Sparkman, B. S.

1st Lieutenant, USAF

March 2001

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/01M-12

 ii

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the United States Air Force, Department of Defense or United States Government.

AFIT/GCS/ENG/01M-12

 iii

TRANSFORMING ANALYSIS MODELS INTO DESIGN

MODELS FOR THE MULTIAGENT SYSTEMS

ENGINEERING (MASE) METHODOLOGY

THESIS

Clint H. Sparkman, B. S.
1st Lieutenant, USAF

Approved:

AFIT/GCS/ENG/01M-12

 iv

ACKNOWLEDGMENTS

I would first like to thank my Lord and Savior Jesus Christ for giving me the ability and strength

to pursue this goal. Next, I must thank my wife, Casey. Words alone cannot express the love and

admiration I have for her. Her sacrifice and devotion to our family and home allowed me focus on the

work necessary to complete this graduate program, and she was an unwavering reminder of what is truly

important in life. To my advisor, Maj Scott DeLoach, I extend a special thanks for his guidance and for his

insightful and challenging feedback throughout this research. I would also like to thank my committee

members, Lt Col Tim Jacobs and Dr Tom Hartrum, for their assistance during this thesis. I would also like

to thank my fellow classmates for our discussions that provided insight and focus to my research. More

importantly, their friendship and the laughter we shared made my time here bearable, even enjoyable. They

will never be forgotten.

Clint Houston Sparkman

AFIT/GCS/ENG/01M-12

 v

Table of Contents

ACKNOWLEDGMENTS.. IV

TABLE OF FIGURES ... IX

TABLE OF TABLES ..XIII

ABSTRACT ... XIV

ABSTRACT ... XIV

I. INTRODUCTION .. 1

1.1 Background .. 3

1.1.1 Capturing Goals .. 4

1.1.2 Applying Use Cases.. 4

1.1.3 Refining Roles .. 5

1.1.4 Creating Agent Classes ... 6

1.1.5 Constructing Conversations .. 7

1.1.6 Assembling Agent Classes.. 8

1.1.7 System Deployment .. 8

1.1.8 agentTool .. 9

1.2 Problem.. 9

1.3 Scope.. 10

1.4 Thesis Overview .. 11

II. PROBLEM APPROACH.. 13

2.1 Expanding the Role Model... 13

2.2 Transforming Concurrent Tasks to Conversations and Components ... 15

2.3 Model Definitions .. 18

2.3.1 Analysis Models ... 19

2.3.2 Design Models .. 21

AFIT/GCS/ENG/01M-12

 vi

2.3.2.1 Agents .. 22

2.3.2.2 Components.. 22

2.3.2.3 Conversations ... 23

2.3.3 State Tables... 23

2.3.3.1 States .. 25

2.3.3.2 Transitions.. 26

2.3.3.2.1 Concurrent Task Diagram.. 27

2.3.3.2.2 Component State Table.. 28

2.3.3.2.3 Communication Class Diagram ... 28

2.3.3.3 Actions and Events... 29

2.4 Summary.. 31

III. TRANSFORMATIONS .. 33

3.1 Formal Notations ... 34

3.2 Generating the Agent Model.. 35

3.2.1 Determining Protocols for External Events... 36

3.2.2 Creating Components for Agents from Tasks... 41

3.2.3 Replicating Protocols Between Components .. 42

3.2.4 Transforming External Events into Internal Events .. 44

3.3 Annotating Component State Diagrams... 45

3.3.1 Splitting Transitions.. 46

3.3.2 Determining the Protocols for Transitions .. 50

3.3.3 Start Label for Transitions .. 56

3.3.4 End Label for Transitions ... 61

3.3.5 Matching Conversation Halves ... 63

3.3.6 Splitting Transitions with a ReceiveEvent and Multiple Conversation Names................................... 67

3.3.7 Creating Conversations... 68

3.3.8 Propagating the Set of Conversations ... 70

3.4 Harvesting the Conversations .. 71

3.4.1 Combining Conversation End States .. 72

AFIT/GCS/ENG/01M-12

 vii

3.4.2 Preparing Variables and Parameters ... 76

3.4.3 Initiator Conversation Halves ... 81

3.4.4 Responder Conversation Halves ... 85

3.4.5 Moving States and Transitions From Components to Conversations.. 88

3.5 Summary.. 91

IV. DEMONSTRATION.. 92

4.1 Transformation System Overview ... 92

4.2 Integration with agentTool... 93

4.2.1 Transformation Classes... 94

4.2.2 Model Classes ... 95

4.3 Example ... 95

4.3.1 Starting Point – Role Model and Initial Agent Classes ... 96

4.3.2 Stage One – Creating Agent Components... 100

4.3.2.1 Determining the Protocols for External Events .. 100

4.3.2.2 Determining the Mode for the SearchRequest Protocol ... 102

4.3.2.3 Agent Components ... 103

4.3.3 Stage Two – Annotating Component State Diagrams... 105

4.3.3.1 Matching up the First Messages of the Conversations.. 105

4.3.3.2 Annotated Component State Diagrams... 107

4.3.4 Stage Three – Creating Conversations .. 109

4.4 Summary.. 113

V. CONCLUSIONS AND FUTURE WORK.. 114

5.1 Conclusions.. 114

5.2 Future Research Areas ... 115

5.2.1 Transformation Enhancements ... 115

5.2.2 Formal Transformations for Mixed-Initiative Systems ... 117

5.2.3 Formal Proof... 117

5.3 Summary.. 118

AFIT/GCS/ENG/01M-12

 viii

VI. BIBLIOGRAPHY.. 119

APPENDIX A. BACKGROUND ... 121

A.1 Multiagent System Methodologies.. 121

A.1.1 Multiagent System Engineering Methodology... 122

A.1.1.1 Capturing Goals... 123

A.1.1.2 Applying Use Cases... 124

A.1.1.3 Refining Roles ... 125

A.1.1.4 Creating Agent Classes.. 127

A.1.1.5 Constructing Conversations... 129

A.1.1.6 Assembling Agent Classes .. 130

A.1.1.7 System Deployment... 130

A.1.1.8 Transitioning from Analysis to design - MaSE.. 131

A.1.2 Gaia Methodology ... 132

A.1.2.1 Analysis Phase - Gaia .. 132

A.1.2.2 design Phase - Gaia.. 133

A.1.2.3 Transitioning from Analysis to design – Gaia ... 134

A.1.3 MAS-CommonKADS.. 134

A.1.3.1 Analysis Phase - MAS-CommonKADS .. 135

A.1.3.2 design Phase - MAS-CommonKADS.. 136

A.1.3.3 Transitioning from Analysis to design – MAS-CommonKADS ... 137

A.2 Formal Methods .. 137

A.2.1 Transformational Programming ... 138

A.2.2 Formalisms for Multiagent Systems .. 140

A.3 Summary ... 141

APPENDIX B. FUNCTIONS USED IN THE TRANSFORMATIONS ... 142

B.1 The isAssigned Function ... 142

B.2 The usedInAction Function ... 142

B.3 The usedInTransition Function.. 143

B.4 The isNeeded Function.. 143

AFIT/GCS/ENG/01M-12

 ix

TABLE OF FIGURES

FIGURE 1 – MASE METHODOLOGY .. 3

FIGURE 2 – SEQUENCE DIAGRAM [5] .. 4

FIGURE 3 – A ROLE MODEL[8] ... 5

FIGURE 4 – CONCURRENT TASK DIAGRAM ... 6

FIGURE 5 – AGENT CLASS DIAGRAM .. 7

FIGURE 6 – COMMUNICATION CLASS DIAGRAM ... 8

FIGURE 7 – EXPANDED ROLE MODEL ... 15

FIGURE 8 – MODEL INFLUENCES... 17

FIGURE 9 – EXAMPLE GRAPHICAL REPRESENTATION OF A TYPE .. 19

FIGURE 10 – CLASS DIAGRAM OF THE EXPANDED ROLE MODEL IN MASE .. 19

FIGURE 11 – ROLE TYPE ... 20

FIGURE 12 – TASK TYPE ... 20

FIGURE 13 – PROTOCOL TYPE... 21

FIGURE 14 – CLASS DIAGRAM FOR THE TYPES USED IN THE DESIGN PHASE OF MASE 21

FIGURE 15 – AGENT TYPE... 22

FIGURE 16 – COMPONENT TYPE.. 22

FIGURE 17 – CONVERSATION TYPE... 23

FIGURE 18 – CONVERSATIONHALF TYPE .. 23

FIGURE 19 – STATETABLE CLASS DIAGRAM .. 24

FIGURE 20 – STATETABLE TYPE ... 25

FIGURE 21 – STATE TYPE.. 25

FIGURE 22 – TRANSITION TYPE... 26

FIGURE 23 – TRANSITION WITH TWO SENDEVENTS TO THE SAME AGENT.. 27

FIGURE 24 – TWO ORDERINGS FOR RECEIVEEVENTS.. 28

FIGURE 25 – ACTION TYPE ... 29

AFIT/GCS/ENG/01M-12

 x

FIGURE 26 – FUNCTIONCALL TYPE... 30

FIGURE 27 – PARAMETER TYPE .. 30

FIGURE 28 – RECEIVEEVENT TYPE ... 30

FIGURE 29 – SENDEVENT TYPE .. 31

FIGURE 30 – EVENT TYPE ... 31

FIGURE 31 – THREE STAGES OF THE TRANSFORMATION PROCESS .. 33

FIGURE 32 – STAGE 1 IN THE TRANSFORMATION PROCESS ... 36

FIGURE 33 – SENDEVENT WITH MULTIPLE PROTOCOLS.. 37

FIGURE 34 – EXAMPLE OF TRANSFORMATION 1.. 38

FIGURE 35 – EXAMPLE OF TRANSFORMATION 2.. 39

FIGURE 36 – EXAMPLE OF TRANSFORMATION 3.. 39

FIGURE 37 – AMBIGUOUS PROTOCOLS FOR SENDEVENTS... 40

FIGURE 38 – AMBIGUOUS PROTOCOLS FOR RECEIVEEVENTS ... 41

FIGURE 39 – ROLE MODEL EXAMPLE ... 41

FIGURE 40 – AGENT COMPONENTS CREATED FROM THE ROLES' TASKS .. 42

FIGURE 41 – AGENT DIAGRAM EXAMPLE ... 43

FIGURE 42 – STAGE 2 IN THE TRANSFORMATION PROCESS ... 46

FIGURE 43 – EXAMPLE OF SPLITTING A TRANSITION .. 48

FIGURE 44 – EXAMPLE 2 OF SPLITTING A TRANSITION ... 49

FIGURE 45 – TRANSITIONS WITH NO EVENTS ... 54

FIGURE 46 – PROTOCOLS DETERMINED FOR TWO TRANSITIONS... 55

FIGURE 47 – PROTOCOLS DETERMINED FOR ALL TRANSITIONS.. 56

FIGURE 48 – EXAMPLE OF TRANSFORMATION 19.. 57

FIGURE 49 – EXAMPLE OF TRANSFORMATION 20.. 58

FIGURE 50 – EXAMPLE OF TRANSFORMATION 22.. 59

FIGURE 51 – EXAMPLE OF TRANSFORMATION 24.. 61

FIGURE 52 – EXAMPLE OF TRANSFORMATION 25.. 62

AFIT/GCS/ENG/01M-12

 xi

FIGURE 53 – EXAMPLE OF TRANSFORMATION 29.. 64

FIGURE 54 – EXAMPLE OF TRANSFORMATION 30.. 65

FIGURE 55 – TWO STATE DIAGRAMS ANNOTATED DIFFERENTLY .. 66

FIGURE 56 – TRANSITION WITH A RECEIVEEVENT AND MULTIPLE CONVERSATION NAMES......................... 67

FIGURE 57 – STATE DIAGRAMS AFTER TRANSFORMATION 31.. 68

FIGURE 58 – DUPLICATE CONVERSATIONS BETWEEN AGENTS ... 69

FIGURE 59 – STATE DIAGRAMS WITH DIFFERENT ACTIONS IN STATE1... 70

FIGURE 60 – EXAMPLE OF PROPAGATING THE SET OF CONVERSATIONS ... 71

FIGURE 61 – STAGE 3 IN THE TRANSFORMATION PROCESS ... 72

FIGURE 62 – CONVERSATION WITH MULTIPLE EXIT STATES .. 73

FIGURE 63 – STATE DIAGRAM AFTER TRANSFORMATIONS... 73

FIGURE 64 – STATE DIAGRAM AFTER TRANSFORMATION 33.. 74

FIGURE 65 – STATE DIAGRAM AFTER TRANSFORMATION 34.. 75

FIGURE 66 – STATE DIAGRAM AFTER TRANSFORMATION 35.. 76

FIGURE 67 – STATE DIAGRAM BEFORE TRANSFORMATION 37.. 78

FIGURE 68 – STATE DIAGRAM AFTER TRANSFORMATION 37.. 78

FIGURE 69 – STATE DIAGRAM AFTER TRANSFORMATION 39.. 79

FIGURE 70 – STATE DIAGRAM AFTER TRANSFORMATION 43.. 81

FIGURE 71 – STATE DIAGRAM BEFORE TRANSFORMATION 44.. 83

FIGURE 72 – STATE DIAGRAM AFTER TRANSFORMATION 44.. 83

FIGURE 73 – STATE DIAGRAM BEFORE TRANSFORMATION 44.. 84

FIGURE 74 – STATE DIAGRAM AFTER TRANSFORMATION 44.. 84

FIGURE 75 – STATE DIAGRAM BEFORE TRANSFORMATION 45.. 85

FIGURE 76 – STATE DIAGRAM AFTER TRANSFORMATION 45.. 85

FIGURE 77 – STATE DIAGRAM BEFORE TRANSFORMATION 46.. 87

FIGURE 78 – STATE DIAGRAM AFTER TRANSFORMATION 46.. 87

FIGURE 79 – STATE DIAGRAM BEFORE TRANSFORMATION 46.. 87

AFIT/GCS/ENG/01M-12

 xii

FIGURE 80 – STATE DIAGRAM AFTER TRANSFORMATION 46.. 87

FIGURE 81 – THREE STAGES OF THE TRANSFORMATION PROCESS .. 93

FIGURE 82 – TRANSFORMATION MENU IN AGENTTOOL .. 94

FIGURE 83 – ROLE MODEL.. 96

FIGURE 84 – FULFILLSEARCHREQUEST TASK FOR THE MANAGER ROLE.. 97

FIGURE 85 – BID TASK FOR THE BIDDER ROLE ... 98

FIGURE 86 – SEARCH TASK FOR THE SEARCHER ROLE ... 99

FIGURE 87 – INITIAL AGENT CLASS DIAGRAM.. 99

FIGURE 88 – AMBIGUOUS PROTOCOLS DIALOG .. 100

FIGURE 89 – FIRST PROTOCOL DECISION .. 101

FIGURE 90 – SECOND PROTOCOL DECISION .. 102

FIGURE 91 – DIALOG TO CHOOSE A PROTOCOL’S MODE .. 103

FIGURE 92 – MOBILESEARCHER AGENT’S BID COMPONENT .. 104

FIGURE 93 – MOBILESEARCHER AGENT’S SEARCH COMPONENT ... 104

FIGURE 94 – FIRST EVENT MATCH DECISION ... 106

FIGURE 95 – SECOND EVENT MATCH DECISION ... 106

FIGURE 96 – THIRD EVENT MATCH DECISION .. 107

FIGURE 97 – ANNOTATED FULFILLSEARCHREQUESTS COMPONENT... 108

FIGURE 98 – ANNOTATED BID COMPONENT ... 109

FIGURE 99 – AGENT CLASS DIAGRAM WITH CONVERSATIONS ... 110

FIGURE 100 – FULFILLSEARCHREQUESTS COMPONENT AFTER STAGE THREE ... 110

FIGURE 101 – BID COMPONENT AFTER STAGE THREE.. 111

FIGURE 102 – INITIATOR HALF OF CONVERSATION13-1 ... 112

FIGURE 103 – RESPONDER HALF OF CONVERSATION13-1 .. 112

FIGURE 104 – PHASES IN THE MASE METHODOLOGY .. 123

FIGURE 105 – GOAL HIERARCHY DIAGRAM [5] .. 124

FIGURE 106 – SEQUENCE DIAGRAM [5] .. 125

AFIT/GCS/ENG/01M-12

 xiii

FIGURE 107 – A ROLE MODEL [8] .. 126

FIGURE 108 – SAMPLE TASK IN MASE.. 126

FIGURE 109 – AGENT CLASS DIAGRAM .. 128

FIGURE 110 – COMMUNICATION CLASS DIAGRAM ... 129

FIGURE 111 – DEPLOYMENT DIAGRAM [8] ... 131

FIGURE 112 – ABSTRACT ANALYSIS HIERARCHY [15].. 132

FIGURE 113 – TYPICAL TRANSFORMATION SYSTEM [11].. 139

TABLE OF TABLES

TABLE 1 – RULES FOR DETERMINING A TRANSITION’S SET OF PROTOCOLS.. 51

AFIT/GCS/ENG/01M-12

 xiv

ABSTRACT

Agent technology has received much attention in the last few years because of the advantages that

multiagent systems have in complex, distributed environments. For multiagent systems are to be effective,

they must be reliable, robust, and secure. AFIT’s Agent Research Group has developed a complete-

lifecycle methodology, called Multiagent Systems Engineering (MaSE), for analyzing, designing, and

developing heterogeneous multiagent systems. However, developing multiagent systems is a complicated

process, and there is no guarantee that the resulting system meets the initial requirements and will operate

reliably with the desired behavior.

The purpose of this research was to develop a semi-automated formal transformation system for

the MaSE methodology, as one part of formal agent synthesis, that derives the system design based on the

analysis. Since each transform in the transformation system preserves correctness, the designer can be sure

that the resulting system design is correct with respect to the system specification. A secondary goal of this

research was to develop a proof-of-concept module for agentTool that implements the transforms.

 1

TRANSFORMING ANALYSIS MODELS INTO DESIGN

MODELS FOR THE MULTIAGENT SYSTEMS

ENGINEERING (MASE) METHODOLOGY

I. Introduction

A software engineer just received the requirements for a new computer system needed to support

changing mission requirements in the midst of a hostile contingency. The requirements for the system

include components working cooperatively in a distributed heterogeneous environment, adapting to

changing conditions, and using various types of media to communicate. The warfighters must have the

system by tomorrow morning for mission success. The software engineer takes the requirements, and

through some interaction with the user develops a formal specification for a multiagent system, taking

advantage of some pre-existing components in a stored knowledge base. After developing the system

specification, the code for the system is automatically generated and a reliable and secure system is

operationally deployed ahead of schedule.

This is just an example of what could be reality in the near future with the use of software tools

that generate executable code automatically from a high-level graphical specification of the system. This

type of next-generation technology could be the determining factor in whether or not our military can

remain the most advanced and dominant military in the world throughout the next several decades.

Documents such as Joint Vision 2010 [1] and Air Force 2025 [2] clearly detail the Air Force’s need for

distributed C3I applications to achieve information superiority in the 21st Century. If warfighters are going

to trust computer systems in an increasingly complex information environment, then those systems must be

reliable, robust, and secure. This thesis merges two enabling technologies, agent technology and formal

 2

methods, that can be used together in order to develop reliable distributed systems that operate in complex

and dynamically changing environments.

Agent technology has received much attention in the last few years because of advantages that

agent systems have in complex, distributed environments. As agent technology has matured and become

more accepted in the software industry, agent-oriented (AO) software engineering has become an important

topic for software system developers who wish to develop practical and reliable agent-based systems. For

agents to be useful in complex, distributed environments, they must work in cooperation with other agents,

which is the domain of multiagent systems [3]. Engineering multiagent systems presents some unique

challenges that are not found in Object-Oriented Software Engineering. Sycara [4] attempts to capture

some of these challenges:

1. How to decompose problems and allocate tasks to individual agents.

2. How to coordinate agent control and communications

3. How to make multiple agents act in a coherent manner.

4. How to make individual agents reason about other agents and the state of coordination.

5. How to reconcile conflicting goals between coordinating agents.

6. How to engineer practical multiagent systems.

Methodologies for AO software engineering attempt to provide a solution to the sixth challenge

and provide a framework for solving the first five. There are currently only a few AO software engineering

methodologies for multiagent systems, and many of those are still under development. Additionally, most

of the existing methodologies lack specific guidance on how to transform the specification of the system to

the corresponding design.

The focus of this thesis is to mature an existing AO software engineering methodology developed

at AFIT by applying formal methods to produce a transformation system that semi-automatically derives

the system design from the analysis. A transformation can be thought of as a function, where a model or

properties of a model are taken as input and the result is either a modified or an entirely new model. In

order to accomplish this, the relationships between the different models and the points at which design

 3

decisions are made must be identified. The result is a more completely defined and robust methodology

that has precisely defined steps for designing a multiagent system based on the analysis specification.

1.1 Background

At AFIT, recent effort has focused around developing and maturing a methodology for developing

multiagent systems, called Multiagent Systems Engineering (MaSE), that is intended to cover the complete

life cycle of a multiagent system. A full description of MaSE can be found in Appendix A, as well as [3, 5-

8]. This section presents a short overview of MaSE in order to provide the foundation of the problem

being addressed in this thesis.

The MaSE methodology consists of the seven steps depicted in Figure 1. The boxes represent the

different models used in the steps and the arrows indicate the flow of information between the models.

While similar to the waterfall approach, MaSE is also intended to be applied iteratively. The first three

steps represent the analysis phase of the methodology, while the last four steps represent the design phase.

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architectue

Capturing Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

Roles
Concurrent

Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

Figure 1 – MaSE Methodology

 4

1.1.1 Capturing Goals

The first step in MaSE is Capturing Goals, where the system analyst takes the system

requirements and develops a Goal Hierarchy Diagram, which is a structured set of system-level goals.

Goals embody what the system is trying to achieve, and generally remain constant throughout the rest of

the analysis and design process. After roles have been identified, the analyst will assign each role a set of

goals. Intuitively, if all of the system requirements have been embodied as goals and all of the goals are

being fulfilled by roles (which are later played by agents), the system should meet the initial requirements.

1.1.2 Applying Use Cases

Applying Use Cases is the next step in MaSE, where use cases are developed and then restructured

as Sequence Diagrams. Uses Cases are defined from the system requirements and are a narrative

description of a sequence of events that capture desired system behavior. Use Cases can be extracted from

the requirements specification, user stories, or any other available source. Each Use Case should describe a

particular instance of how the system will be used. Those sequences of interactions are then captured in the

more structured representation of a Sequence Diagram. Sequence Diagrams, as shown in Figure 2, capture

a sequence of messages between the different roles being played in the system. Sequence Diagrams

provide a high-level view of how different roles interact to accomplish their goals, and are useful when

constructing the tasks that each role has.

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

Figure 2 – Sequence Diagram [5]

 5

1.1.3 Refining Roles

The next step is Refining Roles, where the analyst determines which roles will be played in the

system and defines what tasks will be accomplished by each role. The Sequence Diagrams along with the

Goal Hierarchy Diagram give the analyst insight into what roles should be played in the system. Each

participant in the Sequence Diagrams is a candidate to become a role. Roles are defined much like an actor

in a play, or a position in an organization (President, Vice President, Manager, etc). Each role must be

responsible for accomplishing one or more goals in the Goal Hierarchy Diagram, and there must be at least

one role responsible for each goal.

In Refining Roles, a Role Model is used to graphically depict the roles in the system and the

communication paths between those roles. Role Models can also enable the reuse of roles from previous

systems. The basic idea is that patterns of agent roles are constructed, labeled, and archived. When a new

system is developed, the patterns are recognized and a Role Model can be re-applied from an archive,

resulting in a collection of agent roles that satisfy a subset of the system goals. As shown in Figure 3, the

arrows on Role Models are paths of communication connecting roles, and the dots indicate multiplicity.

Figure 3 – A Role Model[8]

As part of defining the roles, the analyst also defines the tasks that each role has. Tasks describe

the behavior that a role must exhibit in order to accomplish its goal and are specified graphically using a

finite state automaton as shown in Figure 4. A single role may have multiple concurrent tasks that define

the complete behavior of the role. As a minimum, the messages in the sequence diagrams should also be

messages being passed within a task. Concurrent tasks can be used to implement complex communication

protocols such as Contract Net, Dutch Auction, etc. [9]. This is a very important part of the analysis as it

allows the user to define how the system components will coordinate and interact with each other, which is

the strength of multiagent systems. These tasks also lay the foundation for conversations between agent

classes in the design phase of MaSE.

 6

Figure 4 – Concurrent Task Diagram

One important property of a task is that they are able to communicate with multiple tasks in order

to accomplish their goals. The tasks can belong to the same role, or they may belong to a different role.

Tasks that belong to the same role can coordinate with each other through internal events. In order for a

task to communicate to a task of another role, events that represent external communication are specified

using send and receive events. These events are defined to send and retrieve messages from an implied

message-handling component of the agent. In Figure 4, the receive(register(source), IS) event on the

transition from the idle state to the register state is an example of a receive event, and the

send(acknowledge, IS) event on the transition from the register state to the idle state is an example of a send

event.

1.1.4 Creating Agent Classes

Creating Agent Classes is the first step in the MaSE design phase. Agent classes are defined from

roles and an Agent Class Diagram is produced, as shown in Figure 5, that depicts the agent classes and the

conversations between them. In order to ensure that all system goals are being met, each role must be

played by at least one agent class. Thus the roles are the traceable link from the goals in the analysis phase

to the agents in the design phase. In general, there is a one-to-one mapping from roles to agents, where

each role becomes an agent class. There may be some instances however where the designer decides to

 7

either combine multiple roles into an agent class, or allow a role to be played by more than one agent class.

