A FORMAL METHODOLOGY AND
TECHNIQUE FOR VERIFYING
COMMUNICATION PROTOCOLS IN
A MULTI-AGENT ENVIRONMENT

THESIS

Timothy H. Lacey, Captain, USAF

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the officia policy or

position of the Department of Defense or the U.S. Government.

AFIT/GCSENG/00M-12

ACKNOWLEDGMENTS

| would like to express my sincere appreciation to my faculty advisor, Mg Scott Deloach,
for his guidance and support throughout the course of this thesis effort. His insght and
experience was certainly appreciated, and his teaching provided a wedth of knowledge that
enabled me to complete this thesis. Thanks to Dr. Tom Hartrum for advice and guidance early on
which greatly decreased the effort required to complete this research and to Mg Michael Tabert
for serving on my Thesis committee. | would aso like to thank my sponsor, Captain Freeman
Alex Kilpatrick, from the Air Force Office of Scientific Research, for both the support and
latitude provided to me in this endeavor.

Most importantly, | would like to express great gppreciaion to my wife Sandy, my sons
Danid, Joel, Joshua, and Jonathan, and my daughter Shauna, whose unwavering love,
understanding, and sacrifice over the past 18 months alowed me to focus on my studies in this

graduate program. Without their support, completion of this program would have been

impossible.

Timothy H. Lacey

AFIT/GCSIEENG/00M-12

Table of Contents

Page

ACKNOWLEDGMENTS ...ttt s Il
TABLE OF FIGURES ...ttt essss st st sass s ssssssssessssessssssssssssssssssssssssnsesnnsesnnes VIII
[INTRODUGCTION....cetitueeeresreressesessesesssssssssssessnsesssssnsssssssssssssesns 1
1.1 BACKGI OUNG......ierieiieeeesesseses sttt 2
B2 To =L oo TR 2
1.3 ProbIem SAEMENT ..ottt bbb bbb 4
R NS o 0] 1 TR 4
1.5 TRESIS OVENVIEW.......eeeeeeceeeeereeee et sesss e sss s se st ss s s e e s sessesesssessssesnsesessensansnsenssnses 5

[1. BACKGROUND.....cutuereeereessesessesesssssssssssessasssssssesansesssssnssssssssessssesns 6
2.0 OVEIVIBW ..ottt st b bbb £ b e s b £ et b ettt en 6
2.2 Multi-agent Systems and Agent CONVEr SALIONS........ccccureceeieenensessesese et ssssssssessssssesens 6
2.3 Verifying Agent Conversations Using Formal Methods..........ccooceervenecnnescsiesessesseseeenns 8
2.4 Properties of CommuNiCation SYSLEMS.........ccccviieerreeerresesseses s sesssssesssssssssssssssees 10
2.4.1 Generic Properties of CommuniCation SYSIEMS........coucveirrrereirenrereesereereese e 10
2411 DEBAIOCK ...ttt 10

2.4.1.2 INfINITE OVEITAKING ...c.veeeieieeetee ettt ettt se e e e e ae st e e be e eneseeneenens 11

24 L3 LIVEIOCK ..ottt 12

2.4.2 User-defined Properties of Communication SYSEEMScceveoereereereneneseesieseseseeeseeseene e 12
2.4.2.1 SEFELY PrOPEITIES. . .ecveuieieeteiristete ettt ettt 13

2.4.2. 1.1 NONEEIMINGLTION......eitiirtiieierieiee ettt se et st e b e esbe e st sbe e ebeseeneeaens 13

2.4.2.1.2 CONAItIONA SEFELYcuerereeeieririeteires ettt 14

2.4.2.2 LIVENESS PrOPEITIES......cveueitiieieieieiteesie sttt sttt be et st e b et ebe e bt e snen 14
2.4.2.2.1 GUAIraNtee PrOPEITIES......ccueerieieieriecrienie e es e sttt et e st st e st seenesteneeseseeneesens 14

AFIT/GCSIEENG/00M-12

2.4.2.3 Obligation PrOPEITIES........coeieiuirieerieierierieerte sttt sttt ae et seene e eban 14
2.4.2.3.1 RESPONSE PrOPEITIES.cvveeiiiirieieinesie ettt 15
2.4.2.3.2 PerSIStenCe PrOPEITIESceiuiieierieerieee sttt st 15
2.4.2.3.3 REACLIVILY PrOPEITIES.....cciveveeirireeteiresieteeses ettt 15

24,3 SUMMIBIY ..ttt s st s st e s e b e e s b e e bt s b e e st e ae e s e s e s e R e eR e eb e eh e e heeas e s e b e nbeneenbenbenbe e 15
2.5 Formal Languages and Automated Verification TOOIS..........ccoovrrrrreninenneeneneseereseeenes 16
2.5.1 Communicating SeqUENtial PrOCESSES.......c.ciucerterererieeriereeesieessesee et e e e seeseeneseeseenesean 16
2.5.2 Failures-Divergence REFINEMENT 2.t 17
2.5.3 Calculus of COMMUNICATING SYSLEIMIS.....c.couiiieeriiirierieerieree et sb e s eae e 17
2.5.4 The ConcurrenCy WOrKBENCN.............ciiiiiieeee ettt 19
2.5.5 ProCeSS MEtALANQUABJE.ccviiriirieiiiiieiieee ettt nr e nne e 19
2258 SPIN.cerrvveeeeeeeeeeee oo 21

2.5.8. L ENU SEALES. ..ottt 22

2.5.6.2 PrOgrESS SLALEScviuieeieiieeeieeiee ettt et st nne e 22

2.5.6.3 ACCEPL SHALES.....ueeueeieeiiieisie st sttt ettt ae e e s te s te s be e ae e reese e e et et e b e renreerennes 23

2.5.6.4 NEVES ClAIMS......coiiiriereiresieeeres ettt 23

2.5.6.5 EXAMPIE ClalM c..eiitiiciicicecte ettt sttt st st e b et neebe e eneseeneanen 24

2.5.7 SUMIMBIY ..ottt e e e e s e e e e bt s bt e he e e e e e s e s e eReeR e eR e eheemeensens e b e neeneenbenbenrene 25
[T, M ETHODOLOGY ...veieuirierieteseeesiesesseseesessesessessesessessssessasessesssssssesssssnsssesssssssensesesssnsssensesessensssessesessensnns 26
oL INEFOTUCTI ON..eteteee ettt 26
3.2 Modeling Agent Conversations with State Transition Diagrams.........ccoveerereneeerereseeenene 26
3.3 Converting a State Transition Diagramto a State Table.........cccooevrnnncnsnecnecneeenns 28
3.4 Creating Promela Code from a State Tabl ... 30
3.4.1 MeSSage TYPE DECIAratiONS.......ccciieiiieiectis ettt sttt st snenennan 30
3.4.2 Channel DECIArAHIONScveirerrereiresieieere ettt n e 30
3.4.3 Process Declarations (PrOCLYPES)......cuiireeriiieieitireeisieestesseessesessessesessesssessesessessesessensssessesessen 31
3.4.4 Process Declarations (INI)coceereeeriereeerieesieresie ettt 33
345 Verifying MESSA0E SEOUENCES......c.couiueiiuiririereeristeiet ettt ss bbbt b e naeneneas 33

AFIT/GCSIEENG/00M-12

3.5 Verifying a Communication ProtoCol USING SPIN......c.ccverecrrierrinninneenesesesrsesessseesseesees 37
3.5.1 Compile the SOUICE COUE..........coeiueeeerieeeterie ettt s sb e et nean 37
3.5.2 Generate the ANAYZEr FIIES.......c.coiiieirsecer et 37
3.5.3 EXECULE tNE ANAIYZEN.......coieeeieieecte ettt sttt sttt et neetenneneanan 38

3.6 INLErPreting RESUITS.......c.cuieeieeeeiretreee et 40

37 SUMIMBIY ...t 42

IV . IMPLEMENTATION. ..ccuttrteteuiesissesesesiesesesssesseesessessnesessesesessssssessssssesensssnsenesessesssesssesanessssesensssssesssssns 4

4.1 TN OTUCTION..evtteeeie ettt 44

4.2 VerifiCation OVENVIBW.......c.cuirereeeeeeesceeesese s s sesssse s ssssessessssessesse s sssssssssssssesssnees 44

4.3 SYSLEM DESIGN ..evveeceeererereste st sesessses st ss s s e e ss s st et ee e s s s se s sssessssesnsnsnsesnsnsnsnsnsnsaens 45
4.3.1 DEfINE CONVEISALIONSeueeriieree ettt nn s 45
4.3.2 Build Conversation State TabIe..........ccueiiinnniirr s 46
4.3.3 BUIIA ProME@COOEcceiereeiereeiccree et 46

4.3.3.1 Declare Mtype VaTahlEScooviiuiiriieiersiicer et 46
4.3.3.2 DECIAare ChanNEIS.........ccciiirireeiriee et 47
A.3.3.3 BUIIA PrOCLYPES ...ttt 47
4.3.3.4 BUild iNIT PrOCEAUE........coiiiiiiiiriictire et 48
4.3.3.5 BUIIA NEVES ClAIM ...ttt 48
4.3.4 Check for Valid CONVEISBLIONS.........c.ctriiitrininiiisi sttt sttt st 49
4.3.5 CheCK fOr DEAAIOCKcceieereeierieiecre ettt 50
4.3.6 CheCK fOr NON-PrOGIESS.......ccuiiieuiiiiiete ittt sttt b st saeae b e e be s ese b e et e 51
4.3.7 CheCK Valid SEOUENCE. ...ttt sttt ettt se s b et n s e s ee e ene s 51
4.3.8 Provide FEEADACK ...ttt s 51

B4 EXAMPIES.....onieitieeireee ettt s 52
4.4.1 Conversation WithOUL EITOT...........ccoiiiiiinecisre e 52
4.4.2 CONVErSation WIth EFTONc.ciiiieiiiieecese e 56
4.4.3 Message SequenCe VENTICaliONcccovvciiieei et 60

4.5 ANAIYSIS....eeeieeiatiresetsese et 62

AFIT/GCSIEENG/00M-12

A5 L EITOrS DEIECIEM. ...ttt 62

4.5.1.1 Conversation DEAIOCKS..........ccvuiuiiriiieiei ittt 62

4.5.1.2 UNUSEH SEALESceeeeuiieeeie ettt ettt b bbbt s b e e et st e e e b se e e st e s enenean 63

A5, 1.3 UNUSEA MESSAOEScovveuereireieireeseste ettt es et ss st e et b st s s bt nn bbb s e s enenn 64

4.5.1.4 Mislabeled TranSitiONS........cccvvrrireiriieec s 64

4.5.1.5 Inability to Create ReqUIred SEQUENCEScvoerrrereinrrieiiesesiereese s 65

4.5.2 UNAEtECLADIE EITOIS.....c.ciiiiiiitiit ettt sttt ettt 65

A5.2. 1 TIMING EFTOIS ...ttt se b b e e b e e e bese et eb e e ebeseeneseensenesean 66

4.5.2.2 FlOGHNG SEAES....cueiveuieieeeiiiteicteseett et s et be e e sttt sesbesesbe s e sesaeseesessesessensetensesenean 66

4.5.2.3 HArAWare FAIUIEScooeiieieirie et 67

4.5.2.4 GUAA CONUITIONSccviuiiieieiiirieiee ettt enen 67

4.5.2.5 Interacting Conversations DeaAIOCKccocoeiiriririeiirierreseeree e 67

TGS W 001001 /T 68

V. CONCLUSIONS AND FUTURE WORKccceiirtetietereetesteseetesaesestesessessesessesssessesessesssssssesssssnsesessessssensasens 69

B L INEFOTUCTION..eeeeet et 69

5.2 CONCIUSIONS....couriiuiieirisetietet sttt bbbt b bbbttt 69

5.2.1 Automatic Verification of Multi-agent CONVErSationsS...........cccveereiererieieseresieseeesseesesseseenas 69

5.2.2 Implementation With @0ENtT OO0ccvoirrieiiirieee e 71

BLB FULUMNE WWOTK ..ottt bbb bt 71

5.3.1 Development of & SyntaX ChECKE ..ot 72

5.3.2 Verification of an Agent’s State-based BENAVIOc.coveeieirieneeneneereee e 73

514 SUIMIMIAI Y.ttt et 73
BIBLIOGRAPHY ..ottt sae s ssss e ssss st et e s s sesssssessssesnsssassenssnsnessnssnsssnenes 75
APPENDIX A: MESSAGES FOR ERROR CONVERSATION ..o 77
APPENDI X B: MESSAGES FROM MESSAGE SEQUENCE VERIFICATION 78