This is done either to share the capabilities and responsibilities of a role, or for performance enhancements

by reducing communication overhead. In an Agent Class Diagram, each rectangle represents an agent class

and a directed line represents a conversation between the agent classes. The arrows on the lines indicate

the initiator and responder in the conversation.

Figure 5 – Agent Class Diagram

1.1.5 Constructing Conversations

Constructing Conversations is the next step defined in MaSE, where the details of each

conversation are defined from the tasks and sequence diagrams. Conversations are detailed coordination

protocols between two agents and consist of two Communication Class Diagrams, one each for the initiator

and responder. Conversations are at the heart of any multiagent system, as they detail how the different

agents will communicate with each other. Like tasks, Communication Class Diagrams are described by

finite state automaton that define the states and transitions for each half of a conversation. One example of

a Communication Class Diagram is shown in Figure 6. Conversations are defined to be point-to-point

communication between just two agents. Therefore, every event within the Communication Class Diagram

is defined to be a message to or from the other agent instance participating in the conversation.

 8

Conversations do not allow for communication with multiple agents simultaneously or for internal events

to be exchanged with components internal to the agent.

Figure 6 – Communication Class Diagram

1.1.6 Assembling Agent Classes

In Assembling Agent Classes, the internal components of an agent are defined. Robinson [10]

details how to assemble agents from a set of standard or user-defined architectures. Each agent component

is defined using an architectural modeling language combined with the Object Constraint Language. This

allows the user to define attributes and functions that belong to the agent. Each component can also have a

finite state automaton defining the dynamic characteristics of the component. The events passed within a

component’s dynamic model are limited to internal events with other components that belong to that agent.

In the design phase, external communication is defined strictly through conversations, so there are no

external send or receive events with other agents in the component’s dynamic model.

1.1.7 System Deployment

The final step defined in MaSE is System Deployment. In this step, the designer develops a

Deployment Diagram, which provides all of the detailed information necessary to deploy the system.

 9

Deployment Diagrams define system parameters such as the actual number, types, and locations of the

agents within the system. Three dimensional boxes represent agents, and lines connecting them represent

conversations between those agents. A dashed-line box indicates that agents are housed on the same

physical platform.

1.1.8 agentTool

In addition to the MaSE methodology, AFIT has developed a CASE tool named agentTool that

serves as a validation platform and a proof of concept for MaSE. agentTool has a graphical user interface

that allows a user to develop a multiagent system using the analysis and design models as defined in MaSE.

agentTool is also able to generate Java code for a system based on the design models. Currently, the code

generator is able to generate code for two different frameworks, agentMom and Carolina, but work is

currently being done to integrate agentTool with the AFIT Wide Spectrum Object Modeling Environment

that is looking at the more general code generation problem [11].

1.2 Problem

One main goal of AFIT’s Agent Research Group has been to define a methodology specifically for

formal agent system synthesis. To accomplish such a goal, the analysis models must be transformed into

the design models, and then the design models must undergo another series of transformations that produce

executable code. If each step in the transformation process preserves correctness, then the system engineer

is guaranteed that the executable code is at least correct with respect to the analysis. A transformation

system should also be able to provide traceability from the system requirements through the development

process to the final executable code. In doing so, the system developer is able to verify that all of the

system requirements have been fulfilled. Furthermore, if the system engineer is able to adequately

decompose the problem and capture the system behavior in the analysis phase then there is hope that

undesirable system behavior, to which multiagent systems are prone, can be avoided.

 10

The problem being addressed by this research is the development of formal user-assisted

transformations for transitioning from analysis models to design models within the MaSE methodology.

Feasibility is demonstrated by developing and integrating the appropriate software components in AFIT’s

agentTool.

While the basic concepts of roles and tasks are defined in MaSE, exactly how a designer should

transform them into agent classes, conversations, and internal agent components has not fully been

explored. It is clear that roles are related to agent classes and the tasks that the roles perform are then

related to the conversations between those agent classes. Similarly, tasks are also related to agent class

components and the transformation process may be able to derive some high-level definitions of those

components from the tasks. There is strong indication that much of the transformation process can be

automated, with little user input. The main focus of this research is defining exactly what those

transformations are and what is the most suitable way to implement them.

One difficulty in this transformation process revolves around the user being able to determine

when coordination between two tasks is external communication and when it is internal to a role. In order

to facilitate this transformation system and overcome this problem, this research will also focus on how a

user should specify coordination protocols. A protocol defines a communication pattern designed to

accomplish coordination between roles, or more specifically between tasks performed by those roles.

Although protocols can be described through concurrent tasks [9], there may be another way to capture

those protocols at a higher level of abstraction that would help determine the properties of the protocol and

the tasks associated with it, which could be necessary information required for the transformation process.

1.3 Scope

This research effort will focus on defining the transformations that translate analysis models into

design models for the MaSE methodology. Particular attention is given to defining protocols and

concurrent tasks and their relation to conversations and agent components. Sufficiently complex examples

 11

of multiagent systems that require open system protocols such as Contract Net, Dutch Auction, English

Auction, etc. are used for demonstration purposes as well as several simple agent systems.

The following are assumptions concerning the transformations being presented in this thesis:

• The user has a good understanding of the MaSE methodology. This research will not

address how to determine goals, transform goals to roles, which protocols should be used

for a given system specification, which tasks need to be defined based on roles, or when

to combine multiple roles into a single agent class.

• Transformations start with user-defined roles, tasks, and protocols so it is assumed that

those models have been defined correctly. If there is deadlock within the tasks, then

there will also be a deadlock situation in the resulting conversations.

• The transformations should use the current models and their semantics. The semantics of

the models will only be changed when there is ambiguity or inconsistency in the current

definition of the semantics.

• The transformations should not limit the design to a single platform or multiagent

framework. For example, a developer should be able to deploy the resulting design using

both agentMom and Carolina.

• The transformations should preserve correctness, but they do not need to create optimal

solutions. If optimality is desired, then either another set of optimizing transformations

could be applied, or the user could manually manipulate the modes for optimization.

1.4 Thesis Overview

The remainder of this document is organized as follows. Chapter 2 describes the approach taken

for defining the relationships between the analysis and design model within MaSE, and presents the types

that are used to formally define the transformations. Chapter 3 presents the actual transformations as a

three stage process and describes each transformation using a predicate logic statement. Chapter 4

describes how the transformations were demonstrated by implementing the transformations as a component

of agentTool. Chapter 5 discusses conclusions reached during this study and possible future research.

 12

Appendix A has further background information that may assist the reader in understanding this thesis, and

Appendix B presents functions used to define the transformations in Chapter III.

 13

II. Problem Approach

A formal transformation system can be defined as a series of small steps that manipulate one

model into an alternative representation. Each transformation must be deterministic in its execution and

should not introduce inconsistencies between the two models. This chapter describes the approach taken to

define a formal transformation system that takes analysis models and produces the corresponding design

models within the context of the MaSE methodology. Specifically, this chapter explains the relationship

between the models in the MaSE analysis and design phases, and presents an expanded Role Model in the

analysis phase and a new organizational structure for agents and their components and conversations in the

design phase.

Before formal transformations can be defined over the MaSE analysis and design models, each

model that is involved in the transformations must be formally defined and the semantics of the models

clarified. The models must have precise semantics so that the transformations can manipulate the models

with predictable behavior. The details of the models presented in this chapter also include attributes

defined specifically for the transformations in Chapter III, and have no meaning outside of the context of

the transformations. Those attributes are not discussed in this chapter because they are not relevant to how

the analysis models relate to the design models. They will be explained as they are introduced in Chapter

III.

2.1 Expanding the Role Model

The first step in defining a transformation system is to determine which parts of the initial model

map to which parts in the resulting model. The MaSE methodology makes it clear that the roles that an

agent class plays, in conjunction with the communication paths between the roles’ tasks, determine the

conversations each agent class will have. However, further investigation proved this level of detail to be

insufficient. When an agent class plays more than one role, it may be the case that some of the

communication between the roles that was specified as external communication between the roles can now

 14

be internal communication within the agent. Additionally, communication between tasks of the same role

is not necessarily internal communication, but could in fact be external communication. The analysis

models in MaSE do not specifically deal with role instances and multiplicity. That is something typically

left to the design phase. However, the analyst may decide while developing the roles and their concurrent

tasks that multiple instances of a single role will need to cooperatively work together in order to achieve

some goal. In such a case, the communication being specified is external communication between the

different role instances.

This deficiency led to an expanded view of the role model, as shown in Figure 7, that allows for a

more detailed representation of the properties associated with roles and their tasks. As in the traditional

Role Model, roles are depicted as rectangles. In the new Role Model, the goals that a role is responsible for

are listed under the role. This allows the analyst to ensure that all of the goals from the Goal Hierarchy

Diagram have been assigned to a role. Next, since roles may have one or more concurrent tasks associated

with them, each task that a role has is denoted by an oval attached to the role. The lines between the tasks

denote communication protocols that occur between the tasks. The protocols represent events that pass

back and forth between the tasks, although which events are not specifically determined before the

transformation process begins. The arrows indicate which task is the initiator and which task is the

responder in the protocol, with the arrow pointing from initiator to responder. Solid lines indicate peer-to-

peer communication, which is external communication either between two tasks of different roles, or

between two tasks of different instances of the same role. External protocols involve messages being

passed between roles and will become messages in a conversation between the agent classes that play those

roles. Conversely, dashed lines denote communication between two tasks that belong to the same role

instance. Roles are not allowed to share or duplicate a task. If the analyst finds that two roles should have

the same task, then further role decomposition needs to take place. Shared tasks should be placed under a

separate role, and those roles can then be combined back together into a single agent class in the design

phase.

 15

Client
goal1

Searcher
goal 4

Broker
goal2
goal3

Search Bid

RequestBidsFindSearcherManageSearchRequestSearch
Start Bidding

Contract NetMade BidStart Search

Found Searcher

Request Searcher

Figure 7 – Expanded Role Model

2.2 Transforming Concurrent Tasks to Conversations and Components

The next step in defining how to transform the analysis models into the design models was to

determine the relationship between concurrent tasks and agent conversations and components. When

examining how the Role Model mapped into the Agent Class Diagram, some interesting discoveries were

made. First, when two roles are combined into a single agent class, the designer must determine whether

the inter-role protocols should remain as external communication or if the communication that the protocol

represents is now internal communication within the agent class. Since external protocols represent

messages that will pass between the agents, they will become one or more conversations. The reason they

may not be a single conversation is because the communication between the agents may not be continuous.

There could be other coordinating communication that must take place internally, or with other agents.

However, internal protocols (either initially defined or changed when roles are combined) will not result in

conversations that represent that communication. Secondly, if more than one agent class plays a role, then

for each external protocol that involves that role, conversations will be created for each agent class that

plays that role. This means that there will be multiple instances of the same conversation between different

agents in the system.

 16

From experience using the MaSE methodology to develop several projects, concurrent tasks in the

analysis phase do an excellent job in sufficiently capturing the coordination between the system roles.

However, after transitioning to the design phase some of that coordination information was lost. Even if

the roles mapped one-to-one into agents, when conversations were created from the tasks, there seemed to

be nothing left that tied the conversations together to coordinate their execution. This was problematic

when generating executable code from the design models. The programmer was left looking back to the

concurrent task models in the analysis phase to figure out how the conversations should be coordinated.

The problem was that the finite state diagram that represented the task could include coordination

with multiple tasks, both externally with many different roles as well as internally, while the conversations

extracted from the tasks only dealt with the external communication between two agents at time. The parts

that contained the coordination between the conversations were being discarded, and MaSE gave no

guidance for recapturing the missing pieces. As a matter of fact, all internal events within the concurrent

task diagrams were not being captured anywhere in the design phase. The approach taken to resolve this

problem is that when a role is played by an agent class, a component is created in that agent’s internal

architecture for each of the role’s tasks. The conversations can then be harvested from the component’s

state diagram and replaced with an action on a transition that represents the execution of the conversation.

The component’s own state diagram then retains the coordination that was previously missing, including

passing internal events with other components of that agent class, as well as how the different

conversations fit together.

This change led to a slightly different model of the relationship between an agent, its components,

and its conversations. Since concurrent tasks are assumed to execute under their own thread of control and

tasks now correspond to components, to maintain the analysis phase semantics the components must also

execute under their own thread of control. Furthermore, if the conversations are harvested from

components, then the conversations will logically belong to components, not directly to agents. Figure 8

illustrates how the models in the analysis phase translate to the models in the design phase as well as the

relationship between the design models.

 17

Role

Task1 Task2

Agent

Component1 Component2

Conv1-1 Conv1-2 Conv2-1 Conv2-2

Coordinate
conversations &

with other
components

Only for external
communication

with another
agent

Deals with both
external and

internal
coordination

behavior

Figure 8 – Model Influences

This thesis does not propose that this is the only way to model the organizational structure of

agents, components, and conversations in the design phase. Rather it is an attempt to capture all of the

information that is present in the analysis models and retain the same basic idea of a conversation, which is

independent of the multiagent framework in which it will be implemented. Some multiagent frameworks,

such as Carolina [12], do not require that the conversations be broken out from the components. All of the

external messaging could be captured adequately in the finite state automaton from the task due to the way

in which messaging is accomplished within the Carolina framework. However, agentMom [13] is a

multiagent framework that has a predefined class explicitly for implementing conversations. In agentMom,

conversations operate under their own thread of control and a separate socket connection is established for

the communication of each conversation. Therefore, the communication which conversations represent

 18

(peer-to-peer) should be modeled independently from the internal events and messages that belong to other

conversations.

One side-effect of this approach is that the conversations that are harvested from the tasks may be

small pieces that fit together to form the overall communication that takes place between two agents. The

reason that this communication will be broken up into multiple pieces is because there is other unrelated

communication, either internal events or communication with another agent, that must take place in-

between the different pieces. An alternative approach would be to capture all of the communication with

another agent as a single conversation and allow the agent to somehow communicate with the conversation

when other events that are unrelated to the conversation occur, such as internal events or communication

with other agents. Doing so would alter the definition of a conversation within the context of MaSE so that

this agent-to-conversation communication could take place. The approach that was chosen in this thesis

seemed to be the most straightforward while still retaining the fundamental definitions of the models in the

methodology.

2.3 Model Definitions

In order to define the models used in the transformations in Chapter III, each type in the models

will be defined using an object format as demonstrated in Figure 9. Square brackets [and] denote that the

attribute is a sequence of the type, while curly brackets { and } are similarly used to represent sets. In

addition to defining the object types, graphical class diagrams using the Unified Modeling Language

(UML) syntax are provided to give the reader a more complete picture of how the types in the models fit

together. In general, a class in the class diagram is represented by a single type that will be used in the

transformations. Aggregate components in the class diagrams become an attribute for the type that

represents the parent class in the aggregate relationship.

 19

 TypeName

attributeA: AType
attributeB: BType

Figure 9 – Example Graphical Representation of a Type

2.3.1 Analysis Models

The Role Model and The Concurrent Task Models are the only models in the analysis phase of

MaSE used in the transformation process. The UML class diagram in Figure 10 shows the classes used to

defined the Role Model and Concurrent Task Models. The type StateTable, which is a component of the

type Task is not defined in this section. Since the Tasks, Components, and Conversations all use a

StateTable to represent their dynamic properties, the StateTable is discussed at length in Section 2.3.3.

Role
name : String
goals : {Goal}

StateTable

Task
name : String

0..*0..*

tasks

11

stateTable

Protocol
name : String
mode : "internal" | "external"

11

responder

11

initiator

Figure 10 – Class Diagram of the Expanded Role Model in MaSE

The first model of interest in the analysis phase of MaSE is the Role Model. Role Models

describe the roles in the system, the tasks they have, and the protocols that capture the communication

paths between the tasks. A Role (Figure 11) is defined by its name, the set of goals it is responsible for,

and a set of tasks that define how the role will accomplish its goals. Each role in the system has a name

that uniquely identifies it from any other role in the system.

 20

 Role

name: String
goals: {Goal}
tasks: {Task}

Figure 11 – Role Type

A Task (Figure 12) is defined by its name and a state table (equivalent to a state diagram) that is

used to describe the behavior of that task. Tasks must also have a name which uniquely identifies it from

other tasks within the system. As previously stated, a task can not be duplicated within the analysis phase.

If a the analyst feels like a task will need to be shared by more than one agent class later in the design

phase, then a separate role should be created to perform the task. That role and its tasks can then be played

by multiple agent classes.

 Task

name: String
stateTable: StateTable

Figure 12 – Task Type

A protocol (Figure 13) is defined by the name of that protocol, the initiator and responder tasks,

and the mode, that specifies whether the protocol is internal or external communication. Multiple protocols

in the Role Model may have the same name. A protocol simply represents a sequence of events being

passed between entities, roles in the analysis phase and then the agents that play those roles in the design

phase. Since the communication patterns are captured with the state diagrams in the tasks, the protocols

more precisely capture the events being passed between the tasks of the roles, and likewise between the

agent components and conversations. The attributes initComp and respComp point to the agent

components created that implement the tasks from the Role Model.

 21

 Protocol

name: String
initiator: Task
responder: Task
mode: String
initComp: Component
respComp: Component

Figure 13 – Protocol Type

2.3.2 Design Models

This section defines the types that make up the design models of MaSE, which include the Agent

Class Diagram, the Component State Diagrams, and the Communication Class Diagrams. The UML class

diagram in Figure 14 shows the types used to define these models. Again, since the StateTable type is also

used in the tasks defined in the analysis phase, Section 2.3.3 is devoted to their explanation.

Conversation
name : String

Role
name : String
goals : {Goal}

ConversationHalf
convID : String

11

initiator

11

responder

StateTable 11 stateTable

Agent
name : String

0..*0..*

conversations1..*1..* roles

Protocol
name : String
mode : "internal" | "external"

Component
name : String

0..*0..*

convs

11

stateTable

1..*1..*

components

0..10..1

initComp

0..10..1
respComp

Figure 14 – Class Diagram for the Types Used in the Design Phase of MaSE

The first model in the design phase of MaSE is the Agent Class Diagram. The Agent Class

Diagram simply depicts the agent classes in the system, the roles those agents play, and the conversations

between the agents. Based on the discussion in Section 2.2, the way the pieces of the Agent Class Diagram

fit together is a bit more complicated.

 22

2.3.2.1 Agents

An agent type represents the agents defined in the Agent Class Diagram. An agent type (Figure

15) is defined by its name, the roles it plays, the components it has, and the conversations it participates in.

Each agent type has a name that uniquely identifies it from any other agent in they system.

 Agent

name: String
roles: {Role}
components: {Component}
conversations: {Conversation}

Figure 15 – Agent Type

2.3.2.2 Components

Component types (Figure 16) are defined by their name, a state table, and a set of conversation

halves. If a component is created from a task during the transformation process, its name comes from the

task that it was created to implement. Therefore, while there may be multiple agent classes that have

components with the same name, no agent class will have two components that are named the same. A

component’s state table will initially be the same as the state table of the task it was created from, but after

the transformation process it will only contain internal events and actions that the component must perform.

The convs attribute is the set of ConversationHalfs that are extracted from the state table of the component.

 Component

name: String
stateTable: StateTable
convs: {ConversationHalf}

Figure 16 – Component Type

 23

2.3.2.3 Conversations

Conversations (Figure 17) are made up of two ConversationHalfs, one that is the initiator and one

that is the responder. Each Conversation also has a name that uniquely identifies it within the system. The

ConversationHalf type (Figure 18) corresponds to the Communication Class Diagrams within MaSE, and is

composed of a state table and a convID that is the name of the Conversation it belongs to. The state table

of a ConversationHalf details the external communication and internal actions that defines the behavior of

one agent within a Conversation.

 Conversation

name: String
initiator: ConversationHalf
responder: ConversationHalf

Figure 17 – Conversation Type

 ConversationHalf

stateTable: StateTable
convID: String

Figure 18 – ConversationHalf Type

2.3.3 State Tables

 Several key models within MaSE (Concurrent Task Diagram, Communication Class Diagram,

and the dynamic model for Components) are defined using a finite state diagram, or equivalently a state

table. Each of these models are also key components to the transformation system defined in Chapter III.

The state tables in the different models have various restrictions and slightly different semantics. This

section defines the state table types and explains the differences between the models. The UML class

diagram in Figure 19 gives a graphical overview of the different types used to define a StateTable and

shows the different relationships between them.

 24

Figure 19 – StateTable Class Diagram

 25

A StateTable (Figure 20) is used to define the behavior of an entity through a set of states that it

may be in at any point in time and the set of transitions that occur as the entity goes from one state to the

next. State tables also describe the communication patterns that take place between the different entities in

the system through the events that are sent and received on the transitions.

 StateTable

states: {State}
transitions: {Transition}

Figure 20 – StateTable Type

2.3.3.1 States

A State (Figure 21) represents internal processing and is defined by a name and a sequence of

actions that take place within the state. Each state within a state table must have a unique name. Upon

entering a state, the sequence of actions will be executed in the given order. The conversations attribute is

only used during the transformations defined in Chapter III and holds the set of conversations that the state

will be in.

 State

name: String
actions: [Action]
conversations: {Conversation}

Figure 21 – State Type

The beginning state of every state table is the start state. In a state diagram this is represented by a

solid circle, and in a state table it simply has the name “start”. Every state table will continue execution

until reaching the end state. In a state diagram the end state is represented by solid circle inside a hallow

circle, and in a state table it is the state named “end”.

 26

2.3.3.2 Transitions

Transitions specify how an entity moves from one state to another and define communication that

takes place within the system. A transition is typically defined by its origin and destination states, the

received event that triggers the transition, a guard condition, a set of actions that take place (if allowed),

and a set of transmission events. In a state diagram, the syntax for the transition label would be:

trigger [guard] / action(s) ^ transmission(s)

For this thesis, a Transition type (Figure 22) is defined that is used for every model that has a state

table, and is therefore usable throughout the transformation process in Chapter III. The differences in the

semantics for transitions are discussed for each model. Several of the attributes shown for a transition

(start, end, conversations, convNames, and protocols) are used only for the transitions in Chapter III.

 Transition

from: State
receive: Event
receiveEvent: ReceiveEvent
guard: Boolean Expression
to: State
actions: [Action]
sends: {Event}
sendEvents: {SendEvent}
start: Boolean
end: Boolean
conversations: {Conversation}
convNames: {String}
protocols: {Protocol}

Figure 22 – Transition Type

Transitions occur instantaneously and move the entity from one state to another (or possibly back

to the same state). A transition is enabled if all of the following conditions are true.

1. The transition’s from state is the current state.

2. The transition’s trigger event (if it has one) has been generated.

 27

3. The transition’s guard condition (if it has one) evaluates to true.

4. All actions in the transition’s from state have been completed

If a transition does not have a trigger or a guard, both conditions are assumed to hold and the

transition is enabled. If there is no trigger, but there is a guard that is true, then the transition will also be

enabled.

2.3.3.2.1 Concurrent Task Diagram

Concurrent Task Diagrams allow the user to define both internal and external events that take

place between the tasks. Therefore, the trigger for a transition can either be an event that is received

internally (the receive attribute) or externally (the receiveEvent attribute). A transition cannot have both.

A transition can also have send events, both internal and external. Once the transition is triggered, all

transmission events are sent. The sends attribute denotes the internal events that are sent and the

sendEvents attribute denotes the external events that are sent. All transmissions are assumed to take place

instantaneously, so there is no implied ordering within the transmissions. Therefore, multiple transmissions

to a single task (i.e. that belong to the same protocol) are not allowed on the same transition. As the state

tables are designed and implemented, an ordering is necessarily applied to the transmissions because in

reality they cannot take place instantaneously. However, the order the transmissions are received is already

defined in the analysis phase, because only one message can be received on a transition. In order to receive

two events, two transitions are required, and transitions are always enabled in a specific order.

To illustrate why a transition cannot have two transmissions to the same task, first consider Figure

23. The transition has two SendEvents that we assume are being sent to the same task. Figure 24 shows

the corresponding state diagram with two different orderings for the received events. This situation is not

allowed to avoid choosing the wrong order when the state diagram in Figure 23 is implemented.

State1 State2
send(msg1, ag); send(msg2, ag)

Figure 23 – Transition with Two SendEvents to the Same Agent

 28

State1 State2
receive(msg1, ag)

State3
receive(msg2, ag)

State1 State2
receive(msg2, ag)

State3
receive(msg1, ag)

Figure 24 – Two Orderings for ReceiveEvents

Concurrent Task Diagrams also have special restrictions on where actions are allowed. All actions

are defined to take place within the states, so every transition’s actions attribute will be the empty

sequence.

2.3.3.2.2 Component State Table

Each component for an agent has a state table that defines its behavior. Any events on the

transitions in the state table are defined to be internal events to other components of the same agent

instance. Therefore, the receiveEvent and sendEvents attributes will not be used. During the

transformation process in Chapter III, a Component is created for each task and starts with an identical

StateTable that may have transitions with non-null receiveEvent or sendEvents attributes. However, the

transformation process removes those external events and create conversations with them, so that by the

end of the transformation process, component state tables have only internal events defined by the receive

and sends attributes.

Some of the transformations in Chapter III also add actions to the transitions. The semantics of

actions on a transition is that once the transition is enabled, the actions are executed in the given order

before any events are sent.

2.3.3.2.3 Communication Class Diagram

Communication Class Diagrams define the communication that takes place within a conversation

between two agents. Therefore, all events on the transitions represent external messages to or from the

other agent participating in the conversation. However, these messages are represented using the receive

 29

(incoming message) and sends (outgoing messages) attributes, not receiveEvent or sendEvents like in the

Concurrent Task Diagram. Therefore, the transformation system must take the external events defined in

the Concurrent Task Diagrams with the receiveEvent and SendEvent attributes and transform them into

receive and sends that represent the same communication in the Communication Class Diagrams.

Communication Class Diagrams also allow for actions on the transitions, that are defined to take place

before any outgoing messages are sent.

2.3.3.3 Actions and Events

Actions represent the actual processing that takes place in the state table. Actions can be used to

represent internal reasoning, reading a percept from sensors, or causing an effector to make a change in the

environment. Originally, actions (or activities) were defined purely in the form of functions, where each

function would have a number of input parameters and could return one result, either as a single value or as

a tuple [5]. The syntax of an action was of the form:

result = action-name(param1, param2, ... paramN)

The definition of an action has since been expanded to allow tuple-to-tuple assignments, such as:

<x,y> = position(object) and <a,b> = <x,y>

The Action type is shown in Figure 25. The lhs attribute of an action represents the left-hand-side

of an assignment and is a sequence of strings that can be used to represent either a single value or a tuple.

The rhs attribute is the right-hand-side of the assignment and is either a FunctionCall or another sequence

of strings.

 Action

lhs: [String]
rhs: FunctionCall | [String]

Figure 25 – Action Type

 30

FunctionCalls (Figure 26) represent processing being done by a role or agent within the action.

FunctionCalls are defined by their name and a sequence of input parameters. Parameters (Figure 27) are

simply defined by a string that represents the parameter’s name. Parameters would generally have a type

and a value associated with the identifying name. These are not necessary for the transformations in this

thesis, however they would be required for future transforms that translate the design into code or another

formal language syntax. Similarly, the FunctionCall type would also reference a Function type (not defined

here) that has pre- and post-conditions that define its behavior.

 FunctionCall

name: String
parameters: [Parameter]

Figure 26 – FunctionCall Type

 Parameter

name: String

Figure 27 – Parameter Type

Since Concurrent Task Diagrams distinguish internal events from external events, a different type

is defined for each. The ReceiveEvent type (Figure 28) was defined to represent external events that are

received to trigger a transition in a Concurrent Task Diagram. Each ReceiveEvent represents an event on a

transition of the form receive(event, sender). The event attribute represents the external message

that is being received and the sender attribute represents the role instance that sent the message. The

protocols and convName attributes are only used in the transformations in Chapter III.

 ReceiveEvent

event: Event
sender: String
protocols: {Protocol}
convName: String

Figure 28 – ReceiveEvent Type

 31

Just as the ReceiveEvent type was defined to represent an eternal event received in a Concurrent

Task Diagram, a SendEvent type (Figure 29) was defined to represent an external event that is sent. Each

SendEvent represents an event on a transition of the form send(event, recipient). Like a

ReceiveEvent, a SendEvent also has an event attribute that represents the message being sent, but has a

recipient attribute that defines who the message is being sent to. If the recipient attribute is of the form

“<list-name>”, then the recipient is a list of agents the message the will be sent to, and the SendEvent

represents a multicast. The protocols, conversations, and convName attributes were added for the

transformations in Chapter III.

 SendEvent

event: Event
recipient: String
protocols: {Protocol}
conversations: {Conversation}
convName: String

Figure 29 – SendEvent Type

An Event (Figure 30) is used to define a message that is passed in the system, either internally or

externally. The name attribute represents the performative, which is the intent of the message, and the

sequence of parameters represents the content of the message.

 Event

name: String
parameters: [Parameter]

Figure 30 – Event Type

2.4 Summary

This chapter described the approach taken for developing a formal transformation system that

semi-automatically creates MaSE design models based on the analysis models. This involved determining

the relationships between the models and where input is required from the designer. An expanded Role

 32

Model for the analysis phase was presented, and the new organizational structure for the agents,

components, and conversations in the design phase was described. This chapter also presented each model

used in the transformations by defining the individual types and their attributes, as well as the semantics

and constraints for the models. Chapter III follows the approach laid out in this chapter and presents the

detailed transformations as a three-stage process.

 33

III. Transformations

Having defined the analysis and design models for MaSE in Chapter II, this chapter now develops

the specific transformations that will use the Role Model and the Concurrent Task Diagrams to generate the

Agent Class Diagram, the Communication Class Diagrams for the conversations between the agent classes,

and the agent components that constitute the agents’ internal architectures. The transformation system

presented is actually a series of small steps that incrementally change the roles and tasks from the analysis

phase into agent classes and their components and conversations in the design phase. The process can be

broken down into the three stages shown in Figure 31. The transformations are designed to be applied in

the order they are presented, although some of them are to be applied iteratively.

Stage 1
• Determine the protocols for external events
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in
components
• Transform external events into internal events if they
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

Figure 31 – Three Stages of the Transformation Process

 34

Within this chapter, Section 3.1 defines the notations used to present the transformations. Section

3.2 describes the first stage of the transformation process, where the components for the agent classes are

defined based on the user’s decision about which agent classes will play which roles. Section 3.3 describes

the second stage, centered around annotating the component state diagrams and matching external events in

the different components that become the initial messages of the conversations. Section 3.4 provides

details for the last stage of the transformation process, where component state diagrams are prepared for the

removal of the states and transitions that belong to conversations. They are then removed and added to the

state diagrams of the corresponding conversation halves.

3.1 Formal Notations

In order to formally define the transformations presented in this chapter, this section presents the

notations used. Each transformation is defined by a predicate logic equation of the form: condition ⇒

result, where the condition is the set of requirements that must be true for the transformation to take

place, and the result describes what is guaranteed to be true after the transformation is performed. This

notation is similar to defining functions with pre-conditions and post-conditions. These transformations

describe what must take place, not how it must be done. The types used in the transformations are the types

described in Chapter II, and the following describes how they are used in this chapter:

• The universe of discourse is the models in the system currently being developed

• Sets are indicated by the pair of symbols { and }, and items in the set are separated by ,

when explicitly delineated

• The Union of two sets is indicated by the symbol ?

• The Intersection of two sets is indicated by the symbol n

• The subset relationship is indicated by the symbol ⊆

• Sequences are indicated by the pair of symbols [and], and items in the sequence are

separated by , when explicitly delineated and are assumed to appear in the order required

by the sequence

 35

• Sequence concatenation is indicated by the symbol ∩

• The symbol # is used to indicate the cardinality of a set or sequence

• An element of a set is indicated by the symbol ∈

• The sub-field of a type is indicated by the dot notation, such as type.attribute

• String concatenation is indicated by the symbol +

• The tick symbol ’ indicates that the variable being referenced is the variable after the

transformation

3.2 Generating the Agent Model

This section discusses the first stage of transformation process from the analysis phase to the

design, highlighted in Figure 32. Before these transformations can begin, the designer must have

developed the Role Model and the Concurrent Task Diagrams in the analysis phase. Additionally, the

designer must define the initial set of agent classes, but only to the extent of deciding which set of roles

each agent class will play, ensuring that each role is played by at least one agent class. In this stage, the

transformations must first determine to which set of protocols each external event belongs. Then,

components are created for agent classes to represent the tasks that the agent’s roles must perform. Since

the internal architecture of the agent consists of its components and their relationships, this step essentially

derives the architecture of each agent based on the analysis models. Whenever roles with an external

protocol between their tasks are combined, the user may determine that that protocol is now internal

communication within the agent. When this happens, every external event that belongs to that protocol

must be transformed into an internal event.

 36

Stage 1
• Determine the protocols for external events
• Create agent components from tasks
• Replicate protocols in Design between
components
• Update the protocol set for external events in
components
• Transform external events into internal events if
they belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

Figure 32 – Stage 1 in the Transformation Process

3.2.1 Determining Protocols for External Events

In order to transform external events into internal events by declaring the protocol as internal, the

protocols that each external event belongs to must first be determined. The protocols that events belong to

are also the primary factor in the second stage of the transformation process when transitions are labeled to

denote the start and end of conversations. Events, or the messages they represent, may belong to multiple

protocols. This may seem a little confusing at first, but the concept is simple. Figure 33 shows an example

of how a SendEvent could belong to multiple protocols. The sets above each event are shown for purposes

of the example and represent the set of protocols for that event. Each of the transitions into State3 have

ReceiveEvents that belong to different protocols. The transition leaving State3 has a SendEvent that is a

message sent in both protocols. This scenario seems logical and states that it doesn’t matter which protocol

 37

is currently being carried out when State3 is reached. The variable y will be computed and then sent,

regardless of the current protocol.

State1

State2

State3
y = f(x) State4

receive(msg1(x), ag)

receive(msg2(x), ag)

^send(msg3(y), ag)

{P1}

{P2}

{P1, P2}

Figure 33 – SendEvent with Multiple Protocols

The next three transformations are applied to the Role Model in the analysis phase and

automatically determine for some cases if external events belong to a specific protocol. However, there are

cases where it is impossible to automatically determine if the analyst meant for an event to belong to a

protocol or not. In these ambiguous cases, the analyst will need to make that determination.

Transformation 1 covers the case shown in Figure 34 that illustrates the condition that there are two tasks

that have at least one set of corresponding events1 and those tasks have a protocol between them.

Additionally, neither task has a protocol with another task that also has a corresponding event in its state

table (denoted by an arrow with an X over it). If these conditions hold, then the events must be part of the

protocol, since there are no other protocols to which the events could belong. Figure 34 also shows that the

events within the tasks do not need to be unique. If Task1 has more than one correspond event, they will

all be labeled as belonging to Protocol 1.

1 A “corresponding events” refer to a SendEvent and a ReceiveEvent that have the same event (or message) parameter,
e.g., send(do(x), ag) and receive(do(x), agent). The do(x) parts represent the message being passed. The events only
need to have the same number of parameters (with matching types). The names of the parameters do not need to
match, nor do the identifiers (the recipient in the SendEvent and the sender in the ReceiveEvent).

 38

Task1

1 or more matching
SendEvents

Task2

1 or more matching
ReceiveEvents

Protocol 1
X X

Figure 34 – Example of Transformation 1

Transformation 1

∀ t, t2 : Task, st, st2 : StateTable, trans, trans2 : Transition, se : SendEvent, re : ReceiveEvent,

p : Protocol •

(((p.initiator = t ∧ p.responder = t2) ∨ (p.initiator = t2 ∧ p.responder = t)) ∧ st = t.stateTable

∧ st2 = t2.stateTable ∧ trans ∈ st.transitions ∧ trans2 ∈ st2.transitions ∧ se ∈ trans.sendEvents

∧ re = trans2.receiveEvent ∧ se.event = re.event

∧ ¬(∃ t3 : Task, st3 : StateTable, trans3 : Transition, re2 : ReceiveEvent, p2 : Protocol •

 p2 ≠ p ∧ t3 ≠ t2 ∧ st3 = t3.stateTable ∧ trans3 ∈ st3.transitions ∧ re2 = trans3.receiveEvent

 ∧ ((p2.initiator = t ∧ p2.responder = t3) ∨ (p2.initiator = t3 ∧ p2.responder = t)) ∧ se.event = re2.event)

∧ ¬(∃ t4 : Task ,st4 : StateTable, trans4 : Transition, se2 : SendEvent, p3 : Protocol •

 p3 ≠ p ∧ t4 ≠ t ∧ st4 = t4.stateTable ∧ trans4 ∈ st4.transitions ∧ se2 ∈ trans4.sendEvents

 ∧ ((p3.initiator = t2 ∧ p3.responder = t4) ∨ (p3.initiator = t4 ∧ p3.responder = t2)) ∧ se2.event = re.event))

⇒

(re’.protocols = {p} ∧ se’.protocols = {p})

Transformation 2 covers the case illustrated in Figure 35, where there are two tasks that have at

least one set of corresponding events and those tasks have a protocol between them. This is no different

than Transformation 1, except that now the ReceiveEvent must be unique within Task2, and it is acceptable

for Task2 to have a protocol with another task that also has a corresponding SendEvent. The reason this is

still correct is that there is no other protocol to which the SendEvent(s) in Task1 can belong. Furthermore,

since the ReceiveEvent in Task2 is the only matching event for the SendEvent(s) in Task1, it must also

belong to that protocol. However, the ReceiveEvent in Task2 is not limited to the protocol with Task1. If

Task2 has another protocol with a different task that has a corresponding SendEvent, then the

ReceiveEvent could also belong to that protocol.

 39

Task1

1 or more matching
SendEvents

Task2

Only 1 matching
ReceiveEvent

Protocol 1
X OK

Figure 35 – Example of Transformation 2

Transformation 2

∀ t, t2, t3 : Task, st, st2, st3 : StateTable, trans, trans2 : Transition, se : SendEvent, re : ReceiveEvent,

p : Protocol •

(((p.initiator = t ∧ p.responder = t2) ∨ (p.initiator = t2 ∧ p.responder = t)) ∧ st = t.stateTable

∧ st2 = t2.stateTable ∧ trans ∈ st.transitions ∧ trans2 ∈ st2.transitions ∧ se ∈ trans.sendEvents

∧ re = trans2.receiveEvent ∧ se.event = re.event

∧ ¬(∃ trans3 : Transition, se2 : SendEvent • trans3 ∈ st.transitions ∧ se2 ∈ trans3.sendEvents

 ∧ se2 ≠ se ∧ se2.event = se.event)

∧ ¬(∃ t4 : Task ,st4 : StateTable, trans4 : Transition, se3 : SendEvent, p3 : Protocol •

 p3 ≠ p ∧ t4 ≠ t ∧ st4 = t4.stateTable ∧ trans4 ∈ st4.transitions ∧ se3 ∈ trans4.sendEvents

 ∧ ((p3.initiator = t3 ∧ p3.responder = t4) ∨ (p3.initiator = t4 ∧ p3.responder = t3)) ∧ se3.event = re.event))

⇒

({p} ⊆ re’.protocols ∧ {p} ⊆ se’.protocols)

Transformation 3 covers the case depicted in Figure 36 that is essentially the mirror image of

Transformation 2. There are two tasks that have at least one set of corresponding events and those tasks

have a protocol between them. Now the SendEvent must be unique within Task1, and it is acceptable for

Task1 to have a protocol with another task that also has a corresponding ReceiveEvent.

Task1

Only 1 matching
SendEvent

Task2

1 or more matching
ReceiveEvents

Protocol 1
OK X

Figure 36 – Example of Transformation 3

 40

Transformation 3

∀ t, t2, t3 : Task, st, st2, st3 : StateTable, trans, trans2 : Transition, se : SendEvent, re : ReceiveEvent,

p : Protocol •

(((p.initiator = t ∧ p.responder = t2) ∨ (p.initiator = t2 ∧ p.responder = t)) ∧ st = t.stateTable

∧ st2 = t2.stateTable ∧ trans ∈ st.transitions ∧ trans2 ∈ st2.transitions ∧ se ∈ trans.sendEvents

∧ re = trans2.receiveEvent ∧ se.event = re.event

∧ ¬(∃ trans3 : Transition, re2 : ReceiveEvent • trans3 ∈ st.transitions

 ∧ re2 = trans3.receiveEvent ∧ re2 ≠ re ∧ re2.event = re.event)

∧ ¬(∃ t4 : Task ,st4 : StateTable, trans4 : Transition, re3 : ReceiveEvent, p3 : Protocol •

 p3 ≠ p ∧ t4 ≠ t ∧ st4 = t4.stateTable ∧ trans4 ∈ st4.transitions ∧ re3 = trans4.receiveEvent

 ∧ ((p3.initiator = t3 ∧ p3.responder = t4) ∨ (p3.initiator = t4 ∧ p3.responder = t3)) ∧ re3.event = re.event))

⇒

({p} ⊆ se’.protocols ∧ {p} ⊆ re’.protocols)

After the first three transformations have been applied, there may still be some cases where, due to

ambiguity, the transformations were unable to automatically determine that an event is intended to belong

to a protocol. In each case, the developer must determine whether or not the event belongs to the protocol.

The ambiguous cases can be identified by an external protocol between two tasks with corresponding

external events that were not automatically determined to belong to the protocol.

Figure 37 illustrates the case where it is impossible to automatically determine to which protocols

a SendEvent belongs. Task1 has more than one SendEvent and participates in more than one protocol with

other tasks that have corresponding ReceiveEvents. Some of the SendEvents may belong to only one

protocol and not the other, while some SendEvents could belong to both. The developer has to make the

determination.

Task1

More than 1
matching SendEvents

Task3

1 or more matching
ReceiveEvents

Protocol 2
Task2

1 or more matching
ReceiveEvents

Protocol 1

Figure 37 – Ambiguous Protocols for SendEvents

 41

Figure 38 is similar to Figure 37, and illustrates the case when it is impossible to automatically

determine to which protocols a ReceiveEvent belongs. The ReceiveEvents in Task1 may belong to

Protocol1, Protocol2, or both.

Task1

More than 1
matching ReceiveEvents

Task3

1 or more matching
SendEvents

Protocol 2
Task2

1 or more matching
SendEvents

Protocol 1

Figure 38 – Ambiguous Protocols for ReceiveEvents

3.2.2 Creating Components for Agents from Tasks

At this point, the designer must have already determined the set of roles each agent class will play.

Transformation 4 states that for every task of every role that an agent plays, a component is created for that

task. The component’s state table is initially the same as the state table of the task for which it was

generated, and the component’s name is the name of the task. The rest of the transformation process is

centered around these component state tables.

As an example of how Transformation 4 creates components for agent classes, consider Figure 39

as the Role Model created in the analysis phase. If the developer decides in the design phase to create the

agent classes with the roles shown in Figure 40, then Transformation 4 creates the components shown for

the agents. Since both agents play Role 2, there is a component created for each agent for Role 2’s Task 2.

Figure 40 is not a MaSE diagram, but is presented to illustrate the internal agent components based on the

initial Agent Class Diagram.

Role 1 Role 3Role 2

Task 1 Task 3Task 2
Protocol 1 Protocol 2

Figure 39 – Role Model Example

 42

Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2

Figure 40 – Agent Components Created From the Roles' Tasks

Transformation 4

∀ a : Agent, r : Role, t : Task •

(r ∈ a.roles ∧ t ∈ r.tasks)

⇒

(∃ c : Component • c ∈ a’.components ∧ c.stateTable = t.stateTable ∧ c.name = t.name)

3.2.3 Replicating Protocols Between Components

Next, for each protocol in the analysis, Transformation 5 creates corresponding protocols in the

design. Protocols in the analysis phase are defined between tasks. Transformation 4 created agent

components based on the roles that each agent plays and the tasks that those roles have, protocols in the

design phase must be between the components created for those tasks. Also, a role may be played by many

different agent classes, and the tasks of that role are duplicated as components of all agents that play that

role. Therefore, the protocols between those tasks are also duplicated for every component that was created

from the task. This is done so that the designer can define whether, for every protocol between roles that

are combined together, that protocol is now internal instead of external.

As an example of how the protocols might be duplicated in the design based on the Role Model

and the roles chosen for agent classes, consider again our example from Figure 39 and Figure 40. Figure

41 takes the example one step further and illustrates how the protocols from the analysis phase are

replicated in the design. Since both Agent 1 and Agent 2 have a component created from Task 2, and both

Protocol 1 and Protocol 2 involve Task 2, there are two instances of each protocol in the design between

 43

each component. The protocols shown in Figure 41 are illustrated purely for the purposes of the example.

There is currently no model in MaSE that depicts protocols between agent components.

Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2

Protocol 1

Protocol 1

Protocol 2

Protocol 2

Figure 41 – Agent Diagram Example

Transformation 5

∀ p: Protocol, r, r2 : Role, t, t2 : Task, c, c2 : Component, a, a2 : Agent •

(r ∈ a.roles ∧ t ∈ r.tasks ∧ c ∈ a.components ∧ c.name = t.name ∧ p.initiator = t ∧ r2 ∈ a2.roles

∧ t2 ∈ r2.tasks ∧ c2 ∈ a2.components ∧ c2.name = t2.name ∧ p.responder = t2)

⇒

(∃ p2 : Protocol • p2.name = p.name ∧ p2.initiator = p.initiator ∧ p2.responder = p.responder

∧ p2.initComp = c ∧ p2.respComp = c2 ∧ p2.mode = p.mode)

At this point, the set of protocols for external events in the components are identical to the

protocols defined between the tasks in the analysis phase. The next two transformations update those

protocols to denote the protocols between the components. Transformation 6 converts the set of protocols

for ReceiveEvents and Transformation 7 for SendEvents. The previous examples are used to illustrate the

importance of these transformations. Assume that in Figure 39 there is an external event E in Task 2 that

belongs to Protocol 1. Figure 41 illustrates the agents, component, and components after Transformation 4

and Transformation 5. In Agent 2’s Task 2 component, the external event E must belong to the instance of

 44

Protocol 1 between Agent 1’s Task 1 component and Agent 2’s Task 2 component, not to the other instance

of Protocol 1 between Agent 1’s Task 1 and Task 2 components.

Transformation 6

∀ p, p2 : Protocol, t, t2 : Task, c : Component, st : StateTable, t : Transition, re : ReceiveEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ p ∈ re.protocols ∧ p.initiator = p2.initiator

∧ p.responder = p2.responder ∧ (p2.initComp = c ∨ p2.respComp = c))

⇒

(p2 ∈ re’.protocols ∧ p ∉ re’.protocols)

Transformation 7

∀ p, p2 : Protocol, t, t2 : Task, c : Component, st : StateTable, t : Transition, se : SendEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ p ∈ se.protocols ∧ p.initiator = p2.initiator

∧ p.responder = p2.responder ∧ (p2.initComp = c ∨ p2.respComp = c))

⇒

(p2 ∈ se’.protocols ∧ p ∉ se’.protocols)

3.2.4 Transforming External Events into Internal Events

For each pair of roles that are combined into an agent class, the designer must determine whether

each protocol that exists between components of that agent is either internal or external. This was also

done for protocols between tasks of the same role in the analysis phase. If a protocol is defined as internal,

all external ReceiveEvents and SendEvents that belong to the protocol are converted into internal receive

and send Events. Transformation 8 describes how external SendEvents are converted to an internal Event

in the sends clause, and Transformation 9 describes how an external ReceiveEvent is converted into an

internal Event in the receive clause.

For example, if the ReceiveEvent, receive(msg(x, y), agent), is part of a protocol that is determined

to be internal, the event is changed to msg(x, y). It should be noted that in order for an external event to be

transformed into an internal event, every protocol that the event belongs to must be designated as internal.

 45

If an event belongs to both internal and external protocols, an error has been made and it must be corrected

before the transformation process can continue.

Transformation 8

∀ c : Component, p : Protocol, st : StateTable, t : Transition, se : SendEvent •

((p.initComp = c ∨ p.respComp = c) ∧ st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents

∧ se.protocol = p ∧ p.mode = “internal”)

⇒

(se.event ∈ t’.sends ∧ se ∉ t’.sendEvents)

Transformation 9

∀ c : Component, p : Protocol, st : StateTable, t : Transition, re : ReceiveEvent •

((p.initComp = c ∨ p.respComp = c) ∧ st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent

∧ re ≠ null ∧ re.protocol = p ∧ p.mode = “internal”)

⇒

(re.event = t’.receive ∧ t’.receiveEvent = null)

3.3 Annotating Component State Diagrams

Now that components have been created for the agent classes that represent the concurrent tasks

from the analysis phase, the next stage of the transformation process (highlighted in Figure 42) is centered

around annotating the component state tables for the removal of the conversations. There are many

different cases in which tasks can be defined in the analysis phase that make removing conversations

problematic, such as events being received or sent on transitions that do not belong to the same

conversation. The transformations in this section first convert the component’s state tables into a canonical

form to simplify harvesting the conversations from them. Then the state tables are annotated to indicate

where each conversation begins and ends. Finally, the starting points for the conversations in the different

component state diagrams are matched.

 46

Stage 1
• Determine the protocols for external events
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in
components
• Transform external events into internal events if they
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding
events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

Figure 42 – Stage 2 in the Transformation Process

3.3.1 Splitting Transitions

Transitions in a component state table that have either multiple events that represent

communication in different protocols, or some external and some internal communication, make it difficult

to remove the conversations from the state table. Since a transition can only have either an external

ReceiveEvent or an internal Receive Event, there is a transformation that handles each case.

Transformation 10 covers transitions that have an external ReceiveEvent. The requirement for the

transformation is that there is 1) an external ReceiveEvent and 2) either an internal send Event or an

external SendEvent that belongs to a different set of protocols. All external SendEvents that have the same

protocols as the ReceiveEvent are placed on the first transition along with the receiveEvent, the guard

condition, and the actions, all of which are defined to take place before any transmitted events. The

 47

internal send Events and the remaining external SendEvents with protocols that are different than the

ReceiveEvent’s protocols are placed on the second transition.