Vi

AFIT/GCSENG/00M-12

Vii

AFIT/GCSIEENG/00M-12

TABLE OF FIGURES

Figure Page
FIGURE 1: INITIATOR HALF OF CONVERSATION SENDINFO (DELOACH, 1999).......cvurveererereereseesesseessssesensesanss 7
FIGURE 2: RESPONDER HALF OF CONVERSATION SENDINFO (DELOACH, 1999)........ovvveeeeeereereseeeeseseeseeseseenesons. 7
FIGURE 3: TOP LEVEL VIEW OF METHODOLOGYovuevvvuaressssssssssssassssassssssesssssssssssssssssssssssesssssessssssssssnssssssssssns 27
FIGURE 4: INITIATOR HALF OF CONVERSATION SENDINFO.........uurvivueeiieesssees st ssssesssssessssesssssessssssssssasssssens 28
FIGURE 5: RESPONDER HALF OF CONVERSATION SENDINFO........covuureisuiessssesssssssssssesssssesssssesssssesssssessssssssssassssens 28
FIGURE 6. STATE TABLE OF CONVERSATION SENDINFO......cvuevveeeseesssesssesssnsssanssssssssnssssssssssssnssssnssssnsssnsssnssens 29
FIGURE 7: PROCESS SENDINFORESPONDER.........cc.emeuesressrssnssssesssnsssssssssssssssssssssssssssssssnsssnsssssssasssassssansssnsssnssons R
FIGURE 8: PROCESS SENDINFOINITIATORcvvueevveeeescessnssesssesssesssesssssssssssssssssssssssssssssnsssssssassssasssassssansssnsssnnssens R
FIGURE 9: INIT PROCESS FOR SENDINFO CONVERSATIONoccvvuumevteneesssessssessssesssssesssssesssssesssssesssssesssssssssssnnsssnns 33
FIGURE 10: COMPLETE PROMELA CODE FOR SENDINFO CONVERSATIONvurivesrsesssssasssssesssssesssssssssassssens 34
FIGURE 11: M ESSAGE SEQUENCE CHARTc.vvuuivvussssssessssssssssssssssssassssssssssssssssssssssssssssssesssssessssssssssssssssssssssssssssens 35
FIGURE 12: M ESSAGE SEQUENCE TABLEuevvtessteesssrssnsssssssssssassssssssansssansssnssons 35
FIGURE 13: NEVER CLAIM FOR M ESSAGE SEQUENCE VERIFICATION.....cvuevvueeseeesessseesssnssssssssssssensssnssssnsssnssens 36
FIGURE 13: M ESSAGE TRACE OF MESSAGE SEQUENCE VERIFICATION......couievteeetesesesssessssssesssessssnssssnsssnssons 39
FIGURE 14: SPIN OUTPUT OF SENDINFO CONVERSATION......cvvuueeitenessssesssssesssssesssssessssssssssesssssesssssessssssssssannsssnns 41
FIGURE 15: SPIN QUTPUT OF DETECTED DEADLOCKoucvvuueerereesseessssessssssssssssssssssssesssssesssssssssssessssssssssssssssens 42
FIGURE 16: SPIN OUTPUT OF DETECTED NON-PROGRESS STATEc.oervieeessinssssessssssssssssssssssssssssssssssssasssssens 43
FIGURE 17: VERIFICATION DATA FLOW DIAGRAM......coorrvtereessssiessssssssssssssssssssssssssssssansssssssssssassssasssssnsssnsssnssons 45
FIGURE 18: CONVERSATION BETWEEN AGENTS...oevuureveresessssesssessssssssssssssssssssssssssssnssssnssssssasssessssansssnsssnssons 52
FIGURE 19: INITIATOR SIDE OF SENDINFO CONVERSATIONcocvuresteseesenesesssessssessssesssensssssssssnsssssssansssassssansesanss 53
FIGURE 20: RESPONDER SIDE OF SENDINFO CONVERSATIONccvvuueesseeesssssssssesssssesssssesssssesssssesssssesssssssssssnneses 54
FIGURE 21: PROMELA CODE OF SENDINFO CONVERSATION.......ucvvtueesssassssesssssesssssessssssssssssssssesssssesssssssssassssens 55

viii

AFIT/GCSIEENG/00M-12

FIGURE 22: QUTPUT FROM SENDINFO VERIFICATION RUN......rvveeerveeeeeesssssseessssnsesssssssesssssssessssssssssssnesssssaneees 56
FIGURE 23: TWO CONVERSATIONS WITH THREE AGENTS......ooorvvveeeeseseseeesssseessssssessssssesssssseessssseesssssnensssssnneees 56
FIGURE 24: INITIATOR SIDE OF COLLECT DATA CONVERSATIONc..rvvvuureeeeseesssseesssssesssssseesssssssessssssensssssnnnees 57
FIGURE 25: RESPONDER SIDE OF COLLECT DATA CONVERSATIONorevvemeesssseesssssesessssseessssssessssssssnsssssanness 57
FIGURE 26: PROMELA SOURCE CODE FOR COLLECT DATA CONVERSATION...........rmevveemresssssenessssssssssssnsssssaee 58
FIGURE 27: SEQUENCE TRACE OF COLLECT DATA CONVERSATIONccrvveeemereeesessssssesssssnesssssssesssssnsesssssannees 59
FIGURE 28: HIGHLIGHTED TRANSITION FROM COLLECT DATA CONVERSATION.......vvveerrreeeseeeesesenssessssessessanee 60
FIGURE 29: DEADLOCK M ESSAGES FROM M ESSAGE WINDOW.........covvvveeeereeeneesssssessssseessssssessssseesssssnenssessneee 60
FIGURE 30: M ESSAGE SEQUENCE CHART FOR SENDINFOAND COLLECT DATA CONVERSATIONS......c.vv.vonnee.. 61
FIGURE 31: M ESSAGE SEQUENCE TABL E FOR SENDINFO AND COLLECT DATA CONVERSATIONS......ccvvvvvnnne.. 61
FIGURE 32: INVALID MESSAGE SEQUENCE TABLEomerervseresssssessssssessssssesssssssssssssssssssssssssssesssssssassssssnsnees 61
FIGURE 33: INVALID MESSAGE SEQUENCE OUTPUTvoomreeeeeeeesssesssssasesssssseessssssssssssssessssssessssssessssssssssssnnnees 62
FIGURE 34: CONVERSATION WITH DEADLOCK CONDITION DETECTED.ccrveeesmeseseeeesessnessssssnessesssnessessnneee 63
FIGURE 35: CONVERSATION WITH UNUSED STATE DETECTEDooerveeeeeeesesseeesssseessssseessssseesssssseesssssnensssssnneee 63
FIGURE 36: CONVERSATION WITH UNUSED MESSAGE DETECTED...........rrevveeeeessssensssssessssssssessssssessssssssesssssnnnees 64
FIGURE 37: CONVERSATION ERROR M ESSAGES FROM MISLABELED TRANSITION........ovrvvveerereeeseesssesessesenne. 65
FIGURE 38: TIMING ERROR NOT DETECTED IN CONVERSATIONcccrvvvumeessessresssssssssssesssssssssssssssesssssssnsssssnnes 66
FIGURE 39: FLOATING STATE IN CONVERSATION.......vvveureeseresessssessssssneesssssseesssssssssssssssesssssnesssssnssssssnnssssssnnees 67
FIGURE 40: INCORRECTLY SPECIFIED GUARD CONDITION IN CONVERSATIONcorvveeerreeeenesesaeessssseessesenns 68
FIGURE 41: INTERACTING CONVERSATIONS DEADLOCKc.vveoreeeeseesesaeesssssesssssssesssssssessssssessssssssesssssssessssnnns 68
FIGURE 42: STATE TRANSITION DIAGRAM........cosrevveeeessseeesssseeesssansssssnsnees 70
FIGURE 43: M ESSAGE SEQUENCE CHARTc..cvvuumresseeseessnsssssnnness 71
FIGURE 44: AGENT STATE BASED INTERIOR (ROBINSON, 2000)........c...mmmrrruemressssrresssssssesssssesssssssesssssssnsssssnnes 73

AFIT/GCSENG/00M-12

ABSTRACT

As network bandwidth increases, distributed applications are becoming increasingly
prevalent. Systems using these applications are very complicated to build and must be
dependable. Software agents are ideal for breaking complicated problems into manageable
subtasks. Agent conversations, a series of messages passed between agents, are the cornerstone
of multi-agent systems and must be deemed correct before being placed into service. The
purpose of this research was to develop a formal methodology and technique to verify that the
communication protocols defined in a multi-agent environment were vaid. This was
accomplished by examining agent conversations before deploying the system. An additiona goa
of this research was to develop a proof-of-concept module for agentTool that automatically

verified some of the important properties identified in this methodology.

AFIT/GCSENG/00M-12

A FORMAL METHODOLOGY AND TECHNIQUE

FOR VERIFYING CONVERSATIONS

IN A CLOSED MULTI-AGENT SYSTEM

|. Introduction

As network bandwidth increases, the Air Force is fielding increasingly distributed Cl
gpplications. This is clearly delineated by visonary documents such as Joint Vision 2010
(Sndikashvili, 1999), and Air Force 2025 (Kelley, 1996). The common thread in each of these
documents is information superiority, which the Air Force believes will be the key factor to
success in the 21% century. Distributed systems such as those required by the Air Force are very
complicated to build, but must be dependable if the warfighters whose lives are at risk are going
to trust them. Therefore, software engineers must ensure that the system and its information
sources are robust, reliable, and secure. The Air Force's Office of Sientific Research is
sponsoring research in intelligent software agents because they believe software agents are the
appropriate mechanism for ddivering these capabilities to the user. Distributed agents are well
suited to applications that retrieve, filter, and summarize information as well as provide
intelligent user interfaces and planning. The size and complexity of such a worldwide-distributed
system will necessitate formal and rigorous approaches to ensuring the entire system will be
interoperable and secure.

Before a multi-agent system can be trusted to perform as expected, the communication

methods between the agents must be formaly verified. The verification process includes

AFIT/GCSENG/00M-12

checking for infinite loops, deadlocks, and other communication pitfalls that would prevent a
multi-agent system from completing its misson. This thess desgns and implements a
methodology using formal methods that verifies that a system of agents will communicate as
expected before a user deploys the system. Then, and only then, the user of the multi-agent
system can be assured the system will communicate as expected.
1.1 Background

Many agent-based systems consist mainly of single agents. These agents do not have the
capability to cooperate with other agents and jointly solve a problem. However, advances in
technology and programming languages have enabled software engineers to create systems of
multiple agents that “team up” to solve tough problems. It is apparent that agents in multi-agent
systems have to communicate in a distributed environment and pool resources to solve problems.

The best way for software devel opers to tackle complex, large, or unpredictable domains
is by breaking the problem into smaller, manageable tasks. Software agents can be used to solve
these small tasks while working together to solve larger problems. Katia Sycara has observed
that often agents must operate concurrently in a distributed environment to accomplish difficult
tasks (Sycara, 1998).

1.2 agentTool

Agents communicate with each other using patterns of messages called conversations.
Conversations may be structured and predictable, or they may be unstructured and dynamic.
Structured conversations can be modeled using state transition diagrams. Given a set of
conversation state transition diagrams, communication between agents can be smulated and dll
possible message combinations exercised. Using this approach, conversations are deemed valid if

the desired message sequence takes place between the communicating agents. This process of

AFIT/GCSENG/00M-12

deeming the conversations vaid or invalid is cdled verifying the agent conversations.
Conversations can be verified manudly (by a human andyst) or automaticaly (by intelligent
software and automated toals).

The software development environment, agentTool, is being created at the Air Force
Institute of Technology (AFIT) to address the need for a user friendly, robust tool for building
multi-agent systems. The tool is designed to be an integrated environment that allows a user to
graphicaly engineer a multi-agent system, verify the agent conversations with an automated
verification tool, and automatically generate the source code for the designed system. This allows
a user to specify a multi-agent system at three levels: domain, agent, and component. The
domain level is where agent classes and interactions are defined. The agent level is where the
internal agent architecture is defined. Lastly, the component level is where individua
components in the system architecture are defined. During the domain levd design, the
communications between agents are specified as conversations. The system uses an automated
verification tool and formal modeling languages to verify these conversations are valid.
Feedback is provided to the user indicating whether the conversation design is vaid. The
automatic verification of agent conversations and message sequences using forma methods is the
focus of this research effort.

The agentTool system incorporates the latest technology in multi-agent systems. A
designer uses pre-defined or user-defined components while building an agent system and
implements the system on various frameworks (Robinson, 2000). Users build agent systems with
graphical andlysis and design tools that are easy and intuitive to use (Wood, 2000). A knowledge

base preserves agent designs and components providing agentTool with reusability, robustness,

and extensibility (Rafael, 2000).

AFIT/GCSENG/00M-12

1.3 Problem Statement

Infinite loops, deadlocks, and other communication pitfals can wresk havoc in a multi-
agent system. Even worse, the system can appear to be working while an undetected catastrophic
problem exists. The chalenge is to explore paths that the conversation can feasibly encounter
and formally verify the conversation is valid. Once the conversations have been verified, the user
can trust the agents to communicate as expected.

Researchers a AFIT are currently developing agentTool. To ensure security and
interoperability, agentTool must be able to enforce protocol policy on a proposed system.
Therefore, the goal of this research isto develop a formal methodology and technique to verify
that the communication protocols defined in a multi-agent environment are valid. This is
accomplished by examining agent conver sations befor e deploying the system Anadditional goal
of thisresearch isto devel op a proof-of-concept modulefor agentTool that automatically verifies
some of the important properties identified in this methodol ogy.

1.4 Assumptions
The following are assumptions concerning agentTool, designed agents, and their

operating environment.

1) Agents designed in agentTool will be used in a closed environment. A closed
environment is one in which al participants are known and al conversations are
predetermined. An agent’'s behavior is predictable and agents communicate with

each other via conversations.

2) Agents can assume more than one role a a time, and can be involved in multiple

conversations at any given time.

AFIT/GCSENG/00M-12

3) Conversations can be started from within other conversations.

4) System variables can impact conversations in adverse ways. It is possible for an
external factor to prevent a conversation from completing, even though the
conversation is perfectly valid and has been verified. Therefore, it is assumed
agentTool will not be able to detect errors caused by system variables while verifying

conversations.

1.5 ThesisOverview
Chapter 2 provides a review of the relevant literature and research including formal
languages, automated verification tools, and the types of agent conversation properties that can be
verified. Chapter 3 specifies a methodology that takes a conversation specification and verifies it
using an automated tool. Chapter 4 describes the application of the verification methodology and

the prototype to agentTool. Finally, Chapter 5 presents conclusions and future work.

AFIT/GCSENG/00M-12

[I. Background

2.1 Overview
This chapter reviews verifiable properties of agent conversations, and some of the
languages and tools available for verifying properties of agent conversations. Section 2.2
explains how agents use conversations and how to model them. Why forma methods are needed
to verify conversations is covered in Section 2.3. Section 2.4 describes properties of agents that
are verifiable while providing smple examples of such properties. Findly, Section 2.5 presents
three forma languages and corresponding automated verification tools for verifying agent
conversations.
2.2 Multi-agent Systems and Agent Conver sations
Agents in a multi-agent environment should communicate with each other with structured
messages. This enables the users of the multi-agent system to have assurance agents will perform
as designed without unpredictably performing some unassigned task autonomoudy. The
structured segquence of messages is called an agent conversation. Granted, there are occasions
when agents are used in open environments where they may encounter any type of agent. In an
open environment, an agent must be able to dynamically construct its conversations. However,
this research is concerned with closed environments where agents are aware of their surroundings
and know who their fellow agents are. Perhaps most importantly, each agent knows how it is
supposed to communicate with its fellow agents. Whenever an agent sends or receives a
message, it passes through various states of a conversation. These states determine how the agent

behaves.

AFIT/GCSIEENG/00M-12

An agent conversation consists of an initiator side and a responder side. Both sides of
the conversation move through various states in harmony as the conversation develops.
Eventudly, both sides of the conversation will end up in its respective end state and the
conversation will be completed. It is the state transition diagram that alows one to visualize the
various states a conversation goes through and records the events that cause the conversation to
move from state to state.