Transformation 10

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ re ≠ null

∧ ((∃ se : SendEvent • se ∈ t.sendEvents ∧ re.protocols ≠ se.protocols) ∨ (∃ e : Event • e ∈ t.sends)))

⇒

(∃ s : State, t1, t2 : Transition, n : String • s ∈ st’.states ∧ s ∉ st.states ∧ t1 ∈ st’.transitions

∧ t2 ∈ st’.transitions ∧ s.name = (“Null” + n) ∧ ¬ (∃ s2 : State • s ≠ s2 ∧ s.name = s2.name) ∧ s.actions = {}

∧ t1.receive = null ∧ t1.receiveEvent = t.receiveEvent ∧ t1.guard = t.guard ∧ t1.actions = t.actions

∧ t1.sends = {} ∧ t1.from = t.from ∧ t1.to = s ∧ ¬(∃ t3 : Transition • t3.to = s ∧ t1 ≠ t3)

∧ (∀ se1 : SendEvent • (se1 ∈ t.sendEvents ∧ re.protocols = se1.protocols) ⇔ se1 ∈ t1.sendEvents)

∧ t2.receive = null ∧ t2.receiveEvent = null ∧ t2.guard = null ∧ t2.actions = [] ∧ t2.sends = t.sends

∧ (∀ se2 : SendEvent • (se2 ∈ t.sendEvents ∧ re.protocols ≠ se2.protocols) ⇔ se2 ∈ t2.sendEvents)

∧ t2.from = s ∧ t2.to = t.to ∧ t ∉ st’.transitions ∧ ¬(∃ t3 : Transition • t3.from = s ∧ t2 ≠ t3))

Figure 43 shows how Transformation 10 would split a transition. The sets above the events

represent the protocols to which the events belong. The original transition has a ReceiveEvent that is part

of protocol P1 and one SendEvent for protocol P1 and one SendEvent for protocol P2. After the

transformation, the SendEvent for P1 is placed on the first transition with the ReceiveEvent and the

SendEvent for P2 is placed on the second transition. The resulting transitions and null state are consistent

with the semantics of the original transition. In order for the original transition to take place, both the guard

condition must be met and the do(a) message is received from ag1. When the transition occurs the ack

message is sent back to ag1, and the do(a) message is sent to ag2. After the transformation, the guard must

be true and the do(a) message must be received from ag1 for the first transition to take place, sending the

ack message back to ag1. There are no new actions that are done within the null state, and the second

transition is automatically enabled, sending the do(a) message to ag2.

 48

StateA
receive(do(a), ag1) [guard] ^send(ack, ag1); send(do(a), ag2)

receive(do(a), ag1) [guard] ^send(ack, ag1) ^send(do(a), ag2)

StateB

StateA Null StateB

{P1} {P1} {P2}

{P1} {P1} {P2}

Figure 43 – Example of Splitting a Transition

As seen in the example shown in Figure 43, there was an ordering applied to the SendEvents.

This is a design decision that is consistent with the original specification defined by the concurrent task

diagrams. Since the SendEvents belong to different protocols (see Section 2.3.3.2.1), they are received by

different components. Therefore, it makes no difference what order is chosen to send them. The first event

is sent to one component, followed by the next event to the other component. Even if the different

components belong to the same agent, they should both be waiting to receive the events, regardless of the

order in which they are received.

Transformation 11 covers transitions that have either an internal receive or send event. The

requirement for this transformation to take place is that there is 1) either an internally received or sent

Event and 2) at least one external SendEvent in the sendEvents clause. Any internal receive or send Events

are placed on the first transition along with the original transition’s guard and actions. The second

transition simply contains the set of external SendEvents.

 49

Transformation 11

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ (t.receive ≠ null ∨ t.sends ≠ {}) ∧ t.sendEvents ≠ {})

⇒

(∃ s : State, t1, t2 : Transition, n : String • s ∈ st’.states ∧ s ∉ st.states ∧ t1 ∈ st’.transitions

∧ t2 ∈ st’.transitions ∧ s.name = (“Null” + n) ∧ ¬(∃ s2 : State • s2 ≠ s ∧ s2.name = s.name) ∧ s.actions = {}

∧ t1.receive = t.receive ∧ t1.receiveEvent = null ∧ t1.guard = t.guard ∧ t1.actions = t.actions

∧ t1.sends = t.sends ∧ t1.sendEvents = {} ∧ t1.from = t.from ∧ t1.to = s ∧ t2.receive = null ∧ t2.sends = {}

∧ t2.receiveEvent = null ∧ t2.guard = null ∧ t2.actions = [] ∧ t2.sendEvents = t.sendEvents ∧ t2.from = s

∧ t2.to = t.to ∧ t ∉ st’.transitions ∧ ¬(∃ t3 : Transition • (t3.to = s ∧ t1 ≠ t3) ∨ (t3.from = s ∧ t2 ≠ t3)))

Figure 44 illustrates how Transformation 11 would split a transition that has both internal events

and external SendEvents. The original transition has both an internal receive and send Event, as well as an

external SendEvent. After the transformation only the internal events are placed on the first transition and

the external SendEvents (in this case only one) are placed on the second transition. Again, the state

diagram after the transformation is consistent with the semantics of the original state diagram. In both

cases, do(a) must be internally received, the guard condition must be true, and the internal acknowledge

event is sent, as well as the external SendEvent belonging to protocol P1. The transmissions in the

resulting state diagram have been ordered, but since the events are being sent to different components, they

are still consistent with the original state diagram.

StateA
do(a) [guard] ^ acknowledge; send(msg(a), ag)

do(a) [guard] ^ acknowledge ^send(msg(a), ag)

StateB

StateA Null StateB

{P1}

{P1}

Figure 44 – Example 2 of Splitting a Transition

 50

3.3.2 Determining the Protocols for Transitions

The next step of the transformation process is to annotate the component state tables to show

where each conversation begins and ends. In order to simplify this process, each transition is labeled with a

set of protocols that represents the external protocols in which the transition may participate. If a transition

has a non-empty set of protocols, then the communication that takes place on that transition at any given

time will be with only one of the protocols in the set, not all of them. If a transition has an empty set of

protocols, then either there is no external communication taking place, or there is communication with

more than one agent that takes place. Later, the set of protocols is the primary factor for determining where

conversations start and end.

Table 1 shows the rules for determining the set of protocols for a transition. The first five columns

show the properties for the transition being labeled. Transformation 10 and Transformation 11 split up

transitions with events that do not correspond to each other, so Table 1 shows the only possible

combinations for the transition being labeled. There will be no transitions with a) an internal receive Event

and an external ReceiveEvent, b) an internal receive Event and external SendEvents, c) an external

ReceiveEvent and internal send Events, d) a ReceiveEvent and SendEvents that don’t correspond (i.e.

different protocols), or e) internal send Events and external SendEvents.

An “x” in the table represents a “don’t care” in a traditional logic table. Under the SendEvents

column, “same protocols” means that every SendEvent on the transition has the same set of protocols, and

“different protocols” means that not all SendEvents have the same set. The “Union” label means that the

set of protocols is the union of all protocol sets on transitions into the from state.

 51

Table 1 – Rules for Determining a Transition’s Set of Protocols

Transition being labeled Protocols for Protocols for Resulting Transformation
Transitions into Transitions out of Set of

receive ReceiveEvent guard sends SendEvents Actions the from state the from state Protocols
no yes x no x x x x ReceiveEvent's 12
no no x no same protocols x x x SendEvent's 13
no no x no different protocols x x x { } 14
no no x no to <list> x x x { } 15
yes no x x no x x x { } 16
x no x yes no x x x { } 16

no no x no no x != { } Union Union 17
no no x no no x { } x { } 18
no no x no no x x { } { } 18
no no x no no x x != Union { } 18

Transformation 12 sets the protocols for all transitions that have a non-null receiveEvent attribute.

Transformation 10 ensured that transitions with an external ReceiveEvent only have SendEvents that have

the same set of protocols. Therefore, it is certain that the set of protocols for the transition can be the same

as that of the ReceiveEvent.

Transformation 12

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ re ≠ null ∧ t.receive = null ∧ t.sends = {}

∧ ¬(∃ se : SendEvent • se ∈ t.sendEvents ∧ re.protocols ≠ se.protocols))

⇒

t’.protocols = re.protocols

If there is a transition with no internal events, no ReceiveEvent, and all external SendEvents have

the same protocols, and the none of the recipients of the SendEvents is a list, then Transformation 13 sets

the protocols of the transition to the SendEvents’ set of protocols. While the set of protocols for the

SendEvents may contain more than one protocol, it is assumed that the events that are sent belong to only

one protocol at a time. If there is at least one SendEvent with different protocols, then Transformation 14

sets the protocols to the empty set, since that transition contains communication that may belong to two

different protocols at the same time.

 52

Transformation 13

∀ c : Component, st : StateTable, t : Transition, se : SendEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receiveEvent = null ∧ t.receive = null ∧ t.sends = {}

∧ se ∈ t.sendEvents ∧ ¬isList(se.recipient)

∧ ¬(∃ se2 : SendEvent • se2 ∈ t.sendEvents ∧ se2 ≠ se ∧ se2.protocols ≠ se.protocols))

⇒

t’.protocols = se.protocols

Transformation 14

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receive = null ∧ t.sends = {}

∧ (∃ se1, se2 : SendEvent • se1 ≠ se2 ∧ se1 ∈ t.sendEvents ∧ se2 ∈ t.sendEvents

 ∧ se1.protocols ≠ se2.protocols))

⇒

t’.protocols = {}

If a transition has an external SendEvent to a list (a multicast), then Transformation 15 sets the

transition’s protocols to the empty set, not because the transition contains communication to different

protocols at the same time, but because a multicast implies simultaneous communication with a different

instance of the protocol for each agent represented in the list. The isList(String) function returns true if the

string representing the recipient is of the form <list-name>.

Transformation 15

∀ c : Component, st : StateTable, t : Transition, se : SendEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ isList(se.recipient))

⇒

t’.protocols = {}

Transformation 16 states that if a transition has an internal event, then the protocols set must be

the empty set, denoting that no communication with external protocols takes place on the transition.

Transformation 11 split transitions that had both internal and external events, so at this point any transitions

 53

that have at least one internal event are assured to have no external events, and therefore belong to no

external protocols.

Transformation 16

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ (t.receive ≠ null ∨ t.sends ≠ {}))

⇒

t’.protocols = {}

If there is a transition with no internal or external events that are received or sent, then the

transition by itself gives no information as to what the protocols set should be. It is not necessarily empty

since the set of protocols represents the current communication that is taking place and is used in

determining if a transition is the start or end of a conversation. Other factors are used to determine the

protocols of these transitions. If every transition to or from the transition’s from state have non-empty

protocols, and every transition leaving the from state contains the union of the protocols for all transitions

into the from state, then Transformation 17 also makes the set of protocols for the transition in question the

union of all protocols of the transitions into the from state. Otherwise, there has been a change in the active

protocol, and Transformation 18 gives the transition the empty set of protocols.

Transformation 17

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receive = null ∧ t.receiveEvent = null ∧ t.sends = {}

∧ t.sendEvents = {}

∧ ¬(∃ t2 : Transition • t2 ∈ st.transitions ∧ t2 ≠ t ∧ t2.to = t.from ∧ t2.protocols = {})

∧ ¬(∃ t3 : Transition • t3 ∈ st.transitions ∧ t2 ≠ t ∧ t3.from = t.from ∧ t3.protocols = {})

∧ (∀ t4 : Transition, p : Protocol • t4 ∈ st.transitions ∧ t4 ≠ t ∧ t4.from = t.from ∧ p ∈ t4.protocols

 ∧ p ≠ null ⇔ (∃ t5 : Transition • t5 ∈ st.transitions ∧ t5.to = t4.from ∧ p ∈ t5.protocols)))

⇒

(∀ t6 : Transition • (t6 ≠ t ∧ t6.to = t.from) ⇒ t’.protocols = (t.protocols ? t6.protocols))

 54

Transformation 18

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.receive = null ∧ t.receiveEvent = null ∧ t.sends = {}

∧ t.sendEvents = {}

∧ ((∃ t2 : Transition • t2 ∈ st.transitions ∧ t2 ≠ t ∧ t2.to = t.from ∧ t2.protocols = {})

 ∨ (∃ t3 : Transition • t3 ∈ st.transitions ∧ t3 ≠ t ∧ t3.from = t.from ∧ t3.protocols = {})

 ∨ ¬(∀ t4 : Transition, p : Protocol • t4 ∈ st.transitions ∧ t4.from = t.from ∧ p ∈ t4.protocols ∧ p ≠ null

 ⇔ (∃ t5 : Transition • t5 ∈ st.transitions ∧ t5.to = t4.from ∧ p ∈ t5.protocols))))

⇒

t’.protocols = {}

The next example illustrates how Transformation 17 determines the protocols for transitions that

have no events. Figure 45 shows a state diagram with three different transitions with no events. The sets in

the figure show the protocols for the transitions. The transition leaving State1 is an automatic transition

and has no events. However, the only transition into State1 has {P1} as its set of protocols. Since there is

no indication that the active protocol has changed, Transformation 17 sets the protocols for the transition

leaving State1 to {P1}. In the same way, the transition leaving State2 receives the protocol set {P2}. The

resulting state diagram is shown in Figure 46.

Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{P1}
receive(do1(a), ag)

{P2}
receive(do2(b), ag)

{P1, P2}
[c ≤ 0] ^send(sorry, ag)

[c > 0]

Figure 45 – Transitions With No Events

 55

Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{P1}
receive(do1(a), ag)

{P2}
receive(do2(b), ag)

{P1, P2}
[c ≤ 0] ^send(sorry, ag)

[c > 0]

{P1} {P2}

Figure 46 – Protocols Determined for Two Transitions

The more interesting case is the transition leaving the Eval state. It only has a guard condition and

no events, yet Transformation 17 determines that the set of protocols should be {P1, P2}, the union of the

protocols of the transitions into the Eval state. This is because the protocols of the other transition leaving

the Eval state is also the union of the transitions into the Eval state (determined either by the first three

transformations or by the designer), and there are no transitions into or out of the Eval state with an empty

set of protocols. The resulting state diagram is shown in Figure 47. As you can see from this example, in

order for these transformations to be executed correctly, all other transitions into or out of its from state

must already be determined. For example, the protocols for the transition out of the Eval state with only

the guard condition could not be determined correctly if the protocols for the transitions into the Eval state

had not already been determined.

 56

Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{P1}
receive(do1(a), ag)

{P2}
receive(do2(b), ag)

{P1, P2}
[c ≤ 0] ^send(sorry, ag)

{P1, P2}
[c > 0]

{P1} {P2}

Figure 47 – Protocols Determined for All Transitions

3.3.3 Start Label for Transitions

Now that all transitions have a set of protocols, the next step is to determine where conversations

begin and end. There are many reasons to label a transition as the start of a new conversation. However,

since every transition already has its protocols set, the rules are greatly simplified. The protocols indicate

with whom the communication takes place. The following six conditions indicate the start of a

conversation by a change in who the agent is communicating with, which in most cases is due to a change

in the protocols.

1. A transition has a protocol not found in at least one transition into its from state

(Transformation 19).

2. A transition has a non-empty set of protocols that is different than another transition leaving

the same state (Transformation 20).

3. A transition has a non-empty set of protocols, yet lacks a protocol of another transition into its

from state (Transformation 21).

4. A transition has a non-empty set of protocols, and there is another transition into or out of its

from state with an empty set of protocols (Transformation 22).

 57

5. A transition has an empty set of protocols and at least one SendEvent (Transformation 23).

6. A transition has a SendEvent whose recipient was previously determine by an action

(Transformation 24).

Transformation 19 states that when a transition has a protocol in its set of protocols that is not

found in at least one transition into its from state, then the transition must be the start of a new

conversation. In this case, the transition has communication that belongs to a protocol not previously

active, so the communication to the newly active protocol will be a new conversation. The most obvious

example of this is when there is a complete change in the set of protocols from one transition to the next.

Figure 48 illustrates another example of when Transformation 19 would label a transition as the start of a

conversation. The sets indicate the protocols set for the transitions, and the letter S over the transition

indicates it has been labeled as the start of a conversation. The attributes of the transitions are not shown in

these examples, because it is only the set of protocols that matters in these transformations. In the portion

of the state diagram shown in Figure 48, the transition leaving State1 has both P1 and P2 as protocols, but it

also has P3 and there is no transition into State1 with P3 as a protocol, so the transition becomes the start of

a conversation.

State1
{P1} {P1, P2, P3}

{P2}

S

Figure 48 – Example of Transformation 19

Transformation 19

∀ c : Component, st : StateTable, t : Transition, p : Protocol •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {} ∧ p ∈ t.protocols

∧ ¬(∃ t2 : Transition • t2 ∈ st.transitions ∧ t2.to = t.from ∧ p ∈ t2.protocols))

⇒

t’.start = true

 58

Transformation 20 states that if there is a transition with a non-empty set of protocols leaving a

state and there is another transition with different protocols leaving the same state, then the transition must

be the start of a conversation. These transitions cannot be the continuation of a previous conversation,

because they have different protocols that may be active when leaving the from state. Figure 49 illustrates

one example of how Transformation 20 would label a transition as the start of a conversation. In the

example, there are two transitions with different protocols both leaving State1. These transitions must be

the start of conversations because it is unclear which transition would be enabled from State1 and therefore

which protocol would be active in communication.

State1
{P1} {P1}

{P2}

S

S

Figure 49 – Example of Transformation 20

Transformation 20

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {}

∧ (∃ t2 : Transition • t2 ∈ st.transitions ∧ t2.from = t.from ∧ t2.protocols ≠ t.protocols))

⇒

t’.start = true

Transformation 21 states that if there is a transition with at least one protocol leaving a state and

that transition lacks a protocol that another transition into the from state has, then the transition is the start

of a conversation. The protocol that is missing for the transition leaving the from state may be the active

protocol for the transition into the from state, so that conversation cannot continue and another one must

begin. In the previous example, Figure 49 illustrates an instance where Transformation 21 would be

applied. Since the transition with protocols {P2} leaving State1 does not have P1 as a protocol, and the

transition into State1 does, the transition leaving State1 is the start of a conversation, regardless of the fact

that there is another transition leaving State1 with different protocols.

 59

Transformation 21

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {}

∧ (∃ t2 : Transition, p : Protocol • t2 ∈ st.transitions ∧ t2.to = t.from ∧ p ∈ t2.protocols ∧ p ∉ t.protocols))

⇒

t’.start = true

Transformation 22 states that when a transition is labeled with at least one protocol and there is

another transition either from or into its from state that has no protocols, then the transition is the start of a

conversation. If there is a transition into the from state with an empty set of protocols, then it is possible

that the transition was the one taken, and the protocol activated on the transition leaving the state must

represent communication to a new agent. If there is a transition out of the from state with an empty set of

protocols, then no transition leaving the from state can continue any previous conversation because the

transition with no protocols may be the one taken.

As an example, consider Figure 50, where the transition leaving State1 is labeled with only

protocol P1 and there is another transition with an empty set of protocols that is also leaving State1.

Transformation 22 labels the transition with protocols {P1} as the start of a conversation. If the transition

with no protocols was not present, then the transition leaving State1 with protocols {P1} would be

guaranteed to continue the conversation.

State1
{P1} {P1}

{}

S

Figure 50 – Example of Transformation 22

 60

Transformation 22

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ {}

∧ (∃ t2 : Transition • t2 ∈ st.transitions ∧ (t2.to = t.from ∨ t2.from = t.from) ∧ t2.protocols = {})

⇒

t’.start = true

Transformation 23 states that if a transition labeled with no protocols has a SendEvent, then the

transition starts a new conversation. This covers the following two possibilities:

1. The transition has more than one SendEvents and they have different recipients.

2. The transition has a SendEvent to a list.

In each case, there is communication with more than one agent. Therefore, there are multiple

instances of conversations that take place on the transition, and the conversations result in simple “single-

transition” conversations. Later, Transformation 26 also labels these transitions as the end of the

conversation.

Transformation 23

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.sendEvents ≠ {} ∧ t.protocols = {})

⇒

t’.start = true

Transformation 24 simply states that if there is an action, either in a state or on a transition, that

determines the recipient of a SendEvent on a subsequent transition, then the transition starts a new

conversation. In most cases, that action will occur in the transition’s from state, but there could be states

and transitions between the setting of that variable and its use in the SendEvent. The

isAssigned(SendEvent, Transition, StateTable) function is defined in Appendix B, and takes care of these

cases by recursively searching back from the transition to determine if there is an action that sets the

recipient of the SendEvent. Figure 51 shows one example where Transformation 24 would apply. There

 61

is an action in State1 that sets the recipient of the SendEvent on the transition leaving that state. Since the

action just determined who the communication in the SendEvent would be with, the transition is the start of

a new conversation.

State1
ag = top(list)

^send(msg, ag)
S

Figure 51 – Example of Transformation 24

Transformation 24

∀ c : Component, st : StateTable, t : Transition, se : SendEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ isAssigned(se, t, st) ∧ t.protocols ≠ {})

⇒

t’.start = true

3.3.4 End Label for Transitions

In the same way that the set of protocols for transitions are used to determine the start of

conversations, they are also used to determine where conversations end. The following four conditions

indicate the end of a conversation.

1. A transition has a protocol not found in a transition leaving its to state (Transformation 25).

2. A transition has an empty set of protocols and at least one SendEvent (Transformation 26).

3. A transition has a non-empty set of protocols and there is a start transition leaving its to state

(Transformation 27).

4. A transition to the end state has a non-empty set of protocols (Transformation 28).

Transformation 25 states that if there is a transition with a protocol and there is another transition

leaving its to state that does not also have that protocol, then the transition must be the end of a

conversation because that protocol might not continue to have active communication. Figure 52 shows an

example of how Transformation 25 would apply. The transition into State1 has P1 as a protocol, but the

 62

transition leaving State1 has the empty set as its set of protocols. Thus, the transition with protocols {P1}

is labeled as the end of a conversation.

State1
{P1} {}

E

Figure 52 – Example of Transformation 25

Transformation 25

∀ c : Component, st : StateTable, t : Transition, p : Protocol •

(st = c.stateTable ∧ t ∈ st.transitions ∧ p ∈ t.protocols ∧ p ≠ null

∧ ¬(∀ t2 : Transition • t2 ∈ st.transitions ∧ t.to = t2.from ∧ p ∈ t2.protocols)

⇒

t’.end = true

Transformation 26 is the corresponding transformation to Transformation 20, and designates any

transition with an empty set of protocols and at least one external SendEvent as the end of a conversation.

As stated earlier this occurs when either 1) there are external SendEvents with different recipients or 2)

there is a SendEvent to a list. Each case represents multiple conversation instances that take place on the

transition, so the transition is both the start and end of the conversation(s).

Transformation 26

∀ c : Component, st : StateTable, t : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.sendEvents ≠ {} ∧ t.protocols = {})

⇒

t’.end = true

Transformation 27 is straightforward, and states that if a transition has a non-empty set of

protocols and its to state is the from state of a transition that is marked as the start of a new conversation,

then that transition is the end of the conversation. This must be the case so that the next conversation can

start.

 63

Transformation 27

∀ c : Component, st : StateTable, t, t2 : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ t.protocols ≠ {} ∧ t.to = t2.from ∧ t2.start = true)

⇒

t’.end = true

Transformation 28 describes the last reason that a transition can be labeled the end of a

conversation, which is when a transition has a non-empty set of protocols and its to state is the end state. It

is obvious in this situation that the conversation must end because the state table ends.

Transformation 28

∀ c : Component, st : StateTable, t : Transition, s : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.protocols ≠ null ∧ s ∈ st.states ∧ s = t.to ∧ s.name = “end”)

⇒

t’.end = true

3.3.5 Matching Conversation Halves

After all of the components’ state diagrams have been annotated, the different conversation halves,

as annotated, must be matched. As the events are matched, they are given the same convName. Events

may be matched with more than one corresponding event, so in practice, every matching set of events

would receive the same conversation name, which may ripple through as new matches are made. Once all

conversation halves have been matched, Conversations can be created to represent the communication.

The protocols between the components provide a way to determine to which component the corresponding

halves belong. The next two transformations define how, in some cases, the different conversation halves

can be automatically matched. The transformations are very similar to the transformations used to

determine the set of protocols for external events. Again, not all matches can be made automatically. In

some cases, the developer must determine whether a message in a SendEvent is actually meant to be

received by a ReceiveEvent in another component.

 64

Transformation 29 is essentially the same as Transformation 2. It covers the conditions illustrated

in Figure 53, where there is a protocol between two components that have corresponding events. One

component has at least one corresponding SendEvent, and the other component has only one corresponding

ReceiveEvent. The component with the SendEvent cannot have a protocol with another component that

has a corresponding ReceiveEvent, while the component with the unique ReceiveEvent may have a

protocol with another component with a corresponding SendEvent.

Component1

Has 1 or more matching
SendEvents on a transition

Component2

Has only 1 matching
ReceiveEvents on a transition

Protocol 1X OK

Figure 53 – Example of Transformation 29

Transformation 29

∀ c1, c2 : Component, p : Protocol, st1, st2 : StateTable, t1, t2 : Transition, se : SendEvent,

re : ReceiveEvent •

(st1 = c1.stateTable ∧ st2 = c2.stateTable ∧ t1 ∈ st1.transitions ∧ t2 ∈ st2.transitions

∧ ((c1 = p.initComp ∧ c2 = p.respComp) ∨ (c1 = p.respComp ∧ c2 =p.initComp))

∧ t1.start = true ∧ t2.start = true ∧ se ∈ t1.sendEvents ∧ re = t2.receiveEvent ∧ se.event = re.event

∧ ¬(∃ p2 : Protocol, c3 : Component, st3 : StateTable, t3 : Transition, se2 : SendEvent •

 p2 ≠ p ∧ ((p2.initComp = c3 ∧ p2.respComp = c2) ∨ (p2.initComp = c2 ∧ p2.respComp = c3))

 ∧ c3 ≠ c1 ∧ st3 = c3.stateTable ∧ t3 ∈ st3.transitions ∧ se2 ∈ t3.sendEvents

 ∧ se2.event = re.event)

∧ ¬(∃ t3 : Transition, se2 : SendEvent • t3 ≠ t1 ∧ t3 ∈ st1.transitions ∧ se2 ∈ t3.sendEvents

 ∧ se2.event = se.event))

⇒

(∃ newName : String • se’.convName = newName ∧ re’.convName = newName)

Transformation 30 is essentially the same as Transformation 3 and the mirror image to

Transformation 29. The conditions for the transformation to apply are illustrated in Figure 54, where the

SendEvent must be unique and its component is allowed to have a protocol with another component that

has a corresponding ReceiveEvent. The ReceiveEvent in the other component is not required to be unique,

but that component cannot have a protocol with another component with a corresponding SendEvent.