Figure 1 illustrates one side of a conversation and Figure 2 illustrates the complimentary

side of the conversation. The two sides make up one complete conversation.

failure-transmission “send(information)
SendInfo : initiator

wait

. Asend(information)

knowledge

Figure1: Initiator Half of Conversation Sendlnfo (Del oach, 1999)

Sendinfo: responder wait

A

send(informatjon)

w [invaliddata]*failuretransmission

send(information)

validation
do: validate(information

Figure 2: Responder Half of Conversation Sendlnfo (Del oach, 1999)
The beginning state in a conversation is the “start” state. It is signified by a solid circle.
The final state in a conversation is the “end” state and is sgnified by a solid circle with aring
drawn around it. Each intermediary state is drawn as an unfilled rounded edge rectangle. The

state’'s name is inside the rectangle. Arrows between states indicate transitions between those

AFIT/GCSENG/00M-12

states and the direction of the transition. Labels on the arrows indicate the events and actions that
take place to cause a transition from one state to another. The transition labels follow Unified

Modeling Language (UML) notation. The labels are formatted as follows:

event - name(argunent |ist)[guard condition]/action-expression®*send-
cl ause

The label may contain some or al of this information. Each state may have more than
one entry point and exit point, but al exit points must be deterministic. Referring to Figure 4,
there are three states in the initiator side of the Sendinfo conversation. They arethest art ,wai t
and end dates. The trandtion from the start state to the wait state sends a
send(i nformation) message. The information is a parameter that is passed with the
message. The trangition from the wait state back to the wait state takes place when a
failure-transmi ssi on message is received while in the wai t state. This trangition receives
a failure-transm ssion message then sends a send(i nf or mati on) message before
trangitioning back to the wai t state. Findly, the transition from the wai t state to the end state
takes place when an acknow edge message is received whilein thewai t state. No messages
are sent during this transition and this side of the conversation ends.
2.3 Verifying Agent Conver sations Using Formal M ethods
Multi-agent software systems are difficult to build. Part of the research community
believes multi-agent systems should be open ended and conversations between various agents
should be dynamic and flexible (Sycara, 1998). Anocther part of the community believes agent
conversations should be predetermined and structured so that al possble variants of a
conversation are reproducible and verifiable (Harel, 1987). Some researchers have undertaken an
effort to develop formal approaches to assist the software developer in the analysis and design of

multi-agent systems (Holzmann, 1987). Fortunately, automated tool support is aso available to

AFIT/GCSENG/00M-12

assst with formal methods. Many tools have been developed that analyze concurrent systems.
These tools can also be used to verify agent conversations.

One of the smplest ways to verify agent conversations is with a technique caled
reachability analysis (Cleaveland, 1993). Automated tools are excellent for this technique. The
first step in using an automated tool is to model the conversation using a language accepted by
the tool. Some of the most popular languages to choose from are Communicating Sequential
Processes (CSP) (Hoare, 1985), Calculus of Communicating Systems (CCS) (Milner, 1989), and
Process Meta Language (Promela) (Holzmann, 1997). After modeling the proposed system using
the required input language, the user may provide logica formulae describing undesirable states
that the system should never reach. Given such formulae and the system description, the tool
explores every possible state the conversation may reach during execution and checksto seeif an
undesirable state is reachable. If so, the automated tool reports a description of the execution
sequence leading to the offending state. Using this approach, automated tools can find many
undesirable conditions such as deadlock and critical section violations.

Reachability andysis fals under a more genera type of verification called model
checking (Cleaveland, 1993). Using this approach, an analyst describes a conversation using a
design language, and then specifies properties the conversation should have as logical formulae.
These formulae define behaviors the conversation should, or should not have as it executes and
contains tempora operators enabling one to describe how a conversation behaves as time passes.
Using such atempora logic one can state properties such as the following:

The variable p will eventually become true

It is mandated that after p becomes true, g will become true and remain true

AFIT/GCSENG/00M-12

In the next section, an overview of communication system properties and the various

methods of describing system properties are provided.
2.4 Propertiesof Communication Systems

Properties of communication systems in genera fall under two broad categories. generic
and user-specified properties. Generic properties that are applicable to al communication
systems ae deadlock, infinite overtaking, and livelock. User-specified properties of
communication systems can be further broken down into safety and liveness properties.

2.4.1 Generic Propertiesof Communication Systems

2.4.1.1 Deadlock

A deadlock is a situation in which two computer programs sharing the same resource
effectively prevent each other from accessing the resource, resulting in both programs blocked.
When computer operating systems run only one program at a time al of the resources of the
system are available to this one program. However, when operating systems run multiple
programs at once, interleaving them with each other, programs can request resources

dynamicaly. This can lead to the problem of deadlock. Hereisavery smple example:

Program one requests resource A and receives it.

Program two requests resource B and receives it.

Program one requests resource B and waits for program two to
rel ease it.

Program two requests resource A and waits for program one to
rel ease it.

Now neither program can proceed until the other program releases a resource. The
operating system has a dilemma and cannot know what action to take. At this point, the only
dternative is to kill one of the programs. Learning how to handle deadlock situations has had a
magjor impact on the development of not only operating systems but also communicating systems

in general.

10

AFIT/GCSENG/00M-12

In agent conversations, deadlock can occur when both sides of a conversation wait to
receive a message that never arrives. This dilemma can happen many ways. The message could
be logt, an incorrect message could be sent, or the message could not be sent at al.

2.4.1.2 Infinite Overtaking

To demonsrate the concept of infinite overtaking, recal the infamous dining
philosophers example as portrayed by C.A.R. Hoare in his book, Communicating Sequential
Processes (Hoare, 1985). A round table has been prepared with five chairs containing five
philosophers and a bow! of pastain the middle of the table. Each of the philosophers has a fork
on the table between him and the other philosophers; thus, there are five forks in all. Before a
philosopher can eat, he must have a fork in each hand. This means that not al five philosophers
can eat at one time. Suppose a seated philosopher has a greedy left neighbor and a rather ow
left arm. Before he can pick up his left fork, his left neighbor rushesin, sits down, quickly picks
up his left and right forks, and has his fill of pasta. Eventudly he puts down both forks and gets
up to leave. Then the left neighbor gets hungry again, sits down, and quickly grabs both of his
forks before his right neighbor has an opportunity to pick up the fork they share. Since the
philosopher with the bottomless stomach can repest this cycle forever, the seated philosopher to
his right may starve to death.

One such agent-based scenario is where an agent requests information from a pool of
information brokers. If one of the brokers happens to be extremely quick, the remaining brokers
will never be able to answer any requests for information. The real loser in this scenario may be

the requester, for he may only get information from one source.

11

AFIT/GCSENG/00M-12

2.4.1.3 Livelock

Livelock is a gtuation in which some criticad stage of a task is unable to finish its
processing. This is because the users of this particular task continuously creste more work for
the task to do after the critical gage of the task has provided the requested service for them but
before the given task can clear its request queue. Livelock differs from deadlock in that the
process is not blocked or waiting for anything but has a virtualy infinite amount of work to do
and can never caich up. An example of livelock is that of an interrupt driven operating system. |If
too many interrupts arrive at the operating system’'s kernel and then continue to bombard the
kernel, the operating system will not be able to actualy service any of the interrupt requests
because it will spend all of its time processing the receiving of the interrupts. In other words, the
operating system is so busy receiving interrupt requests it cannot service any of the requests.

Agent conversations can also succumb to livelock. A broker agent could be inundated
with requests for information to the point where he could never respond to al the requests
because his time is spent processing the receipt of requests.

2.4.2 User-defined Properties of Communication Systems

It is easy to take a snapshot of a system and analyze its properties. However, often it is
more desirable to know if eventualy something will happen or conversely, that something will
never happen. This type of system property can be described using tempora operators. Many
properties of agent conversations can be expressed with temporal operators. For example, we
might want to know that if message A is sent to a recipient, eventually a reply will be received.
This property can be stated as “it is aways the case that eventually we receive a reply from the

recipient.” Thisis commonly known as message sequence verification.

12

AFIT/GCSENG/00M-12

Temporal logic is ssimply an extension of propositiona logic. The difference between the
two is that tempora logic has specid operators that alow for time. Amir Pnueli defines a
temporal operator caled the henceforth operator [] (Manna, 1992). An example of how this
operator would be used is[] p, read henceforth p or alwaysp. Therefore, [] p holds at postion q
if and only if pholds a postion q and dl of the following positions from now until
eternity.

Pnueli also defines atempora operator called the eventually operator <>. An example of
this operator is <>p, read as eventualy p. Therefore, <>p holds atpostionj if and only if
p becomestrue at some position g where g>=j .

The combination of tempora operators can be used to form many types of user-defined
properties. The next few sections accent the types of conversation properties that can be
expressed with temporal operators.

2.4.2.1 Safety Properties

Safety properties have the form “bad things will not happen.” These properties are
expressed by logical statements that the system state must satisfy at al times as well as pre and
post conditions. Preconditions reflect the state of a program before the execution of a set of
statements. Postconditions reflect the state of a program after the termination of a set of

statements.

2.4.2.1.1 Nonter mination

As an example of a user-defined safety property, consider the property of nontermination
of aconversation. A conversation is nonterminating if it never enters an end state. This property

can be expressed by the formula[] (@t er mi nal) .

13

AFIT/GCSENG/00M-12

2.4.2.1.2 Conditional Safety

An example of a conditiona safety formulais p->[]q. In this case, whenever the state
formula p becomes true, the state formula g must be true forevermore. Applied to an agent
conversation, if a sender of a message receives a reply acknowledging receipt of said message,
the sender’ s conversation will terminate and stay terminated.

2.4.2.2 Liveness Properties

Liveness properties have the form “good things will happen.” Examples of liveness

properties include termination or non-termination requirements in programs.

2.4.2.2.1 Guarantee Properties

Guarantee formulas state that some property will eventualy happen. They guarantee that
the event happens at least once, but make no promises of the event repeating. In fact, it doesn’t
matter if the event happens again, as long as it happens once. Therefore, guarantee formulas are
used to ensure events happen at least once in the lifetime of a program execution, such as
program termination.

An example of this property applied to an agent conversation is<> end. This means that
a conversation eventualy enters the end state and terminates. This concept is aso used to check
for the existence of livelock. If a process or conversation does not end when it is designed to end,
it is evidently caught in alivelock stuation.

2.4.2.3 Obligation Properties

Sometimes a safety or liveness property alone does not sufficiently describe the desired

state of the system or conversation. In this case, a combination of the two types of propertiesis

14

AFIT/GCSENG/00M-12

needed. An obligation formulaisaformulaof theform[]p || <>g. Asexpected, thisformula

states that either p holds at dl positions of a computation or g holds at some position.

2.4.2.3.1 Response Properties

An example of a response property is[] <>p. This property states that p can be satisfied
infinitely many times in the computation, but at least once. Applied to an agent conversation, a
response property would be used in the following scenario. A sender sends a message to a
receiver and waits a specified amount of time for an acknowledgment. If the acknowledgment

doesn’'t come, the message is sent again until an acknowledgment finally arrives.

2.4.2.3.2 Persistence Properties

Persistence properties are specified as <>[] p. This property states that al positions from
a certain point on in a computation or conversation will satisfy p. Persistence formulas are used
to describe the eventual stabilization of some state or property of the system or conversation.
These properties dlow an unspecified and varying delay until the stabilization occurs, but

mandate that after occurring, it must be continuoudly maintained.

2.4.2.3.3 Reactivity Properties

Reactivity formulas are formed by a digunction of a response formula and a persistence
formula[]<>p || <>[]g. Thisformula states that either p occurs infinitely many times or g
occurs dl but afinite number of times.

2.4.3 Summary

Many properties of systems can be verified with an automated verification tool, including

tempora properties. A system designer must first model the proposed system and then he can

smply define a system’s behavior over time using tempora formulas. Automated tools can then

15

AFIT/GCSENG/00M-12

search the entire state space of the system to verify that general communication faults are not
present and the described temporal properties hold true.
2.5 Formal Languages and Automated Verification Tools

This section provides an overview of three formal languages and three automated tools
that are used to model and verify communication systems. They are Communicating Sequentia
Processes (CSP), Failures-Divergence Refinement 2 (FDR2), Caculus of Communicating
Systems (CCS), Concurrency WorkBench (CWB), Process Meta Language (Promela) and Spin.
Together, these languages and tools help an analyst verify that a system design will perform
correctly.

2.5.1 Communicating Sequential Processes

C.A.R. Hoare first described CSP in a 1978 paper. The basic ideas from his origina
paper were later adjusted and updated to produce a more flexible version of CSP (Hoare, 1985).
As an example of CSP syntax, consider a clock that never does anything but tick. The keyword
CLOCK describes the process and the keyword t i ck describes an event within the process (Hoare,
1985).

CLOCK = (ti ck->CLOCK)

This smple example illustrates a CSP recursive moddl. CSP adlows the description of
systems as a group of individual processes, which communicate with each other over channels.
(Hoare eventually determined that component processes did not have to be sequential, but the
name was already established.)

The modularization of CSP fits the structure of many problems very well. With CSP, an

analyst models a system as a network of processes that communicate via messages aong

16

AFIT/GCSENG/00M-12

unidirectional channels. The transfer of messages between processes is synchronous, which
means the sending or receiving process stalls until the system transfers the message.
2.5.2 Failures-Divergence Refinement 2

FDR2 is atoal that alows an andyst to define a finite-state based system and then verify
the system is correctly designed (Lowe, 1997). It is based on the theory of Communicating
Sequential Processes (CSP). The theory of refinement in CSP enables a system engineer to
describe a wide range of correctness conditions, including freedom from deadlock and livelock as
well as safety and liveness properties.

Early versions of FDR could analyze systems with 10 states in a modest amount of time
on gtandard workstations. The most current version of FDR2 incorporates hierarchical
abstraction and compression routines that allow systems with very large state-spaces, (7°'°*) for
example, to be analyzed in minutes.

FDR2 is smple to use and has extensive debugging facilities to support system
development. If an error is detected during a verification process, FDR2 provides a description of
the system state at the point where FDR2 detected the error, as well as the sequence of events that
lead to the error.

2.5.3 Calculus of Communicating Systems

Raobin Milner's work on CCS developed from an experiment in 1972. While working in
the Artificial Intelligence Laboratory at Stanford, he tried to apply ideas learned while working
on sequential programming to a concurrent programming language. However, he found this was
not possible (Milner, 1989). One of the problems he ran into was because of an incorrect
assumption. One way to decipher a sequential program is as a mathematical function over system

memory states. If one knows the function corresponding to a particular program and the start

17

AFIT/GCSENG/00M-12

state, then one can figure out the end state. The only problem with this approach is that it
assumes the program has exclusive control of the memory. If something interferes with the
memory, then unpredictable states result.

Two programs that have the same function can behave very differently when subjected to
the same interference. Milner gives a simple example where two lines of a computer program
have exactly the same effect, in the absence of interference:

) x:=1 2) x:=0; x:=x+1

However, suppose some other process at some unpredictable moment performs x: =1.
Then the total effect of fragment 1 plus the other processes execution is different from that of
fragment 2 plus the offending process. In fragment 2, the value of x could be either 1 or 2,
depending on the given dtuation. This smple example demonstrates that in the presence of
concurrency or interference, programs do not have exclusive rights to memory, but instead
programs interact with each other while sharing memory.

This experiment prompted Milner to find an dternate theory in which communication
was the focus. In 1977 Milner learned of Hoare's work with CSP and realized that he and Hoare
both recognized that a new concept was needed, the concept of indivisible interaction. Milner
also started a concept called observation equivalence of processes. The theory of observation
equivalence was recorded in “A Caculus of Communicating Systems’, published in 1980
(Milner, 1989).

An example of CCS follows.

C
C (x)

in(x).C (x)
out(x).C

Milner points out that agent names like C or C can take parameters (Milner, 1989). In this case

C takes one parameter but C takes none. The prefix “i n(x) . ” means a handshake takes place

18

AFIT/GCSENG/00M-12

where a value is received at port in and the variable x becomes equa to that value.
in(x).C (x) isan agent expression. It is required to perform the aforementioned handshake
and then continue according to the definition of C . The satement, out (x) . C, isaso an agent
expression. This agent’s behavior is to place the value of x at port out and then continue
according to the definition of C.
2.5.4 TheConcurrency WorkBench

The Edinburgh Concurrency Workbench is an automated tool designed to manipulate and
analyze concurrent systems (Stevens, 1998). The CWB enables its users to check their systemsin
many different ways. The definition language for CWB is CCS. With CWB, users can perform
tests on specified systems such as reachability analysis and model checking. Users can aso
verify systems defined with tempora properties. CWB dlows users to interactively smulate the
behavior of an agent. This is accomplished by guiding the agent through its state space in a
controlled fashion.

2.5.5 Process Meta Language

Promela differs from the languages discussed thus far in that it is a modeling language.
As such, it is used to abstractly model communication protocols (Holzmann, 1997). Promela is
perfectly suited for modeling agent conversations. Conversations are modeled as processes,
conversation paths are modeled as channels, and variables that may be used in a conversation can
be defined and tested. All statements are either executable or blocked, waiting to execute.
Statements may be blocked if the statement is a conditional statement and the condition is false.
In this case, the statement blocks until the condition becomes true. This property provides a

means of synchronizing communications between processes by causing one process (a responder)

19

AFIT/GCSENG/00M-12

to wait on a message sent by another process (the initiator) while in a specific state. The
initiating process may also block while waiting on a reply from the responding process.

Promela processes are defined with the word pr oct ype. Thefollowing is an example of
aproctype declaration.

proctype ProcessA()

{
byt e newvari abl e;
newvari able = 3

}

The name of this process is ProcessA and curly braces encapsulate the body of the
declaration. Promela declarations can contain zero or many statements as well as local variable
declarations. The proctype declaration above contains one local variable declaration,
newvari abl e, and a single statement: an assignment of the value 3 to the variable
newvari abl e. In Promela, semicolons and arrows ‘- >’ separate statements. Therefore, in the
above example no semicolon is needed after the last statement. The arrow is sometimes used as a
way to indicate a causal relation between two statements. For example:

byte newvari able = 2;
proctype ProcessA()

{
(newvariable == 1) -> newvariable = 3
}
proctype ProcessB()
{
newvari able = newariable — 1
}

This example declares two processes, ProcessA and ProcessB. Since the variable
declaration newvar i abl e is outside al processes, it is a globa variable initidized to the value of
two. ProcessA contains two statements and ProcessB contains a single statement that

decrements newvar i abl e by one. An assignment is always executable, so Pr ocessB does not

block and executes immediately. However, if a condition is not true, then the process is blocked

20

AFIT/GCSENG/00M-12

until the condition becomes true. Therefore, ProcessA is blocked a the condition
(newvar i abl e==1) until the value of newvar i abl e isequa to one.

A proctype isonly a process. It canot run on its own. Something must start the
process running. Spin uses a process called i ni t to start other processes running. The i ni t
process is sSimilar to a main procedure in Java programs. An i ni t process declaration for the
previous example would look as follows:

init

{

run ProcessA();
run ProcessB()

}

In this example, the keyword r un kicks off the two processes. Parameters can also be
passed when invoking processes with the run statement. For example, run
ProcessA(paraneterl).

256 Spin

Spin is an automated verification tool from Bell Labs that operates on the Promela
modeling language. It is designed to verify software instead of hardware and has been used to
verify many digtributed systems and communication protocols (Holzmann, 1997). Spin will
detect deadlock, livelock, assertion violations, and many other communication centric errors.

Spin supports both synchronous and asynchronous communications by using channels to
pass messages and varying the channel buffer size. If the channel buffer size is zero, then the
communications are synchronous. If the channel buffer size is greater than zero, the
communications are asynchronous.

With Spin, many types of smulations are possble. A user may choose to perform a

random smulation, or a guided smulation. A user may aso choose to perform a verification that

21

AFIT/GCSENG/00M-12

exhaustively searches the entire state space of the model for errors. If Spin finds an error, the
user can then perform a guided smulation that will reproduce the condition that caused the error.
This technique is very hdlpful for finding and pinpointing errors in models.

Spin can aso catch correctness violations by checking for the existence of execution
sequences that abort because an assert statement has been violated. An assert statement
mandates that the asserted statement must remain true at all times.

To verify a system modd is correct, Spin uses three specialized Promela states and
anayzes tempora formulas like those mentioned in previous sections. End states, progress
states, and accept states are used aong with never claimsto verify models. These features will
be covered in the next few sections.

25.6.1 End states

If aprocess does not complete its processing before the system terminates, Spin flags the
process as being in an invalid end-state. Thisisacommon technique used to detect deadlock. If
a system designer designs a process so that it can stop without completing, then the process has to
be marked with an end label.

2.5.6.2 Progressstates

Spin uses pr ogr ess states to detect the presence of infinite overtaking by keeping track
of how often Spin executes a process labeled with a pr ogr ess label. Spin will produce an error
if it cannot execute a pr ogr ess labeled process an infinite number of times. In other words, any
process labeled with apr ogr ess label cannot remain blocked indefinitely from executing.

An example of the use of apr ogress labd is.

proctype ProcessA(){
do
chanAtoB!' p -> progress: chanAtoB?v
od}

22

AFIT/GCSENG/00M-12

The presence of the progr ess label requires the statement chanAt oB?v be executed
infinitely many times. The only way this statement can be executed infinitely many times isif the
statement chanAt oB! p can also be executed infinitely many times.

2.5.6.3 Accept states

The accept dtate is treated exactly the opposite as the pr ogr ess state and is used to
detect correctness of temporal property specifications. If Spin enters an accept dtate an infinite
number of times, an error is produced. A user can label a“trap” state with an accept label and
then Spin will check an infinite number of times if it can enter the trap state. If it can, then the
condition leading to the trap state has been met and Spin has succeeded in catching the error
condition.

The following process demonstrates the use of an accept state. This process should
eventudly block at the beginning of the statement chanAt oB! p. If this process did not
eventually block at this statement, then the process would run forever, and this would cause Spin
to produce an error. The accept state would be visted infinitely often because the process
would run forever, thus creating the error condition.

proctype ProcessA()
{ do
chanAtoB! p -> accept: chanAtoB?v
od

}

2.5.6.4 Never claims
Spin uses never claims to define temporal formulas. These never claims are then used
to check for undesirable or illegal state properties. Spin will produce an error if it finds any

execution sequence that ends where the never clam has terminated by reaching the closing

brace of its body. As detailed in an earlier section, Spin will produce an error if there is an

23

AFIT/GCSENG/00M-12

execution sequence that vists infinitely often an accept state. Combining never clams and
accept dsates, Spin can detect illega infinite (cyclic) behavior by labeling a block of statements
inanever clamwith an accept label, creating an accept state, and then checking the sel ected
statements an infinite number of timesto see if Spin can enter the blocked accept state.

2.5.6.5 Exampleclaim

If p and g are two boolean variables and the tempora claim is mede that “along every
computation, each system state in which p istrue is eventually followed by the case whenq is

true,” then the following never clam verifies whether there are any violations of the temporal

clam.
never
{
do
p -> break
skip
od;
accept:
do
o Ig
od
}

The first do loop terminates only when the variable p becomes true. According to our
clam, the variable g should eventualy become true. The second do loop (hence the never
clam) will never terminate and cannot be broken out of. The never claim continuoudy checks
the system state to see if g has become true. The never claim ether eventually blocks because
the variable q becomes true (which is the desired behavior) and the accept state cannot be
entered, or Spin continuoudly enters the accept state because q isnot true. If Spin can enter the

accept state without ever being blocked, thisis an error. Because Spin guarantees an exhaustive

24

AFIT/GCSENG/00M-12

search of the system state space, if there is any violation of our claim, Spin will detect it. If the
never claimendsin the accept state, then an error has been detected.
257 Summary

Each of the formal languages covered can accurately portray a system and describe the
system’s behavior. The difference in the languages is the ease of use and understandability of the
language, as well as the automated tools that support the language. Promela is a modeing
language, and thus resembles a programming language rather than a forma language. This
feature makes Promela easier to understand for most computer scientists.

All three of the automated verification tools covered here can verify a system is deadlock
free. They can aso verify safety properties and liveliness properties. The basic difference in the
systems lies in their input language. Therefore, the choice of which system to use depends

primarily on the choice of design language.

25

AFIT/GCSENG/00M-12

[11. Methodology

3.1 Introduction

Currently, the only way to formdly verify the agent conversations designed in a multi-
agent environment with an automated tool is for someone to trandate, by hand, the design into a
formal language and then run the verifier on this forma representation. Most people believe
formal methods are too difficult to understand and use in this manner (Hinchey, 1999). The
challenge then is to automatically generate the formal representation of a conversation from the
design in the multi-agent development environment. Then, using an automated tool, verify this
representation is free from undesiralble communication properties such as deadlock.

As dtated in Section 1.3, the god of this research is to develop a forma methodology and
technique to verify that the communication protocols defined in a multi-agent environment are
valid. This chapter outlines steps that can be used to apply this research to any multi-agent
development environment. Section 3.2 explains how an agent conversation is modeled with a
dtate transition diagram. Section 3.3 explains how the state transition diagram can then be
converted into a set of state tables. The task of creating a formal representation of the state
trangtion diagram from the state table is described in Section 3.4. The process of verifying the
forma representation with an automated tool is detailed in Section 3.5. Figure 3 is a top-leve
view of the overall process.

3.2 Modding Agent Conversationswith State Transtion Diagrams

According to Roger Pressman,

The state transition diagram indicates how the system behaves as a

consequence of external events. To accomplish this, the state transition
diagram represents the various modes of behavior (called states) of the

26

AFIT/GCSENG/00M-12

system and the manner in which transitions are made from state to state.
(Pressman, 1997)

Model Conversation
With A
State Transition Diagram

v

Convert State Transition
Diagran TO A
State Table

v

Create Forma
Representation From
State Table

v

Verify Formal
Representation With An
Automated Tool

Figure3: Top Leved View of Methodology

An agent conversation consists of an initiator side and a responder side. Both sides of
the conversation move through various states by sending and recelving messages. Eventualy,
both sides of the conversation should end up in their respective “end” states and the conversation
will be completed. It is the state transition diagram that allows us to visudize the various states a
conversation goes through and it records the events that cause the conversation to move from
State to state.

As shown in Chapter 2, Figure 4 illustrates one side of a conversation and Figure 5

illustrates the complimentary side of the conversation. The two sides make up one complete

27

AFIT/GCSIEENG/00M-12

conversation, which may be part of a much larger system (or set) of conversations. The
conversation is shown here again for easy reference.

The responder side of the Sendinfo conversation has four states and the transitions
complement the trangitions in the initiator side of the conversation. The next step in the modeling

process is to convert the above state transition diagrams into a state table.

failure-transmission “send(information)
Sendinfo : initiator

. ~send(information)

ackowledge

®

Figure4: Initiator Half of Conversation Sendlnfo

SendInfo: responder

send(informatipn)

[invalid data]*failuretransmission

. send(information) validation

do: validate(information)|

[validdata]*gdcknowledge

®

Figure5: Responder Half of Conversation Sendl nfo

3.3 Converting a State Transition Diagram to a State Table
A dtate table is a textual representation of a graphica state transition diagram. The
advantage a state table has over a state transition diagram is that it can be parsed easily. This

feature is critical when Promela source code has to be generated.

28

AFIT/GCSENG/00M-12

The date table is built from the trangition labels on the transition arrows of a state
trangtion diagram. The state table is smply an ordering of al the transitions possible in a state
trangtion diagram. The State table is ordered so al transitions pertaining to a particular state are
together. The state table also must begin with the Start state and end with the End state. Normal
state tables do not have these requirements, but they are necessary here for automatically building
Promela source code. The format of the state table should mirror that of the transition labelsin a
state transition diagram. However, each entry in the state table needs to know the state the
trangition is coming from and the date it is going to, even if it is the same state. One solution to
this problem is to add to the keginning of the state table entry the current state of the transition
while adding to the end of the entry the next state the transition will enter. The different fields of
the state table entry should be separated by a semicolon or some other character for ease in
parsing the table later. Figure 6 illustrates a state table using the Sendlnfo conversation in Figures
4 and 5. In this dtate table, a name is given to both halves of the conversation and this name
inserted at the beginning of each line. This naming convention will be used to creste Promela
code later on.