 65

Component1

Has only 1 matching
SendEvents on a transition

Component2

Has 1 or more matching
ReceiveEvents on a transition

Protocol 1OK X

Figure 54 – Example of Transformation 30

Transformation 30

∀ c1, c2 : Component, p : Protocol, st1, st2 : StateTable, t1, t2 : Transition, se : SendEvent,

re : ReceiveEvent •

(st1 = c1.stateTable ∧ st2 = c2.stateTable ∧ t1 ∈ st1.transitions ∧ t2 ∈ st2.transitions

∧ ((c1 = p.initComp ∧ c2 = p.respComp) ∨ (c1 = p.respComp ∧ c2 =p.initComp))

∧ t1.start = true ∧ t2.start = true ∧ se ∈ t1.sendEvents ∧ re = t2.receiveEvent ∧ se.event = re.event

∧ ¬(∃ p2 : Protocol, c3 : Component, st3 : StateTable, t3 : Transition, re2 : ReceiveEvent •

 p2 ≠ p ∧ ((p2.initComp = c3 ∧ p2.respComp = c1) ∨ (p2.initComp = c1 ∧ p2.respComp = c3))

 ∧ c3 ≠ c2 ∧ st3 = c3.stateTable ∧ t3 ∈ st3.transitions ∧ re2 = t3.receiveEvent ∧ re2.event = se.event)

∧ ¬(∃ t3 : Transition, re2 : ReceiveEvent • t3 ≠ t2 ∧ t3 ∈ st2.transitions ∧ re2 = t3.receiveEvent

 ∧ re2.event = re.event))

⇒

(∃ newName : String • se’.convName = newName ∧ re’.convName = newName)

In many cases this transformation will not be sufficient. As mentioned earlier, the user will have

to match up many events that cannot be determined automatically. However, this is not the only problem

that may arise after matching up the conversation halves. One problem that may exist is that there may be

two events matched as the beginning of a conversation, but the rest of the events are out of order or do not

correspond. In this case, an error has been made, either because the definitions of the state tables for the

tasks in the analysis phase were incorrect, or because the user decided to match up a SendEvent with a

ReceiveEvent that was not really intended to correspond as a message passing between them.

Another problem that may result after the component state tables have been annotated is that the

corresponding state tables might have been annotated differently so that the conversation halves do not

match. This will be evident when there is a start transition in a component with either a SendEvent or

ReceiveEvent, and there is no start transition in the state table of the component that participates in the

 66

protocol with the corresponding event. This will happen when one of the components has coordination

with other components or other agents that causes different start and end transitions. In this case, the

appropriate start and end labels will need to be added to the state tables so that they match up.

Figure 55 shows one example where two state diagrams have been annotated differently. The

dashed arrows show the two events that should match up as the beginning of conversations. However, only

the first event will be matched. In the top state diagram, there is no start label for the second transition with

the ReceiveEvent even though in the bottom state table the transition with the corresponding SendEvent is

already labeled as a start transition. The annotations do not match up is because in the bottom state

diagram there are internal events that take place in the middle of the transitions with external events,

requiring two conversations instead of one. When the developer determines that second set of events

match, a start label is added to the second transition in the top state diagram and a new conversation name

is given to the transitions for the new match.

State1
^send(msg1(x), ag)

S
receive(msg2(y), ag)

E

State1
receive(msg1(x), ag)

S ^send(msg2(y), ag)
E

State2

State3 SE

^compute(x) inform(y)

Figure 55 – Two State Diagrams Annotated Differently

Since this last process may involve adding new start labels to transitions, Transformation 27

would now be reapplied so that any needed end labels would also be added to the state tables on transitions

in front of the new start transitions.

 67

3.3.6 Splitting Transitions with a ReceiveEvent and Multiple Conversation Names

As conversations are matched, it may be the case that a transition that has a non-empty set of

protocols can end up with ReceiveEvent that starts one conversation and a SendEvent that starts another

conversation. Transformation 10 only split up transitions that had a ReceiveEvent and at least one

SendEvent with different protocols. Consider the example in Figure 56. The sets above the transitions

represent the set of protocols and the convName for the events. Although both events in the top state

diagram belong to the same protocol, they become the first messages in two different conversations

because of the way that the bottom state diagram was annotated due to the internalMsg(x) event on the

transition between State1 and State2.

receive(msg1(x), ag) ^ send(ack, ag)
S E

^ send(msg1(x), ag)
S E State1 State2

receive(ack, ag)
S E

^ internalMsg(x)

{P1}conv1 {P1}conv2

{P1}conv1 {P1}conv2

Figure 56 – Transition with a ReceiveEvent and Multiple Conversation Names

Transformation 31 splits transitions that are labeled as the start of a conversation but have a

ReceiveEvent that starts one conversation and a SendEvent that starts another conversation. As mentioned,

Transformation 10 made sure the only SendEvent on a transition with a ReceiveEvent has the same

protocols. Furthermore, since a transition cannot have multiple SendEvents to the same entity (i.e. the

protocols are the same), then we can also be certain at this point in the transformation process that there can

only be one SendEvent on transitions that have a ReceiveEvent. When Transformation 31 splits up the

transition, a new null state is created that becomes the to state of the original transition, and a new transition

is added from the new null state to the original to state. The ReceiveEvent is left on the original transition

with any guard and actions. The single SendEvent is placed on the new transition, and its set of protocols

is the same as the original transition. The original transition is given the end label, and the new transition is

 68

given the start label. Additionally, if the original transition had the end label, so will the new transition

with the SendEvent.

Transformation 31

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.start = true ∧ t.protocols ≠ {} ∧ t.receiveEvent = re ∧ re ≠ null

∧ (∃ se : SendEvent • se ∈ t.sendEvents ∧ se ≠ null ∧ se.convName ≠ null ∧ se.convName ≠ re.convName))

⇒

(t’.end = true ∧ t’.sendEvents = {}

∧ (∃ s : State, t2 : Transition, num : String • s ∉ st.states ∧ s ∈ st’.states ∧ s.name = “Null” + num

 ∧ s.actions = [] ∧ t2 ∉ st.transitions ∧ t2 ∈ st’.transitions ∧ t2.receive = null ∧ t2.receiveEvent = null

 ∧ t2.guard = null ∧ t2.actions = [] ∧ t2.sends = [] ∧ t2.sendEvents = [se] ∧ t2.protocols = t.protocols

 ∧ t2.start = true ∧ t2.from = s ∧ t2.to = t.to ∧ t’.to = s ∧ (t.end = true ⇒ t2.end = true)

 ∧ ¬(∃ s2 : State • s2 ∈ st’.states ∧ s2 ≠ s ∧ s2.name = s.name)))

Continuing with our example from Figure 56, Transformation 31 changes the state diagram to that

shown in Figure 57. Breaking up the transition was straightforward, and now the messages for the two

conversations are on two different transitions, but still in the same order as that of the original transition.

receive(msg1(x), ag)S E

^ send(msg1(x), ag)
S E State1 State2

receive(ack, ag)
S E

^ internalMsg(x)

{P1} conv1 {P1} conv2

{P1} conv1 {P1} conv2

Null1
^send(ack, ag)

S E

Figure 57 – State Diagrams After Transformation 31

3.3.7 Creating Conversations

Once the different halves of the conversations have been matched up in the component state

tables, “empty” conversations can be created based on the conversation names given to the transitions. The

conversations will initially be empty because no ConversationHalf objects exist yet that hold the state

 69

tables for the initiator and responder parts of the conversation. The ConversationHalfs will be created for

the conversations during the third stage of the transformation process, when the conversations are harvested

from the components.

As events within component state tables are matched as the beginning of conversations, an event

may be matched to several other corresponding events. For every matching pair of events for a given

conversation name, a conversation with a unique name is created between the agents of those components.

As an example, Figure 58 shows four agents and three conversations between them. The conversations are

given unique names because of the compound definition that MaSE uses for conversations2. While each

half of the conversations must send/receive the same messages in the same order, the state tables do not

need to be equivalent. There may be different actions within the states or on the transitions, as well as

different states, etc. In other words, the messages sent and received within the components of Agent2 and

Agent3 must be the same and in the same order so that they both correspond to the messages within

Agent1’s component. However, the state tables may still be different and therefore require unique

conversations.

Agent1 Agent2

Agent4 Agent3

conv1-1

conv1-2

conv1-3

Figure 58 – Duplicate Conversations Between Agents

In order to further illustrate this point, Figure 59 shows the state diagrams for the components of

Agent2 and Agent3 annotated for conv1-1 and conv1-2 respectively. The transitions and events in the two

state diagrams are identical. However, the actions in the states used to compute y call different functions,

so the state diagrams are not equivalent and therefore require different conversations.

 70

State1
y = f1(x)

receive(msg1(x), ag)
S

^send(msg2(y), ag)
E

State1
y = f2(x)

receive(msg1(x), ag)
S

^send(msg2(y), ag)
E

Figure 59 – State Diagrams with Different Actions in State1

3.3.8 Propagating the Set of Conversations

Once all component state tables have been annotated and conversations have been assigned to the

start transitions, the set of conversations needs to be propagated to all of the states and transitions belonging

to the conversations. Transformation 32 does just that and is intended to be applied iteratively, beginning

with all of the start transitions. The transformation no longer needs to be applied when it reaches all

transitions that are labeled as the end of a conversation.

Figure 60 continues with an earlier example to demonstrate how Transformation 32 propagates the

set of conversations from the start transitions until an end transition is reached. The sets above the

transitions represent the set of conversations that the transitions belong to. The S and E labels on the

transitions represent the start and end of conversations respectively. In the example, the two transitions

leaving the Idle state are the start of two different conversations named conv1 and conv2. The transition

leaving State1 receives the set of conversations from the transition into State1, which is {conv1}. The

transition leaving State2 likewise receives the set {conv2}. The two conversations merge at the Eval state,

and the transitions leaving the Eval state receive {conv1, conv2} as conversations, the union of the two

sets.

2 In MaSE, conversations are defined by two state tables, one for the initiator and one for the responder. Therefore, the
conversations are defined not only by the messages that pass between the agents, but also by the actions that take
place in the states and on the transitions to perform the necessary processing.

 71

Idle

State1
c = f1(a)

Eval

State2
c = f2(b)

…

{conv1}
receive(do1(a), ag)

{conv2}
receive(do2(b), ag)

{conv1, conv2}
[c ≤ 0] ^send(sorry, ag)

{conv1, conv2}
[c > 0]

{conv1} {conv2}

S S

E

E

Figure 60 – Example of Propagating the Set of Conversations

Transformation 32

∀ c : Component, st : StateTable, t, t2 : Transition, s : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ s = t.to ∧ s = t2.from

∧ t.end = false)

⇒

(s’.conversations = s.conversations ? t.conversations

∧ t2’.conversations = t2.conversations ? t.conversations)

3.4 Harvesting the Conversations

Once the component state tables have been fully annotated and the different conversation halves

have been matched, the next stage in the transformation process, highlighted in Figure 61, is to first prepare

the conversations to be removed and then to actually remove them and replace them with an action on a

transition that performs that conversation.

 72

Stage 1
• Determine the protocols for external events
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in
components
• Transform external events into internal events if they
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple
states
• Prepare variables in conversations that belong
to the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

Figure 61 – Stage 3 in the Transformation Process

3.4.1 Combining Conversation End States

The approach for harvesting the conversations from the component state tables is to replace the

states and transitions that belong to the conversation with a transition that has an action to perform the

conversation. However, if a conversation can end in more than one state, replacing the conversation with a

single transition is impossible without first modifying the state table so that the conversation will always

exit to a single state. This section describes how this modification is done while preserving the semantics

of the model. Before the individual transformations are presented, consider the following example. Figure

62 illustrates a portion of a state diagram annotated as a conversation with multiple states that the end

transitions exit to (State 2 and State 3).

 73

State1

State3

State2
receive(msg2(y), ag)

receive(msg3(z), ag)

^send(msg1(x), ag)
S

E

E

Wait

Figure 62 – Conversation with Multiple Exit States

Figure 63 shows the state diagram after the transformations execute. All end transitions now have

the same to state, which is a newly created null state. Additionally, there is an action on each end transition

that sets a BRANCH variable unique to each transition, and for each end transition there is a corresponding

transition to the original to state with a guard testing the value of the BRANCH variable. The reason

“parent.BRANCH” is used in the action will be explained later. This change in the state diagram maintains

the semantics of the original state diagram. For example, if the receive(msg2(y),ag) ReceiveEvent is

received while in the Wait state, the original state diagram will transition to State2. In the state diagram

after the transformations, if the same receive(msg2(y), ag) is received while in the Wait state, the state

diagram will transition to the new Null1 state. However, the BRANCH variable is set to 1 and there is an

automatic transition from state Null1 to State2 with a guard condition “BRANCH == 1”.

State1

State3

State2

receive(msg2(y), ag) / parent.BRANCH = 1

receive(msg3(z), ag) / parent.BRANCH = 2

^send(msg1(x), ag)S

E

E

Null1Wait

[BRANCH == 1]

[BRANCH == 2]

Figure 63 – State Diagram After Transformations

In order to simplify the transformations, this process is broken into three different transformations.

If the transitions out of an annotated conversation are to different states, then the first step is to create a new

 74

null state for each exiting transition and set the to state to the new null state. Also a new automatic

transition is created from the null state to the original to state. This change is consistent with the semantics

of the original state table. There is nothing new being done and the flow of actions and events remains the

same. These modifications are found in Transformation 33. Using the example for this section and

beginning with the state diagram in Figure 62, Transformation 33 alters the state table into the form shown

in Figure 64

Transformation 33

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ t.end = true

∧ t.to = s ∧ s2 ∈ st.states ∧ t2.end = true ∧ t2.to = s2 ∧ t2 ≠ t ∧ s2 ≠ s

∧ t.conversations ⊆ t2.conversations)

⇒

(∃ s3 : State, t3 : Transition, n : String • s3 ∈ st’.states ∧ s3 ∉ st.states ∧ s3.name = (“Null” + n)

∧ s3.conversations = {} ∧ ¬(∃ s4 : States • s4 ≠ s3 ∧ s4 ∈ st’.states ∧ s4.name = s3.name)

∧ s3.assignments = {} ∧ t’.to = s3 ∧ t3 ∈ st’.transitions ∧ t3.from = s3 ∧ t3.to = t.to

∧ t3.receive = null ∧ t3.receiveEvent = null ∧ t3.guard = null ∧ t3.sends = {} ∧ t3.sendEvents = {}

∧ t3.actions = [] ∧ t3.protocols = {} ∧ t3.conversations = {}

∧ ¬(∃ t4 : Transition • t4 ∈ st’.transitions ∧ t4.to = s3 ∧ t4 ≠ t’)

∧ ¬(∃ t5 : Transition • t5 ∈ st’.transitions ∧ t5.from = s3 ∧ t5 ≠ t3))

State1

State3

State2
receive(msg2(y), ag)

receive(msg3(z), ag)

^send(msg1(x), ag)
S

E

E

Wait

Null2

Null1

Figure 64 – State Diagram After Transformation 33

Now that all transitions that end the conversation exit to null state, the null states need to be

combined so that the conversation exits to a single state. Before this is done, there must be some way to

determine which transition was taken as the conversation completed. Transformation 34 does this by

 75

adding an action to each exiting transition of the form “parent.BRANCH = x”, where x is a unique integer

for each transition. The reason “parent.BRANCH” is used in the left hand side of the action is because the

variable being set will be checked within the component after the conversation is removed from it.

Additionally, for each transition out of the null states the guard condition “BRANCH == x” is added, where

x corresponds to the x in the action on the transition into the state. Here, “parent.” does not need to be

prepended to the BRANCH variable because this transition will remain in the component’s state table and

the BRANCH variable belongs to the component. Continuing with the current example, Transformation 34

would alter the state diagram in Figure 64 into the state diagram shown in Figure 65.

Transformation 34

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ t.end = true ∧ t.to = s

∧ s2 ∈ st.states ∧ t2.end = true ∧ t2.to = s2 ∧ t2 ≠ t ∧ s2 ≠ s ∧ t.conversations ⊆ t2.conversations)

⇒

(∃ a : Action, num : String • t’.actions = (t.actions ∩ a) ∧ a.lhs = [“parent.BRANCH”] ∧ a.rhs = [num]

∧ ¬(∃ t3 : Transition, a2 : Action • t3 ∈ st’.transitions ∧ t’ ≠ t3 ∧ a ∈ t3.actions

 ∧ (t.conversations n t2.conversations n t3.conversations) ≠ {})

∧ (∀ t4 : Transition • t4 ∈ st.transitions ∧ t4.from = t.to ⇒ t4’.guard = “BRANCH == “ + num))

State1

State3

State2

receive(msg2(y), ag)
/ parent.BRANCH = 1

receive(msg3(z), ag)
/ parent.BRANCH = 2

^send(msg1(x), ag)
S

E

E

Wait

Null2

Null1
[BRANCH == 1]

[BRANCH == 2]

Figure 65 – State Diagram After Transformation 34

Now that each exiting transition has been uniquely labeled with an action and there is a guard

condition on the transition out of the null state, Transformation 35 merges all of the null states that the

conversation exits to into a single null state, that becomes the to state of all of the exiting transitions and the

 76

from state of all transitions out of the null states. The set of null states that the conversation once exited to

are removed. In the current example, Transformation 35 changes the state diagram in Figure 65 into its

final state, as shown in Figure 66.

Transformation 35

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ t.end = true ∧ t.to = s

∧ s2 ∈ st.states ∧ t2.end = true ∧ t2.to = s2 ∧ t2 ≠ t ∧ s2 ≠ s ∧ t.conversations ⊆ t2.conversations)

⇒

(∃ s3 : State, n : String • s3 ∈ st’.states ∧ s3 ∉ st.states ∧ s3.name = (“Null” + n) ∧ s3.conversations = {}

∧ s3.actions = [] ∧ t’.to = s3 ∧ t2’.to = s3 ∧ ¬(∃ s4 : State • s4 ∈ st’.states ∧ s4 ≠ s3 ∧ s4.name = s3.name)

∧ (∀ t3 : Transition • (t3 ∈ st.transitions ∧ (t3.from = s ∨ t3.from = s2)) ⇒ t3’.from = s3))

State1

State3

State2

receive(msg2(y), ag) / parent.BRANCH = 1

receive(msg3(z), ag) / parent.BRANCH = 2

^send(msg1(x), ag)S

E

E

Null3Wait

[BRANCH == 1]

[BRANCH == 2]

Figure 66 – State Diagram After Transformation 35

3.4.2 Preparing Variables and Parameters

The next step in preparing the state tables for removal of conversations deals with variables and

parameters used within a conversation that are also used outside of that conversation. The semantics of

variables in a conversation are that they are local to the conversation. Therefore, any variable that is

accessed within a conversation and is also used elsewhere in the state table must belong to the “parent”

component.

If a transition that belongs to a conversation has a receive event with parameters that are used

anywhere else besides locally to the conversation, then there must be an action to set each parameter in the

 77

parent component. Otherwise, the event will be received in the conversation, but the component and the

other conversations that belong to the component that also must know about the parameters in the event

will not have visibility to it. Transformation 36 covers the case when there is a state that does not belong to

the conversation and has an action that uses the parameter, and Transformation 37 takes care of cases

where there is another transition that does not belong to the conversation and uses that parameter.

All of the transformations in this section use one of two functions defined in Appendix B. The

usedInAction(Parameter, Action) function returns true if the parameter is used in the action’s left hand side,

right hand side, or as a parameter of its right hand side function. The usedInTransition(Parameter,

Transition) function returns true if the parameter is a parameter of any of the events on the transition, used

in the guard condition, or used in an action on the transition.

Transformation 36

∀ c : Component, st : StateTable, t : Transition, re : ReceiveEvent, e : Event, s : State,

a : Action, p : Parameter, param : String •

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ e = re.event ∧ p ∈ e.parameters

∧ param = p.name ∧ s ∈ st.states ∧ a ∈ s.actions ∧ (t.conversations n s.conversations = {})

∧ usedInAction(p, a))

⇒

(∃ a2 : Action • t’.actions = t.actions ∩ a2 ∧ a2.lhs = [“parent.” + param] ∧ a2.rhs = [param])

Transformation 37

∀ c : Component, st : StateTable, t, t2 : Transition, re : ReceiveEvent, e : Event, p : Parameter,

param : String •

(st = c.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ e = re.event ∧ p ∈ e.parameters

∧ param = p.name ∧ t2 ∈ st.transitions ∧ (t.conversations n s.conversations = {})

∧ usedInTransition(p, t2))

⇒

(∃ a2 : Action • t’.actions = t.actions ∩ a2 ∧ a2.lhs = [“parent.” + param] ∧ a2.rhs = [param])\

As an example, consider Figure 67 that shows a state table with an annotated conversation. The

start transition for the conversation receives the message msg1(x). There is also another transition in the

 78

state table that is not part of the conversation with an internal event that has x as one of its parameters.

Therefore, the parameter x must belong to the component, not just to the conversation, so an action is added

to the start transition and the resulting state diagram is shown in Figure 68.

State1
y = f2(x)

receive(msg1(x), ag)
S

^send(msg2(y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

Figure 67 – State Diagram Before Transformation 37

State1
y = f2(x)

receive(msg1(x), ag) / parent.x = x
S

^send(msg2(y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

Figure 68 – State Diagram After Transformation 37

In addition to parameters in received events in conversations, if a states that belongs to a

conversation has an action that uses a variable and that variable is also used or set anywhere else in the

component, then the variable must be prepended with “parent.” to indicate that it is a variable that belongs

to the parent component. Transformation 38 makes sure this is done when the variable is used in another

state not in the conversation, and Transformation 39 covers the case when the variable is used in a

transition that does not belong to the conversation.

 79

Transformation 38

∀ c : Component, st : StateTable, s, s2 : State, a, a2 : Action, p : Parameter, param : String •

(st = c.stateTable ∧ s ∈ st.states ∧ a ∈ s.actions ∧ param = p.name ∧ s2 ∈ st.states ∧ a2 ∈ s2.actions

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (s.conversations n s2.conversations = {})

∧ usedInAction(p, a2))

⇒

(p’.name = “parent.” + param ∧ param’ = p’.name)

Transformation 39

∀ c : Component, st : StateTable, s : State, a : Action, p : Parameter, param : String, t : Transition •

(st = c.stateTable ∧ s ∈ st.states ∧ a ∈ s.actions ∧ param = p.name ∧ t ∈ st.transitions

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (s.conversations n s2.conversations = {})

∧ usedInTransition(p, t))

⇒

(p’.name = “p.” + param ∧ param’ = p’.name)

Continuing with the previous example, State1 in Figure 68 has an action that computes y based on

the parameter x. Since x and y are used as parameters in the internalBackup(x, y, ag) event, that variable

must belong to the parent component. The resulting state diagram is shown in Figure 69

State1
parent.y = f2(parent.x)

receive(msg1(x), ag) / parent.x = x
S

^send(msg2(y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

Figure 69 – State Diagram After Transformation 39

The next two transformations are essentially the same as Transformation 38 and Transformation

39, except that the actions with the variables to be prepended with “parent.” are on transitions within a

conversation, not states.

 80

Transformation 40

∀ c : Component, st : StateTable, t : Transition, s : State, a, a2 : Action, p : Parameter, param : String •

(st = c.stateTable ∧ t ∈ st.transitions ∧ a ∈ t.actions ∧ param = p.name ∧ s ∈ st.states ∧ a2 ∈ s.actions

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (t.conversations n s.conversations = {})

∧ usedInAction(p, a2))

⇒

(p’.name = “parent.” + param ∧ param’ = p’.name)

Transformation 41

∀ c : Component, st : StateTable, a : Action, p : Parameter, param : String, t, t2 : Transition •

(st = c.stateTable ∧ t ∈ st.transitions ∧ a ∈ t.actions ∧ param = p.name ∧ t2 ∈ st.transitions

∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ p ∈ a.function.parameters) ∧ (t.conversations n s.conversations = {})

∧ usedInTransition(p, t2))

⇒

(p’.name = “parent.” + param ∧ param’ = p’.name)

The last condition where special preparations must be made for variables is when there is a

transition that belongs to a conversation that has a SendEvent with a parameter that is used outside of the

annotated conversation. Transformation 42 covers the case when the parameter is also used in an action

within a state that does not belong to the conversation, while Transformation 43 covers the case when the

variable is used in another transition that does not belong to the same conversation. The result of the

transformations is that the parameter is prepended with “parent.” to indicate that it belongs to the parent

component.