Sendl nf oResponder ; start State; send; nul | ;null;validationState

Sendl nf oResponder ; val i dati onState; null;invalidDat a;
failureTransm ssion; wait State

Sendl nf oResponder ; val i dati onState; nul | ; val i dDat a; acknow edge;
endSt at e

Sendl nf oResponder ; wai t State; send; nul |l ;null;validationState

Sendl nf oResponder ; endState; nul | ; nul | ; null;null

SendI nfolnitiator;startState;null;null;send;waitState

SendI nfolnitiator;waitState; failureTransm ssion;null;send;waitState

Sendl nfolnitiator;waitState; acknow edge; null; null;endState

Sendl nfolnitiator;endState; null;null;null;null

Figure 6: State Table of Conver sation Sendlnfo

Each line of the state table contains the following information: process name (consisting

of the conversation name and the participant’s name), current state, received message, guard

29

AFIT/GCSENG/00M-12

condition, transmitted message, and next state. Each entry in the state table must be unique to
prevent duplication of Promela code.

The dtate table provides a textual representation of the state transition diagram. The state
table is now used to build aformal representation of the state transition diagram by converting the
state table into Promela source code. The following section demonstrates how Promelais used to
model an agent’s conversation.

3.4 Creating Promela Code from a State Table

Modding a conversation with Promela is not as difficult as one would think. However,
creating the Promela code using as input a state table requires a method of parsing the state table
and automatically creating the source code. In this section, the Sendlnfo conversation is model ed.
Each Promela statement will be described asiit is used.

3.4.1 Message Type Declarations

The first line of Promela code needed is the message type declarations. Promela has a
type caled nt ype that alows a programmer to declare constants without assigning values to the
constants. The declaration looks like this:

m ype={fail ureTransm ssi on, send, i nval i dDat a, val i dDat a, acknow edge};

Promela does not dlow hyphens in declarations, thus the word f ai | ur eTr ansni ssi on
instead of failure-transm ssion. These vaues are found by searching through the state
table and creating a vector of messages by examining thereceived message, guard condition, and
transmit message fields.

3.4.2 Channel Declarations
The next declaration required is the channel the messages will use. Promela alows for

synchronous or asynchronous transmissions. The channel declaration looks like this.

30

AFIT/GCSENG/00M-12

chan busl = [1] of {ntype};

This declaration states that a variable busl is of the type chan, and it can hold one
message in its buffer. Only messages of type nt ype can be sent on this channd. If the[1] was
replaced with [0] , then no messages could be buffered and all messages would have to be taken
off the channel (received) before another message could be placed on the channdl (transmitted).
The channel declarations are determined by the number of conversations in the state table. If
only one conversation is in the date table, then only one channd declaration must be made.
However, if for instance three conversations are contained in the state table, then three channels
must be used to prevent messages from interfering with each other.

3.4.3 Process Declar ations (Proctypes)

The next step is to create processes that emulate each side of the conversation. Promela
has a construct called a proct ype that models each half of a conversation. Each process
contains al of the states for one side of the conversation. The processes are designed to begin in
the start St at e and end in the endSt at e, while moving from states only if explicitly directed
to do so. Figure 7 shows the proct ype declaration for the responder side of the Sendinfo
conversation, while Figure 8 shows the initiator side of the same conversation.

The keyword pr oct ype declares aprocedure. The state labels all end with acolon. The
do. . od loops trap the flow of control inside their respective states. Two ways to exit ado. . od
loop is with a got o statement or abr eak statement. The got o transfers control to another state
while the br eak just exits the loop and fals through into the next state. For obvious reasons, it is
unacceptable to fal into another state unless explicitly directed to do so. An exclamation point
(v) after the channel variable bus1 sgnifies the message send has been placed on the channel.

The arrow (- >) is a statement separator and serves as an implication symbol. If the statement

31

AFIT/GCSIEENG/00M-12

before the arrow is executed then the statement after the arrow is aso executed. The semicolon
(;) is dso a statement separator but carries no implications. Finally, a question mark (?) after the
channel variable bus1 signifies the message following the question mark is taken off of the

channel viaareceive action.

proctype Sendl nf oResponder ()
{
progressStart St at e:
do
busl?send -> goto progressvalidationState
od;
progressval i dati onStat e:
do
i nval i dDat a- >bus! fai | ureTransmni ssi on; goto
progresswait St at e
val i dData -> busl!acknow edge; goto progressendState
od;
progresswai t St at e:
do
busl?send -> goto progressvalidationState
od;
progr essEndSt at e:
do
br eak
od;

Figure 7: Process Sendl nfoResponder

proctype Sendl nfolnitiator()
{
progressStart St at e:
do
busl!send -> goto progresswaitState
od;
progresswai t St at e:
do
busl1?fail ureTransm ssi on-> bus!send; goto
progresswait St ate
busl?acknow edge -> goto progressendState
od;
progr essEndSt at e:
do
br eak
od;

Figure 8: Process Sendlnfol nitiator

32

AFIT/GCSENG/00M-12

3.4.4 Process Declarations (I nit)

Now that the processes representing the two halves of the conversation have been
modeled, a process needs to be created that will start the conversation processes running. This
process is called an i nit process. Figure 9 shows what the i ni t process looks like for the
Sendlnfo conversation.

init

{ atomc
{
run Sendl nf oResponder () ;
run Sendl nfolnitiator()
}
}

Figure9: Init Processfor Sendlnfo Conver sation

The keyword at oni ¢ mandates all statements enclosed within its brackets will be
executed without interruption by external processes. The keyword run starts the processes
running and these processes are run in parallel. Figure 10 shows the complete Promela code for
the Sendlnfo conversation.

3.4.5 Verifying M essage Sequences

Sequence diagrams (Rational, 1997) are beneficial for real-time specifications and for
complex scenarios. They show the explicit sequence of messages between agents and can exist in
ageneric form (all the possible sequences of messages) or an instance form (one actual sequence
consistent with the generic form). Sequence diagrams show the big picture in the grand scheme
of agent conversations.

Listing desired messages between conversations in a specified order creates a message
sequence. Sequence diagrams represent interactions among agents within a system to achieve a
desired operation or result. A graphical representation of a message sequence is called a message

sequence chart (Rational, 1997). Figure 11 shows a valid message sequence chart encompassing

33

AFIT/GCSIEENG/00M-12

two conversations (Sendinfo and CollectData) between three agents (Commander, Mission Cntrl,
and Data Collection). Not al of the messages that could be sent in these conversations need be

included in the message sequence chart.

nype = {failureTransnm ssion, send, invalidData, validData,
acknow edge};
chan busl = [1] of {ntype};
proctype Sendl nf oResponder ()
{
progressStart St ate:
do
busl?send -> goto progressvalidationState
od;
progressval i dati onStat e:
do
i nval i dData -> bus!failureTransm ssion; goto
progresswait St at e
val i dData -> busl!acknow edge; goto progressEndState
od;
progresswai t St at e:
do
busl?send -> goto progressvalidationState
od;
progr essEndSt at e:
do
br eak
od;
}
proctype Sendlnfolnitiator()
{
progressStart St at e:
do
busl!send -> goto progresswaitState
od;
progresswai t St at e:
do
bus1?fail ureTransm ssion -> bus!send; goto
progresswait St ate
busl?acknow edge -> goto progressendState
od;
progr essEndSt at e:
do
br eak
od; }
i nit
{ atomc
{ run Sendl nfoResponder();run Sendlnfolnitiator() }}

Figure 10: Complete Promela Codefor Sendlnfo Conver sation

34

AFIT/GCSENG/00M-12

Commander | | Mission Cnitr| | |DataCoIIection

send N
collectData >

return

<

send

Figure 11: Message Sequence Chart

M essage sequences are converted to atable smilar to a state table as shown in Figure 12.
The format of the message sequence table is Conversation Name; Conversation From
Participant; Conversation To Participant; Message. When checking for amessage sequencethe
sequence is defined in a Promelanever claim and checked for its existence. A never clamisa
specia type of process that is optional and, if it exists, is used to detect undesirable behavior. If a
message sequence defined in a never cam isfound, Spin will generate an error. Of course, this
is not really an error because we want to verify the sequence exists and the error condition has
confirmed the sequence does indeed exist. Figure 13 is the never claim for the message

sequence table of Figure 12.

Sendl nf o; Responder; I nitiator; send

Col |l ectData; I nitiator; Responder; collectData
Col | ect Dat a; Responder;Initiator;return

Sendl nfo; I nitiator; Responder; send

Figure 12: M essage Sequence Table
A key difference in the modeling of a message sequence and a conversation is the way

message events are detected. In a conversation, the channel that messages are transmitted on is
constantly monitored and messages must be placed on the channel and taken off the channel in a
predetermined order. In a message sequence, the channel is monitored but only desired messages

are detected.

35

AFIT/GCSENG/00M-12

Many messages may be placed on the channel and taken off the channel before a desired
message is detected as part of a particular sequence. Modeling sequences in this fashion provides

great flexibility in detecting message sequences that span multiple conversations.

never

{
St at e0:

do
Sendl nfo?[send] -> goto Statel
skip
od;
Statel:
do
Col | ect Dat a?[col | ectData] -> goto State2
skip
od;
St at e2:
do
Col l ectData?[return] -> goto State3
skip
od;
St at e3:
do
SendRawi nt el ?[send] -> goto State4
skip
od;
St at e4:
do
Sendl nf 0?[send] -> goto accept
skip
od;
accept:
skip

Figure 13: Never Claim for M essage Sequence Verification
The completed Promela source code is now saved and will be used as input for the

verification tool Spin. The verification of the Sendinfo conversation is covered in the next

section.

36

AFIT/GCSENG/00M-12

3.5 Verifying a Communication Protocol Using Spin

There are three steps in running Spin: 1) Compile the source code, 2) Generate the

analyzer files, and 3) Execute the analyzer.
3.5.1 Compilethe Source Code

Spin is invoked by passing it the file name of our Promela code. This command looks as

follows:
redir -o error spin -a verify

Theredir —o error portion of the above command uses a utility provided by the C
compiler that will redirect the output of the spin command to a file caled error. The -a
parameter generates a protocol specific analyzer. Spin’'s output is a set of C files, named pan
(protocol anayzer).

3.5.2 Generatethe Analyzer Files

The second step in running Spin is to compile the pan files with a C compiler to produce
the analyzer pan. exe), which is then executed to perform an analysis of the protocol. The
command required to compile the pan filesis asfollows:

gcc - DEBI TSTATE - DSAFETY -0 pan pan.c

The —o parameter guarantees an exhaustive state space search for errors. The -
DEBI TSTATE parameter uses a memory efficient bit state space method to prevent exhausting the
memory avallable on some machines. The —DSAFETY parameter decreases the overhead
associated with liveness properties when only checking for safety properties. In this case, the

check isfor deadlock, which is a safety property.

37

AFIT/GCSENG/00M-12

If checking for non-progress states, a different command must be used. It is not possible
for Spin to check for both deadlocks and non-progress states at the same time. The command
needed is as follows:

gcc -DNP -DBI TSTATE -0 pan2 pan.c

In this command, the —DNP parameter directs Spin to check for non-progress cycles
instead of deadlocks.

There is one more command that can be used to analyze a conversation. If a never
clam is used in the modd, then the -DSAFETY parameter cannot be invoked. Thisis because a
never claim can incorporate more than just safety properties. It is possible to check for a
message sequence with Promea/Spin using a never clam. Figure 13 is a message sequence
trace that contains the message sequence of Figure 11. The command that must be used when a
conversation is modeled thisway is as follows:

gcc - DEBI TSTATE -0 pan pan.c

Notice that the command is just like the command to check for deadlocks, but without the
—~DSAFETY parameter.
3.5.3 Executethe Analyzer
The third step in running Spin is to execute the andyzer. The pan files are compiled into
an executable file called pan. exe. The pan. exe file is the analyzer that when executed
analyzes the compiled protocol. The command to execute the analyzer is as follows:

redir —o output.txt pan.exe

This is the command to use when checking for deadlocks. When running the pan. exe

file, a trace file (verify. trail) iscreated if an error is found in the protocol. This trace file

38

AFIT/GCSIEENG/00M-12

can then be examined by Spin to pinpoint the location of the error. The command to generate a
sequence trace based on the trail file is as follows:

redir -o trace.txt spin -t -c verify

proc 0 = :init:

proc 1 = Sendl nf oResponder
proc 2 = Sendlnfolnitiator
proc 3 = Col | ectDatal nitiator
proc 4 = Col | ect Bt aResponder
proc 5 = Col | ect Dat al ni ti ator
proc 6 = Col | ect Dat aResponder
proc 7 = SendRawl nt el Responder
proc 8 = SendRawi ntel I nitiator
proc 9 = Sendl nf oResponder
proc 10 = Sendl nfolnitiator
gdp 0 1 2 3 4 5 6 7 8 9 10

SendI nf o! send
Sendl nf 0?send
Sendl nf o! fail ureTransm ssion
Sendl nf o?fai | ureTransm ssi on
. . Sendl nf o! send
SendRaw nt el ! send
Sendl nf o?send
Sendl nf o! fail ureTransni ssion
. . . Sendl nf 0?f ai | ureTransm ssi on
SendRawi nt el ?send
. . Sendl nf o! send
Sendl nf 0?send
. . Sendl nfo! fail ureTransm ssi on
SendRawl ntel ! failureTransm ssi on
Sendl nf o?f ai | ureTransmi ssi on
SendlI nf o! gen
Sendl nf 0?send
SendRawl nt el ?f ai | ureTransni ssi on
Sendl nf ol failureTransm ssion
Sendf o?f ai | ur eTr ansmi ssi on
Sendl nf o! send
Sendl nf o?send
Sendl nf o! acknow edge
. . Selnf o?acknowl edge
SendRaw nt el ! send
SendRawl nt el ?send
. . SendRawl nt el ! fai |l ureTransm ssi on
Col | ect Dat a! col | ect Dat a
SendRawl nt el ?f ai | ureTransmi ssi on
SendRaw nt el ! send
SendRawl nt el ?send
. SendRawl ntel ! fail ureTransmni ssi on
Col | ect Dat a?col | ect Dat a
SendRawl nt el ?f ai | ureTransnissi on
SendRawl nt el ! send
. SendRawl nt el ?send
Coldct Dat a! col | ecti onFai |l ure
SendRaw nt el ! fail ureTransmni ssi on
SendRawl nt el ?f ai | ureTransmni ssi on
SendRaw nt el ! send
. SendRawi nt el ?send
Col | ect Dat a?col | ecti onFai l ure
SendRawl nt el ! fail ureTransni ssi on
SendRawl nt el ?f ai | ureTransni ssi on
SendRawl nt el | send

NVMRONWNNNNWONNNWONNNNWONNNRRPRRPREPRPNRRPRPNRPRPRENRPRNRRRER

Figure 13: Message Trace of M essage Sequence Verification

39

AFIT/GCSENG/00M-12

The -t parameter directs Spin to follow the smulaion trail in the tal file
(verify.trail). The —c parameter tells Spin to put the smulation output in columnated order.
If checking for non-progress errors, the command to execute the analyzer is as follows:

redir -o newpan2.txt pan2.exe -|

In this command, the —I parameter tells the andyzer to find non-progress cycles. If
checking for a message sequence with a never claim that contains an accept state, then a different
command must be used. The command is as follows:

redir -o newpan.txt pan.exe -a

In this command, the —a parameter tells Spin to find accept ance cycles, which would
have been declared inside the never claim. Notethat anever claim can be declared without an
accept ance state. However, Spin appears to find an error faster if an accept ance state is
used.

3.6 Interpreting Results

The only thing left to do is display the out put . t xt file for any error messages, and if
there were any errors, thet race. t xt filefor the detailed trace. The output will list any errors as
well as the quantity of errors. Figure 14 shows an example of the Spin output with no errors.

The messages generated by Spin show that a full statespace search was performed for
assertion violations and invaid end states. The search reached a depth of 12 levels and found
no errors. This conversation model contained three processes, and none of them had states that
were unreachable during the simulations.

If errors were detected during the verification process, text files are created that contain
the detailed error information. |f a deadlock condition occurs, Spin generates an invalid end-state

error for each state that is deadlocked. If a state is never entered into, then Spin generates a non-

40

AFIT/GCSENG/00M-12

progress state error message. Findly, if a message sequence is not detected and an error
generated, then the message sequence does not exist and a true error is found. Figure 15 shows
the output generated by Spin when a deadlock condition is inserted into the Sendlnfo conversation
by changing one of the transmitted messages to a received message.

(Spin Version 3.2.4 -- 10 January 1999)
+ Partial Order Reduction
Ful | statespace search for:

never-cl aim - (none specified)
assertion violations +
accept ance cycl es - (not sel ected)

invalid endstates +
State-vector 28 byte, depth reached 12, errors: O
12 states, stored
1 states, matched
13 transitions (= stored+matched)
1 atom c steps
hash conflicts: 0 (resolved)
(max size 2718 states)
1.493 menory usage (Moyte)
unreached i n proctype Sendl nf oResponder
(0 of 24 states)
unreached in proctype Sendlnfolnitiator
(0 of 18 states)
unreached in proctype :init:
(0 of 4 states)

Figure 14: Spin Output of Sendlnfo Conversation

In this output, only one error is detected. However, it was an invalid end-state caused by
a deadlocked dtate in the conversation. Spin generated a file caled verify. trail that can be
used to recreate the message trace that caused the deadlock condition. This is very useful in
troubleshooting the condition that caused the error.

Figure 16 is the output generated by Spin when checking for non-progress states. Non-
progress states are detected if any state labeled with the keyword pr ogr ess isnot entered into.
This output did not detect any erors, but did note that two states in the procedure

Sendl nf oResponder and two states in SendlI nf ol ni ti at or were not reached. This error

41

AFIT/GCSENG/00M-12

was caused because the conversation was deadlocked, and thus the conversation could not
proceed to these states and compl ete the conversation.

pan: invalid endstate (at depth 5)
pan: wrote verify.trail
(Spin Version 3.2.4 -- 10 January 1999)
War ni ng: Search not conpl eted
+ Partial Order Reduction

Full| statespace search for:

never-cl aim - (none specified)
assertion violations +
cycl e checks - (di sabl ed by - DSAFETY)

invalid endstates +

State-vector 24 byte, depth reached 8, errors: 1
9 states, stored
1 states, matched
10 transitions (= stored+matched)
1 atom c steps
hash conflicts: 0 (resolved)
(max size 2718 states)

1.493 menory usage (Moyte)
Figure 15: Spin Output of Detected Deadlock

3.7 Summary
This chapter described the methodology used to verify agent conversations in a multi-
agent system. The process began by modeling the conversations using a state transition diagram.
The state trangition diagram was then converted into a state table where it was parsed into the
Promela modeling language. Findly, Spin was run against the Promela code and deadlock and
non-progress errors where checked for. Also demonstrated was how Promela and Spin could be
used to verify message sequences by declaring a never claim and checking for the existence of

the desired message sequence.

42

AFIT/GCSIEENG/00M-12

(Spin Version 3.2.4 -- 10 January 1999)
+ Partial Order Reduction

Bit statespace search for:
never-cl ai m +
assertion violations + (if within scope of claim
non- progress cycles + (fairness disabl ed)
invalid endstates - (disabled by never-claim

State-vector 32 byte, depth reached 16, errors: O

10 states, stored

2 states, matched

12 transitions (= stored+matched)

2 atonic steps
hash factor: 381300 (expected coverage: >= 99.9% on avg.)
(max size 2722 states)

3. 066 menory usage (Moyte)

unreached in proctype Sendl nf oResponder
line 21, state 21, "goto"
line 24, state 24, "-end-"
(2 of 24 states)
unreached in proctype Sendlnfolnitiator
line 38, state 15, "goto"
line 41, state 18, "-end-"
(2 of 18 states)
unreached in proctype :init:
(0 of 4 states)

Figure 16: Spin Output of Detected Non-progr ess State

43

AFIT/GCSENG/00M-12

V. Implementation

4.1 Introduction
Chapter 3 described how this research could be applied to a generic multi-agent
development environment. This chapter outlines the steps taken to implement the generic
methodology in AFIT's agentTool multi-agent development environment. Section 4.2 provides
an overview of how multiple conversations are verified usng agentTool. Section 4.3 steps
through three examples of how to verify multiple conversations. The first example will not
contain any errors. The second example will contain a deadlock condition and will contain non-
progress states (states that are not entered into). The third example will demonstrate how a
message sequence is verified. Finaly, Section 4.4 gives an analysis of the types of errors that are
detected and reported by agentTool, and perhaps more importantly, those errors that are not
detected and reported.
4.2 Verification Overview
In agentTool, a conversation takes place between two agents. Therefore, thefirst stepin
verifying a conversation is to create two agents and establish a conversation between them. After
the conversation is established, the two sides of the conversation must be defined. The agentTool
environment automaticaly creates a start state and an end state for each side of the
conversation. All the conversation designer must do is fill in the required states and transitions
for each side of the conversation.
The conversation definition process is repeated until al necessary conversations are

completed. The verification process is invoked by clicking on the Conmand pull down menu and

44

AFIT/GCSENG/00M-12

choosing the Veri fy Conversati ons option. Figure 17 is a Data Flow Diagram (DFD) of the
entire verification process.

Graphical
Operator State
Commands, . Transition X Promela
And Data Define Diagram Build Code Check
Conversations Conversation For Valid
State Table

Conver sation:

Promela
Highlighted
Statesand
Transitions

Provide
Feedback

Promela

Promela
Code

Figure 17: Verification Data Flow Diagram

The next section provides details of each process listed in Figure 17. After the
conversations have been verified, feedback is provided to the user by means of a text window that
contains useful and meaningful messages while highlighting states and transitions on the state
transition diagrams where errors have been detected. As often happens with source code and

compilers, a single error may generate many error indicators. For this reason, many states and
transitions may be highlighted when only one or two is actualy in error.

4.3 System Design

The conversation verification subsystem of agentTool was implemented using Java, text

files, and batch commands. Each step of Figure 17 is detailed below to demonstrate how the step
was actudly implemented.

4.3.1 Define Conver sations

Conversations are designed in agentTool using state transition diagrams. The diagrams

are built using graphical tools. Conversation states and transitions between states have properties

associated with them that are defined by the system designer. This part of the agentTool research
effort is documented in Wood's Thesis (Wood, 2000).

45

AFIT/GCSENG/00M-12

4.3.2 Build Conversation State Table

The state trangition diagram must be converted into a state table before automatically
generating Promela source code. Wood' s thesis addresses how the values for each state transition
are derived and astate table created. Each entry in the state table contains the conver sation name,
the participant, the current state, the received message (if it exists), the guard condition (if it
exists), the transmitted message (if it exists), and the next state. Every trangition in the date
transition diagram is mapped to an entry in the State table. The state table is actually a vector of
transitions that can be analyzed to build the Promela source code.

It is important the state table be ordered on conversation states so that al of a
conversation’s information is contiguous (sequential without interruption). Therefore, once a
state table has been created it is sorted so dl of agiven state’ s transitions are together in the table.

4.3.3 Build Promela Code

Chapter 3 explains the general process of automatically building Promela source code
from a state table. The process takes five steps. 1) declare nt ype variables, 2) declare
channel s, 3) build pr oct ypes, 4) build i ni t procedure, and 5) build never clam.

The Promela source code is saved in atext file. Before declarations can be made, the text
file must be created and opened. The name of the text fileissimply Goveri fy.

4.3.3.1 Declare mtype Variables

Received messages, guard conditions, and transmitted messages all must be declared as
mt ype variables. To find these variables, the state table vector is searched one transition at a
time and appropriate variable names added to a new nt ype vector. Every received message,
guard condition, and transmitted message is compared to the variables in the nt ype vector. If the

variable already exidts in the vector, it is passed over. However, if it does not exist in the vector,

46

AFIT/GCSENG/00M-12

it isadded. After one compete pass through the state table, the nt ype vector contains alist of the
m ype variables with no duplicates.

The nt ype declarations are the first entries in the Promela source code. The text string
mype = { isprinted dong with the contents of the nt ype vector delimited by commas. After
the nt ype vector has been printed, the declaration is completed by printing } ; and starting a new
line of the source code.

4.3.3.2 Declare Channels

Channels are the communication lines between two halves of a conversation. Therefore,
a channdl exists for every conversation in the state table. The channel declarations are made by
first printing the text string chan. Then the dtate table is searched sequentially and every
conversation name printed, comma delimited. The declaration is completed by printing = [1]
of {ntype}; and starting anew line of source code.

4.3.3.3 Build Proctypes

A proct ype declaration must be made for each side of a conversation. The state tableis
ordered so that dl the transtions for a conversation’s participant are together. The first
transitions are those from the start state and the last entry for each participant in the state table is
the end state transition.

The date table vector is read sequentially and only one pass through the vector is
required to create all the proct ypes. For each proctype declaration, the text proct ype is
printed followed by the conversation name concatenated with the participant's name. This
technigque creates a unique pr oct ype name for each side of every conversation. The initid line
of the declaration is finished with the text () and an opening brace printed on a new line. Each

state in the proct ype is declared by printing the text pr ogr ess followed by the state name and

47

AFIT/GCSENG/00M-12

finished with a colon. The next line of the state declaration contains the text do, which beginsa
do loop. Every line of text within the do loop contains the text :: followed by the proper
formatting of the transition. After al the transitions for a given state are printed, the do loop is
terminated by printing the text od;. After al the states have been printed, the proctype
declaration is completed by printing a closing brace. This process repeats until al proct ypes
have been generated.

4.3.3.4 Build init Procedure

Thei nit procedure is declared by printing the text i ni t followed by an opening brace
onanew line. The key word at oni c is then printed followed by another opening brace on a new
line. The state table is then read sequentially and a line printed for each conversation haf (two
entries per conversation). Each line contains the keyword run followed by the conversation
name concatenated with the participant name and ended with parentheses. Each r un statement
must be separated by a semicolon. After al the r un statements are written, two closing braces,
each on its own line, must be printed.

The i nit procedure is the last part of the Promela source code that is created unless
checking for a valid message sequence. Then, in addition to the above procedures, a never
claim must be declared.

4.3.3.5 Build Never Claim

A never clam followsthei nit procedure. It is declared by first printing the keyword
never followed by an opening brace on a new line. The never cam is built by reading a
message sequence table. There must be a state in the never claim for each entry in the message
sequence table. The states are declared by first labeling the state with the text St at e and

gppending to it an integer beginning with 0 and incrementing the integer by 1 for every new state

48

AFIT/GCSENG/00M-12

created. Each state label must end with a colon. Each state is made up of ado loop that contains
two entries.

The first entry is the channel name the message is expected to traverse appended with a
question mark to signify receiving a message on that channel. Appended to the channel name and
question mark is the message name enclosed in brackets. This method of detecting a message on
a channel alows unwanted messages to pass until the desired message is detected. An arrow is
appended to the bracketed message and a got o statement that directs the conversation to the
following state if the correct message is detected.

The second entry isaski p statement that keeps the never claim inthe current state until
the desired message is detected. The state declaration is finished by ending the do loop with the
text od; .

After al the states have been printed, an accept state must be declared. The accept
state traps the never clam until al the conversations have terminated. The accept state is
created by printing the keyword accept : followed by the keyword ski p on a separate line. The
never clam isthen completed by printing a closing brace. The completed Promela source code
isnow saved inthe text fileveri fy for use with Spin.

4.3.4 Check for Valid Conversations

When Spin is started, the Promela source code is first checked for syntactica errors.
Syntactical errors such asinvalid characters in variable names will cause Spin to generate an error
file that contains the error messages. |If after running Spin the error file contains messages, they
are displayed in the message window for the user to analyze. The command to run Spin against
the Promela source code created above is:

Spi n. exe —a verify

49

AFIT/GCSENG/00M-12

The —a parameter tells Spin to create an analyzer specific to the protocols specified in the
fileverify. Syntactica errors must be corrected before the conversations can be verified. If no
error messages are reported, Spin creates the appropriate files that can be used to generate an
executable analyzer.

4.3.5 Check for Deadlock

Once the analyzer files have been created, an executable anayzer file must be created.
This is accomplished by compiling one of the newly generated files (pan. c) into an executable
file (pan. exe). The command required is:

gcc. exe —DEBI TSTATE —DSAFETY —o0 pan pan.c

The gcc command invokes a standard C compiler. The —-DEBI TSTATE parameter uses a
memory efficient bit state space method to prevent exhausting the memory available on some
machines. The —DSAFETY parameter decreases the overhead associated with liveness properties
when only checking for safety properties. The —o parameter guarantees an exhaustive state space
search for errors.

Now pan. exe can be executed and the protocol specific files analyzed. The command
required for thisis Ssmply:

pan. exe

Spin displays the results of the analysis by default to the computer screen. However, the
output can be redirected to a text file by using a C utility, r edi r. The command to accomplish
thistask is:

redir —o output.txt pan.exe
The —o parameter is used by the redi r command and states the output should be

directed to the file out put . t xt .