Transformation 42

∀ c : Component, st : StateTable, t : Transition, se : SendEvent, e : Event, s : State, a : Action,

p : Parameter •

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ e = se.event ∧ p ∈ e.parameters ∧ s ∈ st.states

∧ a ∈ s.actions ∧ (t.conversations n s.conversations = {}) ∧ usedInAction(p, a))

⇒

p’.name = “parent.” + p.name

 81

Transformation 43

∀ c : Component, st : StateTable, t, t2 : Transition, se : SendEvent, e : Event, p : Parameter •

(st = c.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ e = se.event ∧ p ∈ e.parameters

∧ t2 ∈ st.transitions ∧ (t.conversations n t2.conversations = {}) ∧ usedInTransition(p, t2))

⇒

p’.name = “parent.” + p.name

Continuing with our example, the parameter y is used in the SendEvent send(msg2(y), ag) on the

transition leaving State1. However, y is also used in the internalBackup(x, y, ag) event on a transition that

does not belong to the conversation. Transformation 43 changes y in the SendEvent to parent.y to indicate

that it belongs to the parent component. The resulting state diagram is shown in Figure 70.

receive(msg1(x), ag) / parent.x = x
S

^send(msg2(parent.y), ag)
E

State2

Wait
^internalBackup(x, y, ag)acknowledge

State1
parent.y = f2(parent.x)

Figure 70 – State Diagram After Transformation 43

3.4.3 Initiator Conversation Halves

In a component state table, the initiator half of a conversation is indicated by a start transition with

no ReceiveEvent, but that does have at least one SendEvent. There are two possible cases that must be

considered when dealing with the initiator sides of the conversations. The first case is that the transition

could have a non-empty set of protocols, which also implies there is a single conversation name.

Transformation 44 deals with this case, and creates a transition with a single action that represents the

execution of the conversation. The other case is when a start transition has an empty set of protocols. This

happens when a transition has SendEvents to different recipients or there is a SendEvent that is a multicast.

Transformation 45 handles this case and creates an action on the transition for each conversation that is

 82

indicated by the set of conversation names. The following steps will be taken when performing these

transformations:

• A new transition is added to component’s state diagram. The transition’s from state is the

start transition’s from state, and the transition’s to state is the end transition’s to state.

• The guard condition from the initial transition of the conversation is added to the

transition and removed from the conversation’s transition. This is done so that the

conversation is only instantiated if the guard condition is true.

• An action is added to the transition for each conversation that is started on the transition.

The action instantiates each conversation, and when the conversation completes, the

action is done, thus preserving the original semantics of the state table.

• The recipient in the first SendEvent in the conversation is added as the first parameter to

the action’s function call, and all variables used in the conversation before they are set, as

defined by isNeeded() in Appendix B, are added as parameters to the action.

Transformation 44

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ s2 ∈ st.states

∧ t.protocols ≠ {} ∧ t.start = true ∧ t2.end = true ∧ t.from = s ∧ t2.to = s2 ∧ t.receiveEvent = null

∧ t.conversations ⊆ t2.conversations ∧ (∃ se : SendEvent • se ∈ t.sendEvents ∧ se ≠ null))

⇒

(∃! t3 : Transition, a : Action, f : FunctionCall, num : String • t3 ∈ st’.transitions ∧ t3 ∉ st.transitions

∧ t3.from = t.from ∧ t3.to = t2.to ∧ t3.guard = t.guard ∧ t’.guard = null ∧ t3.conversations = {}

∧ t3.actions = [a] ∧ a.lhs = null ∧ a.rhs = f ∧ (#(t.conversations) > 1) ⇒ f.name = se.convName + num

∧ ¬(∃ t4 : Transition, a2 : Action, f2 : FunctionCall • t4 ∈ st’.transitions ∧ t4 ≠ t3 ∧ a2 ∈ t4.actions

 ∧ a2.rhs = f2 ∧ f2.name = f.name)

∧ (#(t.conversations) = 1) ⇒ f.name = t.conversations[1].name ∧ f.parameters[1] = se.recipient

∧ (∀ p : Parameter • isNeeded(p, t.conversations, st) ⇒ f’.parameters = f.parameters ∩ p))

In order to more fully describe Transformation 44, consider the state diagram shown in Figure 71.

The set above the transitions indicate the conversations to which the transitions belong. The transition from

the start state to State1 is indicated as the start of the conversation, and since there is only a SendEvent and

no ReceiveEvent, it must be the initiator half of the conversation. Figure 52 shows the state diagram after

 83

Transformation 44 creates the new transition from the start state to the end state. The action was given the

name of the conversation because there was a single conversation being started. The variable x is passed as

a parameter for the action to perform the conversation because x is sent in a message before its value has

been determined by an action in the conversation. Similarly, variables used in an action, either in a state or

on a transition, before they have been set within the conversation will also be provided as parameters to the

function for that conversation. The exception to this rule is when a variable is used before it is set, but was

prepended with “parent.” by one of the earlier transformations. In this case, the variable does not need to

be provided when the conversation is instantiated, because the variable is already referencing the parent

component.

State1
{conv1-1}

^send(msg1(x), ag)
S

{conv1-1}
receive(msg2(y), ag)

E

Figure 71 – State Diagram Before Transformation 44

State1
{conv1-1}

^send(msg1(x), ag)
S

{conv1-1}
receive(msg2(y), ag)

E

/ conv1-1(ag, x)

Figure 72 – State Diagram After Transformation 44

The next example demonstrates how Transformation 44 creates a transition and an action if the

start transition has a non-empty protocols set, but there are multiple conversations in its conversations set.

This means that the SendEvent matched up with multiple ReceiveEvents as the start of the conversation.

Figure 74 shows the state diagram after Transformation 44 has added the transition from the start state to

the end state with the action named conv1-1_2. There is a single action placed on the transition even

though there are two possibilities for which conversation actually takes place when the action is executed.

While the responder halves’ state diagrams may not be identical, from the initiator’s point of view the

messages they pass are the same so only one action is necessary. The recipient of the first SendEvent (ag)

 84

is supplied as a parameter to the function call and will be the parameter that actually determines which

conversation is started.

State1
{conv1-1, conv1-2}
^send(msg1(x), ag)

S
{conv1-1, conv1-2}
receive(msg2(y), ag)

E

Figure 73 – State Diagram Before Transformation 44

State1
{conv1-1, conv1-2}
^send(msg1(x), ag)

S
{conv1-1, conv1-2}
receive(msg2(y), ag)

E

/ conv1-1_2(ag, x)

Figure 74 – State Diagram After Transformation 44

Transformation 45

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State •

(st = c.stateTable ∧ t ∈ st.transitions ∧ s ∈ st.states ∧ s2 ∈ st.states ∧ t.protocols = {} ∧ t.start = true

∧ t.end = true ∧ t.from = s ∧ t.to = s2 ∧ t.receiveEvent = null ∧ t.sendEvents ≠ {})

⇒

(∃! t3 : Transition • t3 ∈ st’.transitions ∧ t3 ∉ st.transitions ∧ t3.from = s ∧ t3.to = s2

∧ t3.guard = t.guard ∧ t’.guard = null ∧ t3.conversations = {}

∧ (∀ cname: String • (cname ∈ t.convNames

 ∧ (∃ se : SendEvent • se ∈ t.sendEvents ∧ se.convName = cname))

 ⇒

 (∃ a : Action, f : FunctionCall, num : String • t3’.actions = t3.actions ∩ a ∧ a.lhs = null ∧ a.rhs = f

 ∧ (#(se.conversations) > 1) ⇒ f.name = se.convName + num

 ∧ ¬(∃ t4 : Transition, a2 : Action, f2 : FunctionCall • t4 ∈ st’.transitions ∧ t4 ≠ t3 ∧ a2 ∈ t4.actions

 ∧ a2.rhs = f2 ∧ f2.name = f.name)

 ∧ (#(se.conversations) = 1) ⇒ f.name = se.conversations[1].name ∧ f.parameters[1] = se.recipient

 ∧ (∀ p : Parameter • isNeeded(p, se.conversations, st) ⇒ f’.parameters = f.parameters ∩ p))))

Transformation 45 is also be described by way of an example. Figure 75 shows a simple state

diagram where there is a transition with SendEvents that start different conversations. The sets above the

 85

transitions are the conversations sets for the SendEvents, not the transitions. The first SendEvent starts

conv1-1, while the second SendEvent starts either conv2-1 or conv2-2 based on ag2, the recipient. Figure

76 shows the state diagram after Transformation 45 adds the new transition from the start state to the end

state. The new transition has two actions, one named conv1-1 that was added for the first SendEvent on the

original transition, and the other named conv2-1_2 that was added for the second SendEvent on the original

transition with conversations conv2-1 and conv2-2. Only one action was used for the latter for the same

reasons previously described.

^send(msg1(x), ag); send(msg2(y), ag2)
S

{conv1-1}

E

{conv2-1, conv2-2}

Figure 75 – State Diagram Before Transformation 45

^send(msg1(x), ag); send(msg2(y), ag2)
S

{conv1-1}

E

{conv2-1, conv2-2}

/ conv1-1(ag, x); conv2-1_2(ag2, y)

Figure 76 – State Diagram After Transformation 45

3.4.4 Responder Conversation Halves

In a component state table, the responder half of a conversation is indicated by a transition with

the start label that also has a ReceiveEvent. For responder conversation halves, Transformation 46 creates

a transition and an action to instantiate the conversation as follows:

• A new transition is added to component’s state diagram. The transition’s from state is the

from state of the transition with the start label. The transition’s to state is the to state of

the end transition in the conversation.

• The guard condition from the initial transition of the conversation is added to the

transition and removed from the original transition.

 86

• The external ReceiveEvent from the initial transition of the conversation is added to the

transition. This means that when the component receives this first message it will know

to start the corresponding conversation.

• An action is added to the transition to create the conversation. Again, the conversation

ends before the action is finished and the next state is entered.

• All parameters in the conversation that are used somewhere else, as defined by the

isNeeded() function in Appendix B, are added as parameters to the action.

Transformation 46

∀ c : Component, st : StateTable, t, t2 : Transition, s, s2 : State, re : ReceiveEvent, cid : String •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t2 ∈ st.transitions ∧ s ∈ st.states ∧ s2 ∈ st.states

∧ t.conversations ⊆ t2.conversations ∧ t.start = true ∧ t2.end = true ∧ t.from = s ∧ t2.to = s2

∧ re = t.receiveEvent ∧ re ≠ null)

⇒

(∃ t3 : Transition, a : Action, f : FunctionCall, num : String • t3 ∈ st’.transitions ∧ t3.from = t.from

∧ t3.to = t2.to ∧ t3.guard = t.guard ∧ t’.guard = null ∧ t3.convIDs = {} ∧ t3.receiveEvent = t.receiveEvent

∧ t3’.actions = t3.actions ∩ a ∧ a.lhs = null ∧ a.rhs = f

∧ (#(t.conversations) > 1) ⇒ f.name = re.convName + num

∧ ¬(∃ t4 : Transition, a2 : Action, f2 : FunctionCall • t4 ∈ st’.transitions ∧ t4 ≠ t3 ∧ a2 ∈ t4.actions

 ∧ a2.rhs = f2 ∧ f2.name = f.name)

∧ (#(t.conversations) = 1) ⇒ f.name = t.conversations[1].name ∧ f.parameters[1] = re.sender

∧ (∀ p : Parameter • isNeeded(p, t.conversations, st) ⇒ f’.parameters = f.parameters ∩ p))

An example is used to more fully explain Transformation 46. Figure 77 show a state diagram that

has a transition with a ReceiveEvent that is the start of conversation conv1-1. The sets above the

transitions show the set of conversations to which the transitions belong. Figure 78 shows the state

diagram after Transformation 46 adds the new transition from the start state to the end state with the

original ReceiveEvent and the action to start conv1-1. The ReceiveEvent is added to the transition only to

indicate that the external message has arrived. Without the ReceiveEvent on the new transition, there is no

trigger that associates the receipt of the message to the transition being activated. The component itself

does not handle the message, but instead calls the function that performs the conversation. The

conversation will handle the message as the first message in the conversation.

 87

State1
y = f(x)

{conv1-1}
receive(msg1(x), ag)

S
{conv1-1}

^send(msg2(y), ag)
E

Figure 77 – State Diagram Before Transformation 46

State1
y = f(x)

{conv1-1}
receive(msg1(x), ag)

S
{conv1-1}

^send(msg2(y), ag)
E

receive(msg1(x), ag)/conv1-1(ag)

Figure 78 – State Diagram After Transformation 46

Figure 79 shows the same state diagram as in the previous example, but this time the

ReceiveEvent has been matched to two different SendEvents and therefore there are two conversations

(conv1-1 and conv1-2) that may be started by receiving the msg1(x) message from the start state. As in the

case with the initiator conversations, a single transition and single action are used because from this agent’s

point of view the conversations are the same. Figure 80 shows that state table after Transformation 46.

State1
y = f(x)

{conv1-1, conv1-2}
receive(msg1(x), ag)

S
{conv1-1, conv1-2}
^send(msg2(y), ag)

E

Figure 79 – State Diagram Before Transformation 46

State1
y = f(x)

{conv1-1, conv1-2}
receive(msg1(x), ag)

S
{conv1-1, conv1-2}
^send(msg2(y), ag)

E

receive(msg1(x), ag)/conv1-1_2(ag)

Figure 80 – State Diagram After Transformation 46

 88

3.4.5 Moving States and Transitions From Components to Conversations

At this point every annotated conversation in the component state tables has a transition with an

action to replace the states and transitions of the conversations. Transformation 47 creates the

ConversationHalfs that contain the state tables for the initiator and responder halves of the conversations.

The states and transitions that belong to those ConversationHalfs will then be removed from the component

state tables and added to the ConversationHalf state tables by Transformation 48 through Transformation

50.

Transformation 47

∀ c : Component, st : StateTable, t : Transition, conv : Conversation •

(st = c.stateTable ∧ t ∈ st.transitions ∧ t.start = true ∧ conv ∈ t.conversations)

⇒

(∃ ch : ConversationHalf • ch ∈ c’.convs ∧ ch.convID = conv.name

∧ ((t.receiveEvent = null) ⇒ conv.initiator = ch) ∧ ((t.receiveEvent ≠ null) ⇒ conv.responder = ch))

Transformation 48 duplicates states from component state tables for every conversation half to

which they belong. Since states and transitions can belong to more than one conversation, as they are

added to the conversation half’s state table the conversation is removed from its set of conversations. Only

when that set is empty (i.e., when it has been added to the state tables of all necessary conversation halves)

are the state or transition removed from the component state table.

Transformation 48

∀ c : Component, conv: Conversation, ch : ConversationHalf, st, st2 : StateTable, s : State •

(st = c.stateTable ∧ st2 = ch.stateTable ∧ ch ∈ c.convs ∧ s ∈ st.states

∧ (ch = conv.initiator ∨ ch = conv.responder) ∧ conv ∈ s.conversations)

⇒

(s ∈ st2’.states ∧ conv ∉ s’.conversations ∧ ((#(s’.conversations) = 0) ⇒ s’ ∉ st’.states))

When a transition has SendEvents that belong to different conversations it is handled as a special

case. Transformation 49 states that if the transition has SendEvents that have different conversations, then

 89

a transition with only the SendEvents that belong to that conversation half will be added to the conversation

half’s state table. If there are no SendEvents with different conversations, then Transformation 50 adds the

entire transition to the conversation half’s state table.

Transformation 49

∀ c : Component, conv : Conversation, ch : ConversationHalf, st, st2 : StateTable, t : Transition •

(st = c.stateTable ∧ st2 = ch.stateTable ∧ ch ∈ c.convs ∧ t ∈ c.transitions

∧ (ch = conv.initiator ∨ ch = conv.responder) ∧ conv ∈ t.conversations ∧ t.protocols = {})

⇒

(∃ t2 : Transition • t2 ∈ st2’.transitions ∧ t2.guard = null ∧ t2.receive = null ∧ t2.receiveEvent = null

∧ t2.sends = {} ∧ t2.actions = [] ∧ t2.start = true ∧ t2.end = true

∧ (∀ se : SendEvent • (se ∈ t.sendEvents ∧ conv ∈ se3.conversations) ⇒ se ∈ t2.sendEvents)

∧ conv ∉ t’.conversations ∧ ((#(t’.conversations) == 0) ⇒ t’ ∉ st’.transitions))

Transformation 50

∀ c : Component, conv : Conversation, ch : ConversationHalf, st, st2 : StateTable, t : Transition •

(st = c.stateTable ∧ st2 = ch.stateTable ∧ ch ∈ c.convs ∧ t ∈ st.transitions

∧ (ch = conv.initiator ∨ ch = conv.responder) ∧ conv ∈ t.conversations ∧ t.protocols ≠ {})

⇒

(t ∈ st2’.transitions ∧ cid ∉ t’.conversations ∧ ((#(t’.conversations) == 0) ⇒ t’ ∉ st’.transitions))

As the transitions are added to the state tables of the conversation halves, the events on the

transitions are either ReceiveEvents or SendEvents. However, events in the Communication Class

Diagrams that make up the conversations use events in the receive and sends clauses. Therefore,

Transformation 51 changes any ReceiveEvent into an Event in the receive clause, and Transformation 52

changes SendEvents into Events in the sends clause.

 90

Transformation 51

∀ ch : ConversationHalf, st : StateTable, t : Transition, re : ReceiveEvent •

(st = ch.stateTable ∧ t ∈ st.transitions ∧ re = t.receiveEvent ∧ re ≠ null)

⇒

(t’.receive = re.event ∧ t’.receiveEvent = null)

Transformation 52

∀ ch : ConversationHalf, st : StateTable, t : Transition, se : SendEvent •

(st = ch.stateTable ∧ t ∈ st.transitions ∧ se ∈ t.sendEvents ∧ se ≠ null)

⇒

(se.event ∈ t’.sends ∧ se ∉ t’.sendEvents)

The last step in the transformation process is to add the start and end states to the state tables of

the conversation halves. These are simple transformations. Whenever a transition is a start transition, then

Transformation 53 creates a start state that is that transition’s from state. Likewise, if a transition is has the

end label, then Transformation 54 creates an end state that is that transition’s to state.

Transformation 53

∀ ch : ConversationHalf, st : StateTable, t : Transition •

(st = ch.stateTable ∧ t ∈ st.transitions ∧ t.start = true)

⇒

(∃ s : State • s.name = “start” ∧ s ∈ st’.states ∧ t’.from = s)

Transformation 54

∀ ch : ConversationHalf, st : StateTable, t : Transition •

(st = ch.stateTable ∧ t ∈ st.transitions ∧ t.end = true)

⇒

(∃ s : State • s.name = “end” ∧ s ∈ st’.states ∧ t’.to = s)

 91

3.5 Summary

This chapter used formal predicate logic equations to present the transformations that generate the

MaSE design models from the analysis models. The transformation system was broken down into a three-

stage process. The first stage created the agent components from the concurrent tasks based on the roles

given to the agents in the Agent Class Diagram. Other activities in this stage include determining protocols

for eternal events in the Concurrent Task Diagrams, replicating protocols in the design, and transforming

external events into internal events in the components if the designer determines the protocol they belong to

is internal. The second stage annotated component state diagrams for the start and end of conversations

and matching the events in the different components that start the conversations. The last stage added the

states and transitions from the components to their appropriate conversation halves, removing them from

the components and replacing them with a transition and an action that performed the conversation.

Chapter IV describes how the transformation system was demonstrated by implementing them in AFIT’s

agentTool.

 92

IV. Demonstration

Chapter III used predicate logic equations to define a formal transformation system that creates the

MaSE design models based on the analysis models. This chapter outlines how the transformations were

implemented and integrated with AFIT’s agentTool multiagent development environment. Section 4.1

provides an overview of the three-stage transformation process. Section 4.2 details how the

transformations were implemented in agentTool. Finally, Section 4.3 steps through an example and

illustrates how the transformations incrementally create the agent components and conversations from the

Role Model and Concurrent Task Diagrams.

4.1 Transformation System Overview

Chapter III described, in detail, how the transformation system can be thought of as the three-stage

process shown in Figure 81. Before the transformations can take place, the developer must analyze the

system and develop a Role Model, which defines the roles that are present in the system, and a set of

concurrent tasks, which the roles perform to accomplish their goals. The developer must also decide which

agent classes will be in the system and the roles that each agent class will play. During the first stage of the

transformation process, the components for the agent classes are created based on the roles assigned by the

developer. The set of protocols for each external event is also determined. The second stage centers

around annotating the component state diagrams and matching external events in the different components

that become the initial messages of a conversation. During the last stage of the transformation process the

component state diagrams are prepared for the removal of the states and transitions that belong to

conversations. They are then removed and added to the state diagrams of the corresponding conversation

halves. As they are removed from the components they are replaced with a single transition that has an

action that starts the conversation.

 93

Stage 1
• Determine the protocols for external events
• Create agent components from tasks
• Replicate protocols in Design between components
• Update the protocol set for external events in
components
• Transform external events into internal events if they
belong to internal protocols

Stage 2
• Split up transitions with non-corresponding events
• Determine the protocol set for transitions
• Set start and end attributes for transitions
• Match up conversation start events
• Propagate the conversations

Stage 3
• Prepare conversations that exit to multiple states
• Prepare variables in conversations that belong to
the parent component
• Harvest the conversations

Starting Point
• User develops the Role Model
• User defines each Concurrent Task Diagram
• User defines the roles each agent class plays

Figure 81 – Three Stages of the Transformation Process

4.2 Integration with agentTool

In order to demonstrate the transformations defined in Chapter III, a transformation system was

implemented as part of the agentTool development environment using the Java programming language.

The implementation maintained the three-stage approach. Figure 82 shows the menu that was added to

agentTool’s menu bar. The menu item Add Agent Components corresponds to the first stage of the

transformation process, Annotate Component State Diagrams corresponds to the second stage, and Create

Conversations corresponds to the third stage. If the developer selects Create Conversations from the menu

without having previously selected the first two, then they are done automatically before the conversations

are created. As previously stated, before the transformations can take place the Role Model must already

exist and there must be at least one agent class that plays each role.

 94

Figure 82 – Transformation Menu in agentTool

4.2.1 Transformation Classes

To implement the transformations, Java classes were defined for the transformations. In most

instances each transformation class represents a single transformation from Chapter III. However, there

were times when it was possible to combine several transformations into a single class. For example,

Transformation 19 through Transformation 24 all add start labels to transitions. A class named

Transform19 was created that represented all of these transformations. When a transformation class is

instantiated, the constructor calls its execute method, which is where the transformation is actually

performed.

When the user makes a selection from the transformation menu, a class is instantiated that

represents that stage of the transformation process, which in turn creates instances of the transformation

classes that execute during that stage. For example, when the user selects Create Components from the

transformation menu, a class named Stage1 is instantiated. Upon creation, the Stage1 object instantiates, in

order, the classes implementing Transformation 1 through Transformation 9.

 95

The transformations are formally defined in Chapter III using universal and existential

quantification. In most cases, a loop is used to implement universal quantification over a variable, and a

method call is used to implement existential quantification. Therefore, the transformations that use

universal quantification over several variables have several nested loops that drill down through the tree to

test each combination of the variables. An alternate approach would have been to use a visitor pattern [14]

to walk the tree, but implementing the transformations would have been more difficult and harder to

understand.

4.2.2 Model Classes

The architectural structure of agentTool already had classes for roles, tasks, state tables, etc.

These are referred to as the ATsystem classes. However, a new package was created with Java classes for

each of the types defined in Chapter II and used in the transformations in Chapter III. This was done for

two reasons. First, this made implementing the transformations straightforward. Many of the

transformations are non-trivial and translating the formal representations into code was much easier using

classes that had the same names and attributes. Secondly, the ATsystem classes were created only to hold

the information needed to visually represent the models and did not have the required granularity of detail

required to perform the transformations. For example, the transmissions on a transition are represented by

a single string. They do not distinguish between different events or whether the events are external or

internal, much less the parameters of the events. Creating the new classes in a separate package kept the

transformations loosely coupled to the existing architectural design for agentTool, whereas altering the

ATsystem classes would have risked injecting errors into the existing code. Each new class created for the

transformations held a pointer to the corresponding ATsystem class, and made updates to it whenever

necessary.

4.3 Example

This section steps through an example to demonstrate how the transformation system implemented

in agentTool creates agent components and conversations from the Role Model and the Concurrent Task

 96

Diagrams. The example does not demonstrate every possible situation that may arise, but demonstrates

many of the most common situations encountered while transforming a well-analyzed multiagent system.

This section also describes the mechanism for prompting the user for design decisions necessary to

complete the transformation process.

4.3.1 Starting Point – Role Model and Initial Agent Classes

The Role Model for a multiagent system is shown in Figure 83, which is the starting point for the

transformation process. The Role Model is fairly simple, with only three roles, each with a single task.

The Manager role is responsible for bidding out certain search tasks using the ContractNet protocol. The

Bidder role is responsible for bidding on the different tasks and then requesting a search from the Searcher

role via the SearchRequest protocol. The Searcher role uses mobility to search for the request from the

Bidder.

Figure 83 – Role Model

Figure 84 shows the state diagram that represents the Manager role’s FulfillSearchRequests task.

The task is basically the initiator half of the Contract Net protocol. When there is a task to bid out, a

multicast announcement is sent to the list of bidders. The manager then accepts bids until a set time has

 97

expired. The manager determines the winner, sending that agent a message to start the task. Every other

role in the list is sent a sorry message. The manager then waits for the results from the bidder, displaying

them when they are received.

Figure 84 – FulfillSearchRequest Task for the Manager Role

The Bid task for the Bidder role is shown in Figure 85. This task is started automatically and

enters an idle state until it receives announcement for a new task. The bidder then determines if it should

submit a bid on the task, sending the bid if it is acceptable. Once the bid has been placed, the bidder waits

for a message from the manager that indicates if it won the task or not. If it did not, then it transitions back

to the idle state. However, if it receives a start message, then it sends a message to the searcher to do the

search. When it receives the results from the searcher, they are forwarded back to the manager that

requested them.