50

AFIT/GCSENG/00M-12

4.3.6 Check for Non-Progress
The check for non-progress is smilar to that for deadlock. However, specia parameters
must be used because Spin cannot check for both deadlock and non-progress with the same
command. The command required is:
gcc. exe —DNP —DEBI TSTATE —o pan pan.c
In this command, the —DNP parameter directs Spin to check for non-progress cycles
instead of deadlocks. The newly created pan. exe must be executed to actualy perform the
anaysis, but the procedure is the same as in Section 4.3.5.
4.3.7 Check Valid Sequence
If checking for a valid message sequence, a dight modification to the deadlock check is
required. Since a never claim is declared when checking for valid message sequences, the check
cannot only be for safety properties. The check must now aso include checking for liveness
properties associated with the never claim. The command required is:
gcc —DEBI TSTATE —o pan pan.c
The command is exactly like the check for deadlocks except the -DSAFETY parameter is
missing and cannot be used. The newly created pan. exe file must be executed to analyze the
protocol specific files and generate the appropriate output.
4.3.8 Provide Feedback
Feedback is provided to the system designer through a text based message window and
through graphica highlighting of the state transition diagram. When executing the pan. exe file,
the output is redirected to a text file. The contents of the text file are then copied into the
message window enabling the system designer to see the results of the analysis. Sometimes the

Spin output is difficult to interpret for novice users, so the output is automatically parsed and

51

AFIT/GCSIEENG/00M-12

states and transitions are highlighted to assist the user in locating errors. During the verification
process, a vector containing al known deadlock transitions and non-progress states is created and
used to highlight the state trangition diagrams.

4.4 Examples
4.4.1 Conversation without Error

The first step in verifying conversations is to build the conversations. Figure 18 is an
image of agentTool showing a system with two agents and a conversation between them.

EC_,J agentTool - O] =]

System Command

Currently Selected |Conv.Sendlnfo

rKMMM“TCOWSendInfo Initiator rCnmSendlnfn Responder

Add Agent |
Agent1 Agent2
Add Comv 1 Sendinfo R

Select IMITIATOR
Select RESPONDER
Croreversation Added

Figure 18: Conver sation between Agents

The only properties of the conversation a user can define from this screen is the name of
the conversation (Sendinfo) and the direction of the conversation (who is the initiator and who is
the responder). By clicking on the conversation line, two tabs appear. One tab is to define the
state diagram for the initiator and one tab for the responder.

By clicking on one of the two tabs, a new window appears that automatically provides a
start and an end state for the conversation designer. It is assumed every conversation has a
start and an end state. In thiswindow, designers add states and transitions to create a complete

state trangition diagram. Figure 19 is an image of the initiator side of the Sendlnfo conversation.

52

AFIT/GCSIEENG/00M-12

The complementary side of this state transition diagram is the responder side of the Sendinfo
conversation and is shown in Figure 20.

EC_,J agentT ool =] E3

Systern Command

Currently Selected |Conv.Sendlnfo

fngem Diagram I(info Initiaf '_:'_frComnSendlnfo Responder
Add State
Add Trans
Agend{information)
. wait

acknowledge

O

Select IMITIATOR

Select FESTOHDER
Copmrarestion Added
State Added

celect CUREENT State

select HEDT State
Tranition Added

select CURRENT State

select HMECT State
Traition, Added

Figure 19: Initiator Side of Sendlnfo Conversation

The SendInfo conversation is now completely specified and is ready to be verified. The
verification process is invoked by clicking on the Cormand pull down menu and choosing
Verify Conversations. A state table is created from the states and transitions of the state
transition diagram and this state table is used to create the Promela Code. Figure 21 is the
Promela Code created from this conversation.

The automated tool Spin is now invoked to check the syntax of the Promela code. If the
code is syntactically correct, Spin generates an analyzer to determine if protocol errors exist in the
conversation. The first check is for deadlocks. Spin determines if deadlocks exist by seeing if
either side of the conversation terminates while not having reached its end state. Spin cdls this
kind of error an invalid end-state error. If the conversation is deadlocked, a message is displayed

in a text window that tells the user exactly where the deadlock occurred. The offending state

53

AFIT/GCSIEENG/00M-12

trangtion is aso highlighted on the graphical state transition diagram. The highlighting can only

be removed by re-verifying the conversation.

1ies) oposi Tonl Mi=1E3
Ey=ien Command

Camreidly Sl ed !Clclrr\-I Serainio

Brked BR AT
Bl Trans . -
——= 3 G enimtgnimal ok
suiihiskpamarion}
i - R A
EI R — | - o W |
_i-TuHu-Fu_mnmlmu !‘ i |
T lidtighaed . k
Comgpioa vl al ackmenleige (el D ata Tatkm e T ransmss

Figure 20: Responder Side of Sendlnfo Conver sation

After the deadlock check is performed, the conversation is checked for livelock by
checking for states that are never entered. Spin calls this type of error a non-progress error
because the conversation has not made progress in these particular states. Again, if an eror
condition exists, a message is displayed in the text window telling the user exactly where the non-
progress states are and the non-progress states are highlighted on the state transition diagrams.
They remain highlighted until the conversation is re-verified. If a deadlock condition is detected,
a trace file is created by Spin that alows a smulation be run that pinpoints the location of the
error. This message trace is aso displayed in the text window to help the user to find the source
of the conversation errors. Figure 22 is the output messages displayed for the user when

verifying the Sendinfo conversation.

Since there were no errors in this conversation, no error messages were displayed and no
dates or transitions were highlighted. The next example will implement a conversation that has a

deadlock condition init.

54

AFIT/GCSIEENG/00M-12

nype = {send, acknow edge, failureTransm ssion, invalidData,
val idData };

chan Sendlinfo = [1] of {ntype};

proctype Sendlnfolnitiator()

{
progressStart St at e:
do
Sendl nfo! send -> goto progresswait
od;
progresswait:
do
Sendl nf o?acknow edge -> goto progressEndState
Sendl nfo?fail ureTransm ssion -> goto progresssel fLoop
od;
progresssel f Loop:
do
Sendl nfo! send -> goto progresswait
od;
progressEndSt at e:
do
br eak
od;
}
proctype Sendl nf oResponder ()
{
progressStart St at e:
do
Sendl nfo?send -> goto progressvalidation
od;
progressval i dation:
do
i nval i dData -> Sendl nfo!failureTransm ssion; goto
progresswait
val i dData -> Sendl nf o! acknowl edge; goto progressEndSt ate
od;
progresswait:
do
Sendl nfo?send -> goto progressvalidation
od;
progr essEndSt at e:
do
br eak
od; }
init{
atom c
{
run Sendlnfolnitiator();
run Sendl nf oResponder ()
}
}

Figure21: Promela Code of Sendlnfo Conversation

55

AFIT/GCSIEENG/00M-12

Prrrrrrril OUTPUT OF SPEN ANALYSIS thitrrrntd
Anal ysis Conpl eted... Evaluating Analysis...
kkkkkkhkk*k*k QJTPLJT FRGVI DEADL(I:K CHECK kkhkkkkkhkkk*kx
CONVERSATI ON | S NOT DEADLOCKED! ! !
*kkkkkkkkk GJ'I'PU'I' FRGVI PR(mESS CHECK Xk kkkkkkkk
CONVERSATI ON DOES NOT HAVE UNUSED STATES!!!
kkkkkkkk*k*kx QJTPLJT FRGVI SI NLJLATED RUN kkkkkkhkk*k*k

No trace avail abl e

Figure 22: Output From Sendlnfo Verification Run
4.4.2 Conversation with Error
The conversations shown thus far are error free. However, agentTool provides excellent
user feedback when errors are detected. In order to demonstrate agentTool’ s error detecting and
reporting capability, a new conversation must be created between two agents. Figure 23 shows

the new conversation and agent added to the previous example.

i g T 0l (=l
Byskin Command

Cinnmpribg Snfecind I|:,C|:|M' CpdimeiCts

nid Pgerd |
Agarni gtz
I Samidnt i
bt |) PR -
]
Coledilats
L
Againid

Figure 23: Two Conver sationswith Three Agents
The CollectData conversation must now be described. As before, there is an initiator

side and a responder side to the conversation. Figure 24 shows the initiator side of the

conversation while Figure 25 shows the responder side of the conversation.

56

AFIT/GCSIEENG/00M-12

.-.'.:q',ﬂlllf.ﬂl

I"Bystam Command
CunnniiiheSnlecind |Comw CoiecdCats |
oD oAb | el
Add Sme .
: [mvalidtana " fatl e T ans mission

el Trams ‘cmumm’ﬂu,mw’ b
) X o

LS]

FyTTr——
lex CITENENT B .
:1..:"':].1 [i cmllec homf el aaseig [waldilata] " ackmevde dge

Figure 24: Initiator Side of CollectData Conver sation

The initiator side of the CollectData conversation has an error in it. The trangtion from
the | ogFai | ure state that is labeled acknow edge is incorrect. As drawn, the trangition is
waiting to receive an acknow edge message before trangitioning to the end state. The transition
should be drawn so that it automatically sends an acknow edge message when in thewai t state
and then immediately trangitions to the end state. This incorrectly labeled transition will cause

the CollectData conversation to be deadlocked. Figure 26 isthe Promela code for the collect data

conversation.

Spsten Cammand
Carissty Seiscied CamsColactData
{ o Dlaaramn | Corvet AL o e e

| e | - e el S5

oot abeeag bacaliash -
ackrgwledge

Mhtllu-ﬁuﬂeﬁﬁum“|

wﬂu"'“ “"‘ — F,’
— | e |

Figure 25: Responder Side of CollectData Conver sation

by

Lt e | slbectinns e st}

57

AFIT/GCSIEENG/00M-12

nype = { validData, invalidData, failureTransm ssion, acknow edgegl | ectData, return,
col | ectionFailure, sensorFailure, novereailure, collectionConplete };

chan Col l ectData = [1] of {ntype};
proctype Coll ectDatalnitiator()
{

progressStart State:

do
:: CollectData! coll ectData> goto progresswaiting
od;
progresswai ting:
do

Col | ect Dat a?returnR> goto progressval i dateData
Col | ect Dat a?col | ecti onFai | ur€> goto progresslogFailure
od;
progressval i dat eDat:a
do
invalidData> Coll ectData!failureTransm ssion; goto progresswaiting
val i dDat & > Col | ect Dat a! acknowl edge; goto progressEndState

od;
progressl ogFai | ure:
do
;. Col | ect Dat a?acknow edge> goto progressEndSt a¢
od;
progressEndSt at e:
do
br eak
od;

}
proctype Col | ect Dat aResponder ()
{

progressStart State:
do
Col | ect Dat a?col | ect Data> got o progresscol | ecting

od;)
progresscol | ecting:
do
sensorFal ure -> Col |l ectData! col | ecti onFailure; goto progresswait
novenent Fai | ure> Col | ect Dat al col | ecti onFailure; goto progresswait
col | ecti onConpl ete> Col | ect Data! return; goto progresscol | ecti onConpl ete
od;
progresscol | ecti onConpl ete
do
Col | ect Dat a?acknowl edge> got o progressEndState
Col | ect Dat a?f ai | ur eTransmi ssi e got o progresssel f Loop
od;
progresswait:
do
1. Col | ect Dat a?acknow edge> goto progressEndSt ate
od;

progr ésssel f Lop:
do

Col | ect Data! return> goto progresscol |l ectionConpl ete

od;
progressEndSt at e:
do
br eak
od;
}
init
atom c
{
run Col | ect Datal nitiator()
run Col | ect Dat aResponder ()
}
!

Figure 26: Promela Sour ce Code for CollectData Conver sation

When the user verifies these two conversations, a message window appears that gives the

satus of the verification. As soon as the error is detected, the color of the text in the window

58

AFIT/GCSENG/00M-12

changes to red. Since a deadlock condition was detected, a trace file is created and the message
sequence trace is displayed in the message window. Figure 27 shows the sequence trace
generated by the deadlock condition.

The two trangitions that are deadlocked are also specified in the message window as well
as highlighted on the graphica state transition diagram. Figure 28 shows the highlighted
trangition for one side of the deadlocked conversation.

This method of feedback provides an excellent means for a user to identify problems in
conversations. Appendix A shows the entire contents of the message window after verifying

these two conversations. Figure 29 shows the deadlock messages that are displayed in the

message window.
proc 0 = :init:
proc 1 = Sendlnfolnitiator
proc 2 = Sendl nf oResponder
proc 3 = Col lectDatalnitiator
proc 4 = Col | ect Dat aResponder

g\ p 0 1 2 3 4

1 . . . Col | ect Dat a! col | ect Dat a
1 Col | ect Dat a?col | ect Dat a

1 Col | ect Dat al col | ecti onFai l ure
1 . . Col | ect Dat a?col | ecti onFai |l ure

2 . Sendl nf o! send

2 Sendl nf o?send

2 Sendl nf o! acknow edge

2 Sendl nf o?acknow edge

in: trail ends after 16 steps

#processes: 5

16: proc 4 (CollectDataResponder) line 92 "verify" (state 27)

16: proc 3 (CollectDatalnitiator) line 65 "verify" (state 24)

16: proc 2 (SendlnfoResponder) line 46 "verify" (state 24)
<val i d endst ate>

16: proc 1 (Sendinfolnitiator) line 25 "verify" (state 22)
<val i d endst ate>

16: proc O (:init:) Iline 114 "verify" (state 6) «<valid
endst at e>

5 processes created

Figure 27: Sequence Trace of CollectData Conversation

59

AFIT/GCSIEENG/00M-12

] aaent] ol
Syslem Cormmiand

Cumersly Sel=oied ilI-Dﬂ.I ColeciDala

it Pl & T8 v i1 s o
IT:i AellectTErebEmon, ocae)

T .
(waiting |- Ll >| —
I . « ST TTT—————
Dt Teclan e
et [e res S e — PraidDala]* gchnemledge
Brows Tlelidund
e
atrig

P

3 L)
feegh legfailore | ackiwledge - (@

Figure 28: Highlighted Transition from CollectData Conver sation

DEADLOCK CONDI TI ON EXI STS I N THE FOLLOW NG CONVERSATI ON:
Conversation Nane = Col | ect Data

Partici pant Name = Responder

Current State = wait

State Transition = acknow edge

DEADLOCK CONDI TI ON EXI STS I N THE FOLLON NG CONVERSATI ON:
Conversation Name = Col | ect Data
Participant Nane = Initiator
Current State = logFailure
State Transition = acknow edge
Figure29: Deadlock M essages from M essage Window
4.4.3 Message Sequence Verification
Once conversations are defined and verified, specific message sequences that traverse the
conversations can aso be verified. Currently agentTool does not have the capability to
graphically represent message sequence charts. However, message sequence charts can be
represented via message sequence tables. Message sequence tables are very similar to state tables
except the state information is not required. All that is needed is the conver sation the message is
apart of, the initiator and the responder of the message, and of course themessage. Figure30is
amessage seguence chart that can be verified using the above two conversations.