 98

Figure 85 – Bid Task for the Bidder Role

Figure 86 defines the Search task for the Searcher role. The task is started upon receipt of a

do(task) message from a bidder. The searcher then determines if it needs to move in order to do the task.

If it does, then it attempts to move. If the move fails, then it sends a sorry message to the bidder.

However, if the move is successful or the searcher doesn’t need to move, then it searches based on the

given task. The searcher then sends the results back to the bidder if there are any, or sends a sorry message

if there are none.

Another important requirement for the transformation process to begin is that the developer must

determine the initial agent classes and the roles they play. For this example, one SearchManager agent

class plays the Manager role and the MobileSearcher agent class plays both the Bidder and Searcher roles.

This will be important as the agent components are created during the first stage of the transformation

process. The initial Agent Class Diagram is shown in Figure 87.

 99

Figure 86 – Search Task for the Searcher Role

Figure 87 – Initial Agent Class Diagram

 100

4.3.2 Stage One – Creating Agent Components

Now that the Role Model and the initial Agent Class Diagram have been defined, the first stage of

the transformation process can begin. This stage will determine the protocols for external events, create

agent components based on the roles they play, and allow the user to determine the mode of some protocols

in the design.

4.3.2.1 Determining the Protocols for External Events

The first transformations in stage one try to identify the protocols for the external events. In most

cases, this process requires no input from the user. However, in some instances it is impossible to

automatically determine in which protocols the events were meant to belong. Before the developer is asked

to make any decisions about protocols for events, the dialog in Figure 88 is displayed as information on

what is about to happen next.

Figure 88 – Ambiguous Protocols Dialog

In the example, there are two events for which the transformations could not automatically

determine the protocols. The Bid task for the Bidder role receives two different external sorry events, one

from the Manager role and another from the Searcher role. The developer is asked to make the decision for

the events one at a time. As shown in Figure 89, the transition with the event in question is highlighted in

the Bid task and another window is displayed for the developer to select the protocols for that event. The

first external event presented to the developer is the receive(sorry(task), mgr) event. This event belongs to

the ContractNet protocol between the Manager role and the Bidder role, so that protocol is chosen.

 101

Figure 89 – First Protocol Decision

The next external event for which the developer must determine the protocols is the

receive(sorry(reason),search) message, shown in Figure 90. Since that event belongs to the SearchRequest

protocol between the Bidder and Searcher roles, that is the protocol selected.

 102

Figure 90 – Second Protocol Decision

4.3.2.2 Determining the Mode for the SearchRequest Protocol

Since the developer determined that a single agent class could play both the Bidder and Searcher

roles, the developer must decide if the protocols between tasks of those roles are still external, or if they are

now meant to be internal communication. The SearchRequest protocol is the only protocol that falls into

this category, and is meant to be internal communication. When the dialog shown in Figure 91 is

displayed, the “Internal” button is chosen, and every event that belongs to the SearchRequest protocol in

the Bid and Search components are changed into internal events.

 103

Figure 91 – Dialog to Choose a Protocol’s Mode

When determining the mode for protocols in the design phase, it is possible for the user to make a

mistake. Once the developer is finished determining the mode for protocols, if any event belongs to both

an external and internal protocol, an error has been made. The developer will be notified, all of the

protocols for that event will be reset to external, and the developer will be asked again to determine the

mode for the protocols.

4.3.2.3 Agent Components

The result of the first stage of the transformation process is that components are created for the

agent classes based on the roles they play. The state diagram for the component is initially the same as that

of the task it implements. If there are any external events that belong to protocols that the developer

determines to be internal communication, the events are transformed into internal events.

In the example, a component named FulfillSearchRequests was created for the SearchManager

agent. The component’s state diagram is the same as the Manager role’s FulfillSearchRequests task, so it is

not shown again. Figure 92 shows the state diagram for the Bid component created for the MobileSearcher

agent. Every event that belongs to the SearchRequest protocol has been changed into an internal event.

Every remaining external event belongs to the ContractNet protocol with the SearchManager agent. Figure

93 shows the Search task that was created for the MobileSearcher agent. Since every event was determined

to belong to the SearchRequest protocol and that protocol was then determined to be an internal event,

every event within the component was changed into an internal event.

 104

Figure 92 – MobileSearcher Agent’s Bid Component

Figure 93 – MobileSearcher Agent’s Search Component

 105

4.3.3 Stage Two – Annotating Component State Diagrams

Now that every agent now has components with state diagrams, the second stage focuses on

annotating the components to show where conversations will begin and end. This stage will also match up

the events that become the initial messages of the conversations.

4.3.3.1 Matching up the First Messages of the Conversations

Although not the first transformations that take place during phase two of the transformation

process, the first interaction requires the developer to determine if events in different components

correspond. In most cases this can be done automatically, but as with determining the protocols for events,

there are some cases where only the developer can make the determination. In these cases, a window is

displayed with the state diagrams of both components that contain the events in question, as well as the

Role Model from the analysis phase for reference. The transitions in the state diagrams that contain the

events are highlighted, and developer is asked if the events correspond to each other.

In the example, there are three cases where the transformations can not automatically determine

that the events corresponded. The first case, shown in Figure 94, involves the aBid(task, cost) message

from the Bid component of the MobileSearcher agent to the FulfillSearchRequests component of the

SearchManager agent. These events were intended to correspond, so the “YES” option is chosen.

The two other cases, shown in Figure 95 and Figure 96, involve the start(task, cost) and

sorry(task) messages respectively, both from the FulfillSearchRequest component of the SearchManager

agent to the Bid component of the MobileSearcher agent. As in the first case, these events were also meant

to correspond, so the “YES” option was chosen for each case.

 106

Figure 94 – First Event Match Decision

Figure 95 – Second Event Match Decision

 107

Figure 96 – Third Event Match Decision

4.3.3.2 Annotated Component State Diagrams

The result of the second stage of the transformation process is that all of the component state

diagrams have been annotated, and the events that represent the beginning of conversations have been

matched.

The annotated state diagram for the FulfillSearchRequests component is shown in Figure 97. The

letter “S” at the beginning of a transition denotes where a conversation will begin, and the letter “E” at the

end of a transition represents the end of a conversation. The states and transitions between the start and end

labels will be removed from the component and placed in the conversation state diagrams in the next stage

of the transformation process. There are many different conversations that emerge from this component,

mainly because of the multicast messages that are sent in the ContractNet protocol.

 108

Figure 97 – Annotated FulfillSearchRequests Component

The annotated state diagram for the Bid component is shown in Figure 98. Again, the letters “S”

and “E” denote the beginning and end of conversations that will be removed from the components during

the next phase. There are also three new null states that were added during this stage of the transformation

process. The new null states in the diagram are the result of splitting up the transitions that had both

internal and external events, which allowed for a clear delineation of where the conversations begin and

end.

Since the Search component for the MobileSearcher agent did not have any external events left

after the first stage of transformations, the component remained unchanged during this stage.

 109

Figure 98 – Annotated Bid Component

4.3.4 Stage Three – Creating Conversations

At this point, all component state diagrams have been annotated and the initial messages of the

annotated conversations have been matched. The last stage of the transformation process moves the states

and transitions from the components to their appropriate Conversation Class Diagrams, replacing them with

a transition that has an action to do the conversation. Figure 99 shows the Agent Class Diagram after the

conversations have been added between the agents. The transformations gave the conversations generic but

unique names.

The state diagram for the SearchManager agent’s FulfillSearchRequests component after

harvesting the conversations is shown in Figure 100, and the MobileSearcher agent’s Bid component is

shown in Figure 101. As shown in each diagram, the states and transitions that belong to the conversations

are no longer in the component, but the state diagram that remains defines how the different conversations

are coordinated together.

 110

Figure 99 – Agent Class Diagram with Conversations

Figure 100 – FulfillSearchRequests Component After Stage Three

 111

Figure 101 – Bid Component After Stage Three

Each conversation shown in the Agent Class Diagram now has the appropriate states and

transitions in the initiator and responder halves, but only one conversation will be examined for the sake of

brevity. Figure 102 shows the Communication Class Diagram for the initiator half of Conversation13-1.

The state and transitions were added from the Bid component to create this is a very simple state diagram,

where the MobileSearcher agent sends the aBid(parent.task, parent.cost) message and then receives the

acknowledgement of the bid. The parameters task and cost for the aBid message were prepended with

“parent.” to indicate that they belong to the parent (Bid) component, rather than the conversation.

Figure 103 shows the Communication Class Diagram for the responder half of Conversation13-1,

harvested from the FulfillSearchRequests component. The aBid(task, cost) message is received and then an

acknowledge message is sent in return. Also to note in the state diagram are the new actions and prepended

variables. The parent.task=task action was added to the transition from the start state to the update state to

set the variable named task in the parent component because it was received as a message parameter in this

conversation and is either used within the parent component (FulfillSearchRequests), or within another

 112

conversation that belongs to the parent component. Similarly, the bidList variables in the update state’s

second action were changed to parent.bidList, indicating that the bidList variable also belongs to the parent

(FulfillSearchRequests) component.

Figure 102 – Initiator Half of Conversation13-1

Figure 103 – Responder Half of Conversation13-1

 113

4.4 Summary

This chapter described how the transformation system defined in Chapter III was successfully

integrated with AFIT’s agentTool multiagent development environment. An example was also presented to

show the input required from the developer as design decisions, as well as the output from each stage of the

transformation process.

 114

V. Conclusions and Future Work

The previous chapters of this thesis described a semi-automatic formal transformation system for

the MaSE methodology that generates agent components and conversations in the design phase from the

Role Model and Concurrent Task Diagrams in the analysis phase. This chapter summarizes the

conclusions from the previous chapters and suggests areas of future work that will enhance or extend this

research.

5.1 Conclusions

The transformation system described in the previous chapters successfully accomplished the

objectives established at the outset of this research. The transformations provide a correct and robust

methodology for generating MaSE design models from the analysis models without losing any information

from the analysis phase. A key contribution of the research in this thesis is that the MaSE methodology has

necessarily matured and expanded. In order to develop formal transformations between the different

models, the models had to be fully defined and the relationships between the models had to be identified.

The transformation system was developed as a three-stage process that incrementally forms the

design models from the analysis models. The first stage creates the initial components for the agent classes

based on the roles they play. Each agent component implements a task from the Role Model.

Transformations in this stage also determine the protocols in which external events are passed. The second

stage determines where conversations logically take place within the agent components, annotating the

state tables accordingly. External events that constitute the first messages passed in the conversations are

also matched, in some cases automatically and in others by the developer. The last stage of the

transformation process creates the conversations between the agents based on the way the agent

components are annotated. The states and transitions that belong to the conversations are removed from the

component state tables and placed in state tables for the appropriate conversation halves. When the states

 115

and transitions are removed from the component state tables, they are replaced with a transition that has an

action that starts the conversation.

The transformation system is predominantly an automatic process, requiring only a few key design

decisions from the system developer. There are many benefits from using an automated process that is

known to preserve correctness from one model to the next. One key advantage offered by the

transformation process is that it provides clear traceability between the analysis and design, simplifying the

verification process. The developer also has much more confidence that no inconsistencies or errors

occurred during the design process. Furthermore, when implemented in a development environment such

as agentTool, the transformations allow the developer to maintain the system in the more abstract analysis

models and regenerate the design when any changes are made. How many times during a software

development project are the models in the analysis phase forgotten once the project enters the design

phase? In many cases, there is simply not enough time or manpower to maintain the consistency between

the models in the two phases. The transformation system presented in this thesis can eliminate that

problem for system developers using the MaSE methodology.

5.2 Future Research Areas

The work done in this thesis brought to light many related areas where more work is still required.

This section presents those areas of future work that would benefit not only the ongoing research being

done at AFIT, but would have overarching impact on the development of multiagent systems and formal

methods for software engineering as a whole.

5.2.1 Transformation Enhancements

While the transformation system defined in this thesis fully addressed the need to automate the

transition between the analysis and design phases of the MaSE methodology, there are many other areas

where the transformation system could be enhanced and expanded. The transformations were designed to

be applied in the order they are presented. Throughout this process, the developer may be required to make

 116

some decisions that affect the eventual system design. The transformations were implemented in agentTool

accordingly, but the transformation system is a one-way process.

In order for the developer to be able to more effectively maintain the system at the analysis phase,

the design decisions that the user makes should be maintained so they can be “undone”, “redone”, or

“replayed” when applying the transformations. Most effective would be the ability to “step through” the

decisions, similar to a web browser or program debugger. Currently, if the user needs to change the

analysis of the system and desires to reapply the transformations, the developer has to make the same

design decisions again during the transformation process. Being able to “replay” the previous design

decisions would greatly enhance the interactive process. Furthermore, if a mistake is made while applying

the transformations in agentTool, the developer is unable to stop, backup, and fix the mistake. The process

must be started again from the very beginning. This is where “undo” and “redo” functionality would be of

great benefit.

The transformation system could also be expanded by defining a set of transformations that

automatically determine the attributes and methods for the agent components. These transformations

should be straightforward, and would provide the user a more complete view of the internal design of the

agent classes. The user could then supply information for the attribute types, function return types,

function parameter types, and function pre- and post-conditions. Automated verification procedures could

then be applied to the design to check for things like type-matching, etc. In addition, this would also

provide the requisite formality for transforming the design into another formal language representation, and

would improve the quality of the code that can be automatically generated from the design.

The last suggestion for further enhancements to the transformations deals with optimality. The

scope of this thesis included defining transformations that preserved correctness, but in many cases

optimality was forsaken for simplicity. One example is the way that conversations are created. After

applying the transformations, there may be two conversations between two agents that do exactly the same

thing. The current transformations do not even check for this, much less try to fix it. One possible

approach to this problem is to add an additional set of transformations that optimize the design.

 117

5.2.2 Formal Transformations for Mixed-Initiative Systems

The transformation process defined in this thesis can be thought of as a mix-initiative process

because the developer is required to make various design decisions as the transformations are applied.

However, none of the formal transformations capture the mixed-initiative aspect of the transformation

process. They simply assume that the interaction takes place at the right time and the data is available

when needed. Is there a way to formally capture the required user interaction and incorporate it into the

rest of the transformation process?

Formalizing the mixed-initiative aspect of a system could have even greater implications for other

system that have more complicated user interaction patterns, especially in systems where user interaction is

critically important. For example, a mixed-initiative strategic or tactical planning system should be able to

provide the utmost confidence to the user that the system will always perform correctly. Part of that

performance includes interaction with the user. If that interaction does not take place, or if it takes place in

the wrong order, there could be dire consequences if the user is unaware of the error. The ability to

formally capture the interaction and incorporate that with the rest of the system design could prove to be

invaluable.

5.2.3 Formal Proof

While many example cases, simple and complex, were used to test the transformation system,

there is no way to test every case to make sure that the transformations are absolutely correct and complete.

The only way to ensure correctness and completeness is to develop a formal proof of the transformations,

but in doing so would require even more rigorous formal definitions of the MaSE models and their

properties. Developing a formal proof is no small task, and an automated tool that could identify any

“missing” pieces in the formal representations of the models would be very useful, however developing

such a tool may not be feasible. Even if the transformations are proved correct, there is still the matter of

translating the formal representation of the transformation system into code, providing more than enough

opportunity for error in the implementation. In that sense, unless there is also some automated method for

 118

implementing verifiably correct transformations, the effort necessary to prove that the transformations are

correct may have diminishing returns.

5.3 Summary

This research addresses the critical need for more reliable multiagent systems, which may be one

way to provide information superiority for the Air Force and the Department of Defense during the 21st

Century. Formal transformation systems reduce mistakes made during design and implementation of

complex multiagent systems. No longer do system engineers have to hope that their design corresponds to

the analysis, thus fulfilling the system requirements. Combining the work here with research done in the

past, present, and future, provides the foundation necessary for developing multiagent systems that reliably

operate in complex, distributed environments.

 119

VI. Bibliography

[1] Shalikashvili, John M., Joint Vision 2010. Joint Staff: Pentagon, 1999.

[2] Kelley, Jay W., Air Force 2025. 2025 Support Office, Air University, Air Education and Training
Command: Air University Press, 1996.

[3] DeLoach, Scott, “Multiagent Systems Engineering: A Methodology and Language for Designing
Agent Systems,” Proceedings of the Agent Oriented Information Systems '99 (AOIS'99), Seattle, WA,
1 May 1999, 1999.

[4] Sycara, Katia, “Multiagent Systems,” in AI Magazine, vol. 19[2], 1998, pp. 79-92.

[5] DeLoach, Scott and Wood, Mark, “Multiagent Systems Engineering Methodology: the Analysis
Phase,” Air Force Institute of Technology, Technical Report AFIT/EN-TR-00-02, June 2000.

[6] DeLoach, Scott, Wood, Mark, and Sparkman, Clint, “Multiagent Systems Engineering,” submitted to
International Journal on Software Engineering and Knowledge Engineering, 2000.

[7] DeLoach, Scott and Wood, Mark, “Developing Multiagent Systems with agentTool,” Proceedings of
the Seventh International Workshop on Agent Theories, Architectures, and Languages (ATAL-2000),
Boston, MA, July 7-9, 2000.

[8] Wood, Mark, Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS thesis, AFIT/GCS/ENG/00M-26. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB, OH, 2000.

[9] DeLoach, Scott, “Specifying Agent Behavior as Concurrent Tasks: defining the behavior of social
agents,” Air Force Institute of Technology, Technical Report AFIT/EN-TR-00-03, July 2000.

[10] Robinson, David, A Component Based Approach to Agent Specification. MS thesis,
AFIT/GCS/ENG/00M-22. School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, OH, 2000.

[11] Hartrum, Thomas and Graham, Robert, “The AFIT Wide Spectrum Object Modeling Environment:
An AWESOME Beginning,” Proceedings of the National Aerospace and Electronics Conference
(NAECON), Dayton, OH, October 10-12, 2000.

[12] Saba, G. Mitchell and Santos, Eugene, “the Multi-Agent Distributed Goal Satisfaction System,”
Proceedings of the International ICSC Symposium on Multi-Agents and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA '2000) 2000.

[13] DeLoach, Scott, “Using agentMom,” Air Force Institute of Technology, 2000.

[14] Gamma, Erich, Heim, Richard, Johnson, Ralph, et al., Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Mass.: Addison-Wesley Pub. Co., 1995.

[15] Wooldrige, Michael, Jennings, Nicholas, and Kinney, David, “The Gaia Methodology for Agent-
Oriented Analysis and Design,” Journal of Autonomous Agents and Multiagent Systems, 2000.

[16] Iglesias, Carlos, Garijo, Mercedes, Gonzalez, Fose, et al., “Analysis and Design of Multiagent
Systems using MAS-CommonKADS,” Proceedings of the AAAI '97 Workshop on Agent Theories,
Architectures and Languages, Providence, RI, July, 1997.

[17] Clarke, Edmund and Wing, Jeannette, “Formal Methods: State of the Art and Future Directions,”
ACM Computing Surveys, vol. 28, No.4, 1996.

[18] Hall, Anthony, “Seven Myths of Formal Methods,” IEEE Software, 1990.

 120

[19] Green, C., Luckham, D., Balzer, R., et al., “Report on a Knowledge-Based Software Assistant,” in
Readings in Artificial Intelligence and Software Engineering, C. Rich and R. C. Waters, Eds. San
Mateo, Calif.: Morgan Kaufmann, 1986, pp. 377-428.

[20] d'Iverno, Mark, Fisher, Michael, Lomuscio, Alessio, et al., “Formalisms for Multi-Agent Systems,”
Proceedings of the First UK Workshop of Multi-Agent Systems 1996.

[21] d'Iverno, Mark and Luck, Michael, “Development and Application of a Formal Agent Framework,”
Proceedings of the First IEEE International Conference on Formal Engineering Methods 1997.

 121

Appendix A. Background

This appendix provides background information to assist the reader in understanding the concepts

that are foundational to this thesis. The material is divided into two sections. In the first section (A.1),

three different methodologies for developing multiagent system will be reviewed with respect to both the

analysis and design phases. Particular attention will be paid to the guidance given for transitioning from

analysis to design and the possibilities for automating this process for each methodology. In the second

section (A.2), formal methods and transformation systems will be reviewed.

A.1 Multiagent System Methodologies

Agent technology has received a great deal of attention in the last few years, and as a result, the

industry is beginning to develop methodologies for the development of multiagent systems. There are

currently only a few complete and well defined methodologies for multiagent systems, and many of those

lack guidance for transitioning from the analysis phase to the design phase.

The first phase of any software development is the analysis phase, which is the most crucial step

to developing a system that meets the user’s requirements and behaves in the desired manner. The

objective of the analysis phase is to transform the requirements into some abstract representation of the

system that can then be translated into a more concrete design. The analysis of a system should capture

how the system will perform, i.e. what it does, not how it does it. Since multiagent systems have different

characteristics than traditional software systems due to their distributive, cooperative nature, many of the

analysis techniques attempt to capture those unique characteristics through the idea of roles, protocols,

interactions, and organizations.

After the analysis phase, the design phase traditionally takes what the system has been modeled to

do and define how the system will do it. The output of the design phase should be a set of models at a

sufficiently low level of abstraction that they can be easily implemented. The step of transitioning from

 122

analysis to design is critical because without clearly defined methods of doing so, a design could be

developed that is inconsistent with the analysis, therefore introducing errors into the system.

A.1.1 Multiagent System Engineering Methodology

At AFIT, recent research has focused around developing and maturing the Multiagent Systems

Engineering (MaSE) methodology that is intended to cover the complete life cycle of a multiagent system

[3, 5-8]. Although MaSE is still being refined, it is probably the most complete and well defined

methodology that has been developed for multiagent systems. MaSE is comprised of the 7 steps shown in

Figure 104. The boxes represent the different models used in the steps and the arrows indicate a flow

between the models. However, MaSE is also intended to be applied iteratively. The first three steps

together represent the analysis phase of the methodology, while the last three steps represent the design

phase. It should also be noted that many of the models in the methodology are closely related to each other

and provide a fine level of granularity in detail from the beginning of the analysis to the end of the design,

sometimes blurring the lines between traditional analysis and design.

In general, the analysis phase is devoted to capturing the goals of the system and then defining

roles which will accomplish those goals through a set of concurrent tasks. In the design phase, agent

classes are defined to play the roles, and conversations are used to describe the detailed communication

protocols that the agent classes have with each other. The designer also develops a deployment strategy

through the use of a Deployment Diagram, which details on what platforms individual agent instances will

reside and what communication paths exist between the different agents.

 123

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architectue

Capturing Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

Figure 104 – Phases in the MaSE Methodology

A.1.1.1 Capturing Goals

The first step in MaSE is Capturing Goals, where the system analyst takes the system

requirements and develops a Goal Hierarchy Diagram (shown in Figure 105), which is a structured set of

system-level goals. Goals are defined as some system-level objective within the context of MaSE, and

embody what the system is trying to achieve, and generally remain constant throughout the rest of the

analysis and design process. A goal is typically a declaration of system intent, and phrased like “The

system shall …” Since MaSE uses a goal-driven approach, every action within the system must support a

specific goal.

Capturing Goals is made up of two sub-steps. First, goals are identified from the initial system

context, which is the collection of anything given to the analyst that is a starting point for system analysis.

 124

Next, the goals are analyzed and structured into a Goal Hierarchy Diagram that is used later in the analysis

phase. After roles have been identified, each role will be assigned some set of the goals. Intuitively, if all

of the system requirements have been embodied as goals and all of the goals are being fulfilled by roles

(which later become agents), then the system will meet the initial requirements.

1. Detect and notify
administrator of
host violations.

1.1.3a/1.1.2a
Ensure the admin

receives notification.

1.1.1 Determine if
files have been

deleted or modified.

1.1.2 Detect user
attempts to modify

files.

1.1.3 Notify
administrator of

violations.

1.2.1 Determine if
invalid user tries to

login

1.2.2 Notify
administrator of
login violations

1.1 Detect & notify
admin of system file

violations.

1.2 Detect and
notify administrator
of login violations.

Figure 105 – Goal Hierarchy Diagram [5]

A.1.1.2 Applying Use Cases

Applying Use Cases is the next step in MaSE, where use cases are developed and then restructured

as Sequence Diagrams. Uses cases are defined from the system requirements and are a narrative

description of a sequence of events that capture desired system behavior. Use cases can be extracted from

the requirements specification, user stories, or any other available source. Each use case should describe a

particular instance of how the system will be used. It is important to capture both positive and negative use

cases. Positive use cases describe what should happen during normal system operation, while failure use

cases capture the desired sequence of events in the case of a breakdown or failure.

Once the system analyst has a representative set of Use Cases, those sequences of interactions are

then captured in a more structured representation of a Sequence Diagram. Sequence Diagrams, as shown in

 125

Figure 106, capture a sequence of messages between the different roles being played in the system.

Sequence Diagrams provide a high-level view of how different roles interact to accomplish their goals, and

are useful when constructing the tasks that each role has. The boxes at the top of the diagram represent

system roles and the arrows between the lines represent events passed between roles. Time is assumed to

flow from the tip of the diagram to the bottom.

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

Figure 106 – Sequence Diagram [5]

A.1.1.3 Refining Roles

The next step is Refining Roles, where the analyst determines which roles will be played in the

system and defines what tasks will be accomplished by each role. The Sequence Diagrams along with the

Goal Hierarchy Diagram give the analyst insight into what roles should be played in the system. Each

participate in the Sequence Diagrams is a candidate to become a role. Roles are defined much like an actor

in a play, or a position in an organization (President, Vice President, Manager, etc). Each role must

responsible for accomplishing one or more goals in the Goal Hierarchy Diagram, and there must be at least

one role responsible for each goal. Since roles form the foundation for creating agent classes and they

represent the system goals from the analysis phase, they serve as a link between what the system is

supposed to do (the analysis phase and goals) and how it accomplishes it (the design phase and agent

classes).

 126

In Refining Roles, a Role Model is used to graphically depict the roles in the system and the

communication paths between those roles. Role Models can also enable the reuse of roles from previous

systems. The basic idea is that patterns of agent roles are constructed, labeled, and archived. When a new

system is developed, the patterns are recognized and a Role Model can be re-applied from an archive,

resulting in a collection of agent roles that satisfy a subset of the system goals. As shown in Figure 107, the

arrows on Role Models are paths of communication connecting roles, and the dots indicate multiplicity.

Figure 107 – A Role Model [8]

As part of defining the roles, the analyst also defines the tasks that each role has. . Tasks describe

the behavior that a role must exhibit in order to accomplish its goal and are specified graphically using a

finite state automaton as shown in Figure 108. A single role may have multiple concurrent tasks that define

the complete behavior of the role. As a minimum, the messages in the sequence diagrams should also be

messages being passed within a task. Concurrent tasks can be used to implement complex communication

protocols such as Contract Net, Dutch Auction, etc. [9]. This is a very important part of the analysis as it

allows the user to define how the system components will coordinate and interact with each other, which is

the strength of multiagent systems. These tasks also lay the foundation for conversations between agent

classes in the design phase of MaSE.

Figure 108 – Sample Task in MaSE

 127

In order for tasks to execute concurrently, all tasks are assumed to start execution under a separate

thread of control upon startup of the role and continue until the role terminates or an end state is reached.

Activities take place within the states and specify functions carried out by the role. One important property

of a task is that they are able to communicate with multiple tasks in order to accomplish their goals. The

tasks can belong to the same role, or they may belong to a different role. Tasks that belong to the same role

can coordinate with each other through internal events. In order for a task to communicate to a task of

another role, events that represent external communication are specified using send and receive events.

These events are defined to send and retrieve messages from an implied message-handling component of

the role.

A.1.1.4 Creating Agent Classes

Creating Agent Classes is the first step in the design phase of MaSE. Agent classes are defined

from roles and an Agent Class Diagram is produced, which depicts the agent classes and the conversations

between them at a high level. An agent class is a template for an agent that will operate within the system,

and is analogous to an object class in object oriented software engineering. When the system is deployed,

the agents in the system will be actual instances of an agent class. Agent classes are defined by the roles

they will play and the conversations they will participate in.

In order to ensure that all system goals are being met, each role must be played by at least one

agent class. This will ensure that all of the goals in the analysis phase are traceable to agents in the design

phase. In general, there is a one-to-one mapping from roles to agents where each role becomes an agent

class. There may be some instances however where the designer decides to allow an agent class to play

multiple roles, with the roles changing dynamically during execution. The designer may also allow a role

to be played by more than one agent class. These design decisions is are made either to share the

capabilities and responsibilities of a role (allowing more than one agent class to play a role), or for

performance enhancements by reducing communication overhead (combining multiple roles into an agent

class).

 128

In addition to defining the agent classes in the system, the designer must also identify the

conversations those agent classes must participate in. The details of the conversations are left to the next

step, Constructing Conversations, described in Section A.1.1.5. The conversations that an agent class must

participate in can are derived from the external communications paths defined between the roles it plays. If

roles A and B are defined by concurrent tasks that communicate with each other and agent 1 plays role A

and agent 2 plays role B, then there must be a conversation between agent 1 and 2 to implement the

communication described between roles A and B.

The product of this step is an Agent Class Diagram, as shown in Figure 109. Each rectangle

represents an agent class and a directed line represents a conversation between the agent classes. The

arrows on the lines indicate the initiator and responder in the conversation. An Agent Class Diagram is

similar to object-oriented diagrams with two exceptions. First, agents are defined by the roles they play

rather than by attributes and methods. Secondly, all relationships between classes are conversations that

may take place between two agent classes.

Figure 109 – Agent Class Diagram

 129

A.1.1.5 Constructing Conversations

Constructing Conversations is the next step defined in MaSE. This step can actually happen

before, after, or in parallel with the next step, Assembling Agents. The two steps are closely related, and it

may be beneficial to alternate between them. In the previous step, Creating Agent Classes, the designer

developed the Agent Class Diagram, which simply identified the agent classes and the conversations they

have. The goal of this step is to define the details of those conversations.

Conversations are detailed coordination protocols between two agents and consist of two

Communication Class Diagrams, one each for the initiator and responder. Conversations are at the heart of

any multiagent system, as they detail how the different agents will communicate with each other. Like

tasks, Communication Class Diagrams are finite state automaton that define the states and transitions for

each half of a conversation. One example of a Communication Class Diagram is shown in Figure 110.

Figure 110 – Communication Class Diagram

As described in Section A.1.1.4, the roles that an agent class plays determine the set of

conversations an agent class participates in. Likewise, the details of the conversations are derived from the

tasks associated with those roles. Since tasks can capture communication between multiple roles as well as

 130

communication with other tasks internal to its role, a task will likely be broken into more than one

conversation. Conversations are defined to be point-to-point communication between just two agents, and

every event within the Communication Class Diagram is defined to be a message to or from the other agent

instance participating in the conversation. Conversations do not allow for communication with multiple

agents simultaneously or internal events to be exchanged with components internal to the agent.

A.1.1.6 Assembling Agent Classes

In Assembling Agent Classes, the internal components of an agent are defined. This is a two-step

process by first defining the agent architecture and then defining the components that make up that

architecture. When constructing an agent architecture, the designer can either use a pre-existing

architecture from a set of architecture style templates or design a custom architecture from scratch. Each

architecture is built using components, which are also either custom-built or reused from an existing

component library.

Each agent component is defined using an architectural modeling language combined with the

Object Constraint Language. This allows the user to define attributes and functions that belong to the

agent. Each component can also have a finite state automaton defining the dynamic characteristics of the

component. The events passed within a component’s dynamic model will be limited to internal events with

other components that belong to that agent. There will not be any external send or receive events with

other agents in the component’s dynamic model. That is all accomplished through conversations.

A.1.1.7 System Deployment

The final step defined in MaSE is System Deployment. In this step, the designer takes the agent

classes defined previously and instantiates actual agents. A Deployment Diagram is used to show all of the

detailed information necessary to deploy the system, including numbers, types, and locations of agents

within a system. An example of a Deployment Diagram can be found in Figure 111. The three

 131

dimensional boxes are agents and the connecting lines between them represent conversations between those

agents. A dashed-line box indicates that agents are housed on the same physical platform.

Figure 111 – Deployment Diagram [8]

Deployment Diagrams offer the designer an opportunity to tune the system by defining various

configurations of agents and computers to maximize available processing power and network bandwidth.

If the user has not specified the particular number of components or the specific computers on which

certain agents must reside, the designer should consider the communication and processing requirements

when assigning agents to computers. If two agents have a high degree of communication, then the designer

may decide to deploy them on the same machine. However, overloading a machine with too many agents

reduces the advantages of distribution gained using the agent paradigm. Furthermore, the designer may

decide to dedicate a machine to a single agent if that agent has high processing requirements.

A.1.1.8 Transitioning from Analysis to design - MaSE

Not only does MaSE provide guidance from the analysis to design phase, but it provides guidance

throughout the entire development process. The models in each step are clearly influenced by models in

previous steps due to strong relationships between the information being presented in them. Specifically, it

 132

is clear that roles are related to agent classes and the tasks that the roles perform are then both related to the

conversations between those agent classes and to some aspects of the agent’s internal components. Since

there are such strong relationships between the models in this methodology and there is clear guidance on

making the transition from analysis to design, this methodology has the most promise for automation.

While there are still many places where the developer has to make design decisions, once those decisions

are made, going from one model to the next should be straightforward transformations.

A.1.2 Gaia Methodology

Another recent attempt at developing a full methodology for both analysis and design of a

multiagent system is the Gaia methodology by Wooldrige, Jennings, and Kinney [15]. This methodology

was developed for systems with a relatively small number (less than 100) of heterogeneous, autonomous

agents attempting to maximize some global quality measure. Each agents services and the relationships

they have with other agents are assumed to be static and will not change during run-time.

A.1.2.1 Analysis Phase - Gaia

The highest level of abstraction that the analysis phase attempts to capture is the organization of

the system, which is a collection of roles that have relationships with one another and take part in

systematic, institutionalized patterns of interactions with other roles (shown in Figure 112).

 System

Safety
Properties

Protocols Permissions Responsibilities

Roles

Liveness
Properties

Figure 112 – Abstract Analysis Hierarchy [15]

 133

The Gaia methodology views the system as a society or organization, and the elements of that

society are defined as roles. Roles are a natural abstraction for a multiagent system and are analogous to a

typical company structure. A company has roles such as “president”, “vice-president”, and “manager” all

arranged in some hierarchical fashion. The idea of a role is not a static representation because someone

acting as one role may later (or at the same time) also play the part of a different role. Roles are initially

captured in a prototypical roles model, which will be incrementally expanded and fully elaborated by the

end of the analysis phase.

A role is defined by four attributes: responsibilities, permissions, activities, and protocols.

Responsibilities determine the functionality of a role and may be their key attribute. An example

responsibility associated with the role of mail clerk might be to deliver and pick up mail to and from each

required office. Responsibilities are divided into two types: liveness properties (something good that

should happen) and safety properties (or invariants). Permissions are the “rights” associated with a role

and identify the resources that are available to a role in order to achieve its responsibilities. In multiagent

systems, these permissions tend to be information resources. Activities of a role are computations

associated with a role that may be carried out by the agent without interacting with other agents. Protocols

define the way that a role can interact with other roles, for example “Dutch auction”, “English auction”, or

“Contract Net”. A protocol definition consists of the following attributes: purpose, initiator, responder,

inputs, outputs, and processing. After protocols have been identified, an interaction model is produced

which captures the recurring patterns of inter-role interaction.

A.1.2.2 design Phase - Gaia

In the Gaia methodology, the goal of the design phase is a little different than the traditional

interpretation. The analysis model is transformed into a sufficiently low level of abstraction so that

“traditional design techniques” can be applied to implement the agents. During the design phase, the

designer will generate three models: the agent model, services model, and the acquaintance model.

 134

The agent model documents the various agent types in the system. An agent type can be thought

of as a set of agent roles. A designer can choose to package a number of closely related roles in the same

agent type for the purpose of convenience and sometimes for better efficiency. The Gaia agent model also

documents the run-time cardinalities of agent instances.

The services model identifies the services associated with each agent role and specifies the main

properties of these services. Specifically, the inputs, outputs, pre-conditions, and post-conditions of each

service are identified. Inputs and outputs are derived from the protocols model and pre- and post-

conditions are derived from the safety properties of a role.

The acquaintance model simply defines the communication links that exist between agent types.

They do not define what messages are sent or when messages are sent. This doesn’t really seem to exploit

the power inherent to multiagent systems, which is their ability to coordinate with each other through the

idea of conversations or sequences of messages.

A.1.2.3 Transitioning from Analysis to design – Gaia

While the Gaia methodology gives sound guidance for developing the design models from the

analysis models, the resulting design is still at a rather high level of abstraction. The methodology gives no

real guidance on how to transform the design models into a sufficiently low-level of design to implement

the system. The methodology needs to be expanded to either incorporate lower level design models or

provide more guidance on how to refine the current models to a “traditional” system design. With such a

lack of detail given, it would be very difficult to try and automate this process. To automate the generation

of the design models described in this methodology would be of little use.

A.1.3 MAS-CommonKADS

Another complete multiagent system methodology that has been proposed by Iglesias, Garijo,

Gonzalez, and Velasco is the MAS-CommonKADS methodology [16]. This methodology extends

CommonKADS for multiagent systems by adding techniques from object oriented methodologies and

 135

protocol engineering. The general software process combines a risk-driven approach with a component-

based approach.

A.1.3.1 Analysis Phase - MAS-CommonKADS

The first phase of analysis is Conceptualization, where the analyst determines use cases from the

initial user requirements and then formalizes them with Message Sequence Charts. The purpose of this

phase is to capture roles and to develop an initial understanding of the interactions that must take place

between those roles. After the Conceptualization phase, a requirements specification of the system will be

generated through the development of six models, each consisting of constituents (the entities to be

modeled) and relationships between the constituents.

The first model is the Agent model, which specifies the agent characteristics such as reasoning

capabilities, skills (sensors / effectors), services, agent groups and hierarchies (both modeled in the

organization model). The second model is the Task model that describes the tasks that the agents can carry

out through description of goals, decompositions, ingredients and problem-solving methods. The third

model, the Expertise model, describes the knowledge (information sources) needed by the agents to achieve

their goals. The fourth model is the Organization model that describes the organization into which the

MAS is going to be introduced and the social organization of the agent society. The Coordination model is

the fifth model, which describes the conversations between agents: their interactions, protocols and

required capabilities. The last model, the Communication model, details the human-software agent

interactions and the human factors for developing these user interfaces.

There are no examples of the models in this methodology, but it does describe how these models

are developed in a risk-driven way through the following five steps. The first step is Agent modeling,

where you develop the initial instances of the agent model for identifying and describing the agents. The

next step is Task modeling, where tasks are decomposed and the goals and ingredients of the tasks for each

agent are determined. The third step is Coordination modeling, where the coordination model for

describing the interactions and coordination protocols between the agents is developed. The fourth step is

 136

Knowledge modeling, where the knowledge on the domain, the agents (knowledge needed to carry out the

tasks and their proactive behavior) and the environment (beliefs and inferences of the world, including the

rest of the agents) is modeled. The last step is Organization modeling, where the organization model is

developed. Depending on the type of project, it may be necessary to model the organization of the

enterprise into which the MAS is going to be introduced to study the feasibility of the proposed solution.

In this case, two instances of the organization model are developed: before and after the introduction of the

MAS. This model is also used to model the software agent organization.

A.1.3.2 design Phase - MAS-CommonKADS

From the initial set of models defined in the analysis phase, a design model is produced that is

subdivided into three sub models, the Agent Network design, Agent design, and Platform design. The

Agent Network design model describes the infrastructure of the MAS and consists of network, knowledge

and coordination facilities. The agents that maintain this infrastructure are also defined, depending on the

required facilities such as network facilities (agent name service, register and subscription service, transport

/ application protocols, etc.), knowledge facilities (ontology servers, knowledge representation language

translators, etc.), and coordination facilities (coordination protocols, protocol servers, group management

facilities, police agents, etc.).

The Agent design model defines the appropriate architecture for each agent, and agents can be

introduced or subdivided according to pragmatic criteria. Each agent is subdivided in modules for user

communication (from communication model), agent communication (from coordination model),

deliberation and reaction (from expertise, agent and organization models), and external skills and services

(from agent, expertise and task models).

The last model is the Platform design model where the decisions on software (multiagent

development environment) and hardware that are needed for the system are captured.

 137

A.1.3.3 Transitioning from Analysis to design – MAS-CommonKADS

While there are some indications of what models in the analysis phase affect the models in the

design phase, exactly how they are related is not specified. In fact, there are no examples of some of the

analysis models and no examples of the design models. Without more concrete information on the models

and how they relate to each other, one can only speculate on how easy it would be to automate the process

of transforming the analysis models into design models.

A.2 Formal Methods

Computer systems continue to grow in scale, functionality and complexity, increasing the

likelihood of subtle errors. A major goal of software engineering is to enable developers to construct

systems that operate reliably despite this complexity. One way of achieving this goal is by using formal

methods, which are mathematically based languages, techniques and tools for specifying and verifying such

systems. While formal methods do not necessarily guarantee correctness, they can greatly increase our

understanding of a system by revealing inconsistencies, ambiguities, and incompleteness that might

otherwise go unnoticed [17].

Hall [18] uses the term formal methods to describe the use of mathematics in software and details

the main activities in using formal methods:

• writing a formal specification

• proving properties about the specification

• constructing a program be mathematically manipulating the specification

• verifying a program by mathematical argument

The first step, writing a formal specification, may be the most important part of formal

development. A formal specification gives an unambiguous, precise definition of exactly what the system

is intended to do, and is the foundation for all other activities relating to formal development. For many

 138

projects, this is the only part of the development that is formal. The major benefit of using formal methods

to write a system specification is that they require the analyst to more fully understand the system because

errors and ambiguities become blatantly obvious.

Once a formal specification has been developed, since the specification is mathematical in nature,

the developer can prove things about the specification, as well as the program. These proofs may deal with

the consistency of the specification, the completeness of operation definitions, or that the specification will

meet certain key requirements. For safety-critical systems, these proofs may be of great importance. In

any case, errors at this stage are more costly than implementation errors, so proofs of these properties are

correspondingly more important than proofs of implementation.

If a developer wants to implement a system formally, instead of writing the program and then

trying to prove that it meets the specification, the program is constructed through a transformation system,

described below. Since the each step of the transformation system is provably correct, then the program is

correct by construction and can be mathematically verified.

A.2.1 Transformational Programming

Within the recent developments in formal methods, a new paradigm for software development has

emerged, transformational programming, in which software is developed, modified, and maintained at the

specification level, and then automatically transformed into production-quality software [19]. The basic

idea behind a transformation system is to take a formal specification for the system and apply a series of

correctness-preserving transformations that translate the system specification into a system design and then

into executable code. If each transformation preserves correctness, the resulting system is guaranteed to be

correct, but only with respect to the specification. If the specification is not correct, neither will resulting

design and code be correct.

Hartrum and Graham [11] describe a semi-automated software synthesis process using a

transformation system shown in Figure 113. First, domain knowledge is stored in a formal domain model.

Then a formal specification for a specific problem is generated by an application engineer from the domain

 139

model. The developer will then apply a series of transformations, each of which are verified to preserve the

correctness of the system, to produce a formal design specification. Finally, further transformations are

applied to generate the executable code.

Figure 113 – Typical Transformation System [11]

While transformational programming has the obvious benefit of decreasing the chances for errors

in the implementation, there are also other more subtle benefits. First, by developing the system in an

automated fashion from the specification, system maintainability is greatly increased because changes to

the system will also be made to the specification, not directly to the code. In the traditional software life

cycle, over half of the cost is attributed to software maintenance and modifications because they are done at

the code level. After a few rounds of modifications, the code has usually become unstable and is very

difficult to make further changes to. The original design information is usually lost and the documentation

has not been maintained, making it inadequate and outdated. The only recourse is an expensive

reengineering effort that includes recovering the design of the existing system. In transformational

programming, changes are made to the specification, and the code is automatically generated by re-

 140

applying the transformations, most of which will not have changed since the last time through the

transformation process.

Another benefit of transformational programming is that it makes it easy to reuse portions of

previous software systems when abstract components can easily be adapted to the context of a new

software system. Instead of trying to reuse portions of the code, which can be difficult to deal with even in

a modularized system, a developer can simply reuse portions of the specification, which are abstract and

easier to manipulate. Additionally, the specification may be contained in different analysis models, where

CASE tools can make the reuse of these models almost trivial.

A.2.2 Formalisms for Multiagent Systems

Agents are a natural next step in software engineering, representing fundamentally new ways of

viewing complex distributed systems in the context of societies of cooperating autonomous components.

Since agents have unique properties, new formal representations must be developed in order to take

advantage of formal methods in the development of agent-oriented and multiagent systems. d’Iverno, et al.

[20] list the necessary attributes of formalisms for agents:

• provide a precise and unambiguous language for specifying systems’ components and

behavior

• address the needs of practical applications of agents, by being capable of expressing some

or all of various aspects of agency including, but not limited to, perception, action, belief,

knowledge, goals, motivation, intention, desire, motivation

• help identify properties of agent systems against which implementations can be measured

and assessed

• measure, evaluate, classify, and study implementations

They also further detail attributes of a formalism for multiagent systems, as they add another

dimension to agent-oriented systems. They state that formalisms for multiagent systems should also deal

with the multiplicity of agents, group properties of agent systems, such as common knowledge and group

intentions, and interaction among agents, such as communication and cooperation. In a later paper,

 141

d’Iverno and Luck [21] extend the framework to include inter-agent relationships, and give an approach

using Z.

A.3 Summary

This appendix provided background information on previous research that supports this thesis.

The first three sections presented three multiagent engineering methodologies; Multiagent Systems

Engineering (MaSE), the Gaia Methodology, and MAS-CommonKADS. The analysis and design phases

were described for each methodology, as well as any guidance for transitioning from the analysis models to

the design models. The last section presented some background information on formal methods and

transformation systems.

 142

Appendix B. Functions Used in the Transformations

This appendix provides formal definitions for some of the functions used in the transformations in

Chapter III. Each function is defined by pre- and post-conditions, and returns a Boolean value based on the

evaluation of the post-condition expression.

B.1 The isAssigned Function

The isAssigned function is a recursive function that takes a SendEvent and a transition and looks

backward in the state table to see if an action was used to set the recipient of the send event.

function isAssigned(se : SendEvent, t : Transition, st : StateTable) returns Boolean

Precondition : true

Postcondition :

 (∃ a : Action, s : State • s ∈ st.states ∧ s = t.from ∧ a ∈ s.actions ∧ se.recipient ∈ a.lhs)

 ∨ (∃ t2 : Transition, re : ReceiveEvent • t2 ∈ st.transitions ∧ t2.to = t.from

 ∧ re = t2.receiveEvent ∧ (re.sender ≠ se.recipient ∨ re = null)

 ∧ ¬ (∃ se2 : SendEvent • se2 ∈ t2.sendEvents ∧ se2.recipient = se.recipient)

 ∧ ((∃ a : Action • a ∈ t2.actions ∧ se.recipient ∈ a.lhs) ∧ isAssigned(se, t2, st)))

B.2 The usedInAction Function

The usedInAction function returns true under three conditions: 1) the parameter’s name is used in

the action’s lhs tuple 2) the parameter’s name is used in a tuple in the action’s rhs and 3) the parameter is

used in a FunctionCall in the action’s rhs.

function usedInAction(p : Parameter, a : Action) returns Boolean

Precondition : true

Postcondition :

 ∃ param : String, f : FunctionCall •

 param = p.name ∧ (param ∈ a.lhs ∨ param ∈ a.rhs ∨ (f = a.rhs ∧ p ∈ f.parameters))

 143

B.3 The usedInTransition Function

The usedInTransition function returns true if the parameter given as input is also a parameter of

the transition’s receive Event, the Event of the receiveEvent, one of the send Events, the Event of one of

the sendEvents, or it is used in one of the transition’s actions. There was no formal definition given for the

Boolean expressions used in a transition’s guard condition. Boolean expressions can be represented in

whatever formal language is chosen. Therefore, the usedInGuard function is defined to return true if the

parameter is used somewhere in the guard condition.

function usedInTransition(p : Parameter, t : Transition) returns Boolean

Precondition : true

Postcondition :

 ∃ e : Event, se : SendEvent, re : ReceiveEvent, a : Action •

 (e = t.receive ∧ p ∈ e.parameters) ∨ (e ∈ t.sends ∧ p ∈ e.parameters)

 ∨ (re = t.receiveEvent ∧ e = re.event ∧ p ∈ e.parameters)

 ∨ (se ∈ t.sendEvents ∧ e = se.event ∧ p ∈ e.parameters)

 ∨ (a ∈ t.actions ∧ usedInAction(p, a)

 ∨ usedInGuard(p, t.guard))

B.4 The isNeeded Function

The isNeeded function is used to determine if a parameter needs to be supplied to an action that

starts a conversation. The function returns true if there is a transition belonging to the conversation that

uses a parameter and that parameter is not assigned within the conversation prior to being used. The

function also returns true if the parameter is used in an action in a state that belongs to the conversation,

and that parameter is not assigned prior to being used. The usedInAction() and usedInTransition()

functions are used as defined earlier, and the isAssigned() function returns true if the parameter has been

set in an action either in a state or on a transition before the parameter is used. This means that parameters

that are used in a conversation before explicitly being set must be supplied as a parameter when the

conversation is started.

 144

function isNeeded(p : Parameter, convs : {Conversation}, st : StateTable) returns Boolean

Precondition: true

Postcondition:

 (∃ t : Transition •

 t ∈ st.transitions ∧ (convs n t.conversations ≠ {}) ∧ usedInTransition(p, t)

 ∧ ¬isAssigned(p, convs, st))

 ∨ (∃ s : State, a : Action •

 s ∈ st.states ∧ (convs n s.conversations ≠ {}) ∧ a ∈ s.actions ∧ usedInAction(p, a)

 ∧ ¬isAssigned(p, convs, st))

 145

VITA

Lt Clint Houston Sparkman was born in September 1974 in Nacogdoches, Texas. He graduated

from The Colony High School in The Colony, Texas in June 1993, and he married Casey J. Hall on June

22, 1996. In December 1997, he received a Bachelor of Science degree in Computer Science from

Southern Methodist University, and was commissioned as a distinguished graduate through Detachment

835 AFROTC at the University of North Texas. His first assignment was to the Air Force Research Lab at

Kirtland AFB, New Mexico. In August 1999 he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology. Upon graduation, Lt Sparkman will be assigned to the

690th Computer Systems Squadron, Air Intelligence Agency at Kelly AFB, Texas.

 1