Figure 31 shows a message sequence table for the message sequence chart of Figure 30.

Before the message sequence can be verified, the conversations must be valid. Therefore, the

60

AFIT/GCSENG/00M-12

CollectData conversation must be corrected by changing the received acknow edge message

from thel ogFai | ur e state to atransmitted acknow edge message fromthel ogFai | ur e state.

Commander M CElement DataCollection

send(information)

collectData(sensor ,location)

Iq

return(data)

Figure 30: M essage Sequence Chart for Sendlnfo and CollectData Conver sations

Sendl nfo; I nitiator; Responder; send

Col l ectData; I nitiator; Responder; col | ect Dat a
Col | ect Dat a; Responder;Initiator;return

Sendl nfo; I nitiator; Responder; send

Figure 31: Message Sequence Tablefor Sendlnfo and CollectData Conver sations

As described in Section 3.4.5, a message sequence is verified by making a never clam
that states the desired sequence can never occur. Spin then tries to detect the message sequence,
and if it finds the sequence a never clam violation israised. Thisis a very efficient way to find
amessage sequence using a state space analyzer. Appendix B shows the message window output
after searching for the message sequence in Figure 31. If the message sequence is valid, a trace
of the messagesis provided to show how the sequence was found.

If the trace is not vaid, Spin will not be able to find the never claim. Depending on the
machine' s capabilities, verifying a message sequence does not exist may take quite a bit of time.
Figure 32 is a message sequence table that contains an invalid message sequence. The send
message in the CollectData conversation is invalid.

Sendl nfo; I nitiator; Responder; send

Col | ectDat a; I nitiator; Responder; send
Col | ect Dat a; Responder; Initiator;return
Sendl nfo; I nitiator; Responder; send

Figure 32: Invalid M essage Sequence Table

61

AFIT/GCSENG/00M-12

The results of the invalid message sequence verification are displayed in the message
window and are referenced in Figure 33.

PLEASE STAND BY... TESTI NG MESSAGE SEQUENCE. ..

Anal ysis Conpl eted... Evaluating Analysis...

*xxxxxkkxx OUTPUT FROM MESSAGE SEQUENCE CHECK *** %%k
MESSAGE SEQUENCE |'S | NVALI D! !I'!

xxxkkxxxsx SEQUENCE TRACE |'S AS FOLLONS *** %% %k x

Message Sequence Invalid... - No trace avail able

*kkhkkkkkkk*k*kx TESTI NG CC]VPLETED *kkhkkkkkkk*k*kx
Figure 33: Invalid M essage Sequence Output

Since the message sequence isinvalid, no trace exists.
45 Analyss

Spin can check for many types of errors (Holzmann, 1997). However, agentTool does
not currently provide the capability to check for all of them. This section will discuss what can
and cannot currently be detected.

45.1 ErrorsDetected

4.5.1.1 Conversation Deadlocks

Conversation deadlocksare detected if there are no intervening factors such as hardware
failures or timing problems. Thisis accomplished by performing an exhaustive state space search

for deadlock conditions.
Figure 34 shows a conversation with a deadlocked condition. The transitions causing the

deadlock are highlighted. The trangition on the initiator side of the conversation isincorrect in

62

AFIT/GCSIEENG/00M-12

that it should be labeled as transmitting an acknow edge message instead of receiving an

acknow edge message.

B T

hl'?l Cammand
Coronfy felecied i'.':r:!: :!HDH.: (ETIE LR R e LY
T — [ey — .l""'
Frere— ol s [m P
R Sluin A O R -
—— i — - | .. e T li:.' o T
it || SeteaDustskes, ool , o | e — T it
. L —— E
S — collechrg o o,
| el il " .
e s | i e i
|| it celeciiont-ail ojrsancn [e e [T sl
e Lt I “dn; g ot
et Sarbroz o Il]l 1 e v | e
s ¢ ¥ |
o ot | B~ :

Figure 34: Conver sation with Deadlock Condition Detected

45.1.2 Unused States

Unused states are detected by checking for non-progress loops. If astateisnot used, itis

not entered into and a non-progress error is generated.

Figure 35 shows a conversation with an unused state. The transition leading to the

unused state (St at e2) isnever enabled. The transition is waiting for a received message (c) that

never is sent by the other side of the conversation. Therefore, the state can never be entered into

and is highlighted to assist the system designer.

Fiee SN LT @l

~Hestam Gommand

Curenily Seloctod {CorComea 1
lgflﬁfl.ﬁirh e
A Fate
e i3 Stated
Add Trans
ol I
S Rl W
Addeg Treaction Stated | ng =
1ot ©UEREHT Sods =l 1
seled ITEMT 1 L.
Traa s
Beddrme T e,

Lo agumtT el
femmn. - Gammand

Curmemiig Ssuctod [ComComed |
Aot oo, ometane e | EaacEoA g |

i
+

O

Figure 35: Conversation with Unused State Detected

63

AFIT/GCSIEENG/00M-12

4.5.1.3 Unused M essages

Unused messages are detected when they are not taken off the message channel, thereby
leaving messages on the buffer. Since messages placed on the channel must be matched by a
receiving process that takes them off the buffer, any unused messages will generate deadlock
errors. This might not actually be a deadlock condition, but the error raised will generate enough
information for the user to identify the source of the problem.

Figure 36 shows a conversation with an unused message. The transition from Statel has

a transmitted message (b) that is not received by the other half of the conversation, thus causing a

blockage.
T = T H
Swglern Cormand Byzlern Cormmend
o sy G odectngl o onv
Ao o Coont s | Comacamit s
ol S il Some | =
: }[-
e Troom Al Toams | . k I !
il | __
s *
o Too wLE i Tacduiid L'
s \ Fundr i
Erca hoghl s ;’i', B Eeghibchiid Rt
Coagpist B [

Figure 36: Conver sation with Unused M essage Detected
45.1.4 Midabeled Transtions
Mislabeled transitions are detected when Spin isfirst run. If the syntax isincorrect, Spin
cannot compile the Promela code into the executable analyzer. Feedback is provided via a
message window when a syntax error occurs. Figure 37 shows the error messages generated

when an invalid character (?) is used in atrangtion.

64

AFIT/GCSENG/00M-12

4.5.1.5 Inability to Create Required Sequences

Inability to create required sequences is detected using never clams. The desired
message sequence is modeled using a never claim, and if Spin does not generate anever clam
violation, the message sequence does not exist. Section 4.4.3 describes how an invalid message

sequence is detected and Figure 33 shows the messages after detecting the message sequence

does not exist.

spin: line 1 "verify", Error: syntax error saw 'operator: ?'

spin: line 9 "verify", Error: syntax error saw 'operator: ?'

spin: line 25 "verify", Error: undeclared variable: a saw
near 'goto'

spin: line 29 "verify", Error: undeclared variable: b saw Y
near 'goto'

spin: line 41 "verify", Error: proctype Convllnitiator not found

1 mype ={ ?a, a, b };

2

3 chan Convl = [0] of {ntype};

4

5 proctype Convllnitiator()

6 {

7 progressStart State:

8 do

9 ?a -> Convlla; goto progressStatel

10 od;

Figure 37: Conversation Error Messagesfrom Midabeled Transition
4.5.2 Undetectable Errors
There are some communication errors that agentTool and Spin cannot currently detect.
These errors would be difficult for any automated system to detect; however, they are mentioned
here for completeness. There are plans to implement a syntax dhecker in agentTool that will
detect many of these errors such as state transition diagrams and guard conditions that are

incorrectly specified.

65

AFIT/GCSIEENG/00M-12

45.2.1 Timing Errors

Timing errors caused by system properties cannot be detected by Spin. The
conversations may be valid, but if a system property causes a conversation to pause indefinitely,
the complementary conversation is deadlocked until the system property alows the conversation
to continue. In this scenario, the conversations are valid and have been verified. Nevertheless,
the overal system will not perform correctly.

Figure 38 shows a conversation that is valid and verified. However, one of the transitions

(initistor sde from start state) contains a guard condition that, if it never becomes true, will

prevent the conversation from completing.

e | atpmn Tl
Fyztem Command

Eyctorn Command

—————

Curemtiy Sefocied !':-urr-'.':mvl
| g [BEEW—___ Comnel e Regsonds | | Mgem Dingrans | CorneComd miator | CoreCoim Fasponds

et & Vazing
Fn ilient e hghistiad 8
vetrra

Figure 38: Timing Error Not Detected in Conversation
45.2.2 Floating States
Floating states (states with no transitions) cannot be detected by agentTool and Spin
because they are not passed from agentTool via a state table to the verifier. If a state does not
have any trangitions, it is not included in the state table and it is non-existent as far as the verifier

is concerned. Figure 39 shows a state diagram created with agentTool that contains a floating

state. The conversation isvaid and the floating state is ignored.

66

AFIT/GCSIEENG/00M-12

45.2.3 Hardware Failures

Hardware failures that cause infinite conversation |oops cannot be detected by agentTool
and Spin. The conversations are vaid and have been verified, but if a sensor or other piece o
hardware continues to send the same message in the context of a valid conversation, the

conversation can become livelocked and the conversation cannot progress.

I agesiTool
Fy=tem Command Swalem Corvenan

Lol iy St (o Cormt P LR R E—— |

| Aot i e | Coinet il itk | Gon

| MddSiots
= - . | & emtea ThanBg*a._| Stated AT PR Ay
| memae | >|—| At Trams & 3 S

T L

e
r
ot Toal ¥ 8 'n-.ri State | gt T
b : —J Fraly W
Ebory haghlaghted Ezon hoghlghtsd I. \
Arasrilrs [

Vg

Figure 39: Floating Statein Conver sation

4.5.2.4 Guard Conditions

Guard conditions whose logic is specified incorrectly cannot be detected by agentTool
and Spin. If a guard condition is specified as part of a conversation, agentTool uses a figurative
representation of the guard condition to verify the conversation. |If the guard condition consists of
an agebraic formula that is written incorrectly, Spin will never know. Figure 40 shows a
conversation with a guard condition specified incorrectly. The logic iswrong (A>5 && A<5).

4.5.2.5 Interacting Conver sations Deadlock

Interacting conversations deadlock that results when two conversations are contending
for a common resource cannot be detected by agentTool and Spin. Even though the
conversations are vaid, they can deadlock waiting for the same resource. Figure 41 shows a

conversation where both sides are waiting on the same file, but neither can have access to it.

67

AFIT/GCSIEENG/00M-12

__u- ageniTeel

EHEH ik L

Iy St | Co e Camy
Agent Dagrom Camr Camnel Respander |

i itly S beeted armoony

o o | AR

s rons @ —emaere, B e || ®— 2 %
|

g Taod v T
- I‘
sy
[L2
Varsewra.

Figure40: Incorrectly Specified Guard Condition in Conversation

| Ewslern Cavenancd

Al R s

Canraiy Salesies |CorsCom s Cum sy Selecte Conconn |
e L Pt aqwn B | : |GV
e | | mmsmas
s Satat . | staes
AddTiaes | ® | | sl ® ey |
| '[’ Teal
r;rmws fi nh vl l
|| m e v e Ligtiga a'._
= —— -

Figure41: Interacting Conver sations Deadlock
4.6 SUmmary
This chapter has demonstrated how agent conversations can be verified n agentTool
using Promela and Spin. The input is via graphica state transition diagrams while the feedback
to the user is both graphical and textual. Many critical communication centric errors are detected
by agentTool and Spin. However, not al errors are detected by the automated tool so the fina

burden rests on the user to ensure the newly created multi-agent system is tested sufficiently.

68

AFIT/GCSENG/00M-12

V. Conclusions and Future Work

5.1 Introduction

The previous chapters of this thesis demonstrated how the conversations in a multi-agent
system could be automatically verified. This chapter summarizes the conclusons from the
previous chapters, and suggests areas of future work that will enhance and extend this research.

5.2 Conclusions

The previous chapters presented a methodology for automaticaly verifying multi-agent
conversations and a prototype implementing this methodology. The following sections present
conclusions obtained from this research.

5.2.1 Automatic Verification of Multi-agent Conver sations

The automatic verification of conversations is a five step process that takes a graphical
representation of a conversation via a state transition diagram, converts the state transition
diagram to a state table, and creates a formal representation from the state table which can be
formaly verified. Creation of the state transition diagrams and state tables are straightforward.
Cresdtion of the forma representation requires in-depth knowledge of the formal language used.
Spin is an excelent modeling language because it is designed to represent communication
protocols. Other formal languages may be used, such as Communicating Sequential Processes or
Calculus of Communicating Systems, but these languages are very difficult to understand and
adapt to agent conversations.

This methodology is appropriate for verifying conversations in a closed agent system,
where agents communicate through known and predictable state-based conversations. This

methodology can also verify message sequences exist given a set of conversations. Figure 42 isa

69

AFIT/GCSIEENG/00M-12

dtate transition diagram used to graphically define an agent’s conversation. Figure 43 is a
message sequence chart used to illustrate the possible sequence of messages involving potentialy
many agent conversations.

The following is a summary of the types of errors detected through this methodol ogy:
Conversation deadlocks are detected if there are no intervening factors such as
hardware failures or timing problems.

Unused states are detected by checking for non-progress loops.

Unused messages are detected when they are not taken off the message channel,
thereby leaving messages on the message buffer.

Midabded trangtions are detected when Spin is first run by executing a syntax
checker provided by Spin.

The inability to create required sequences is detected using never claims,

+ Bygern. . CoerenEed df=tem Command

TR SRl {1 e o e Curpanily Sxlecie |ComeComel

Figure42: State Transition Diagram

A few errors cannot be detected at this time using this methodology. The following is a
brief list summarizing undetectable errors:
Timing errors caused by system properties will cause valid conversations to

hang-up.

70

AFIT/GCSENG/00M-12

Floating states (states with no transitions) cannot be detected because they are not
passed from the graphical interface to the verifier.

Hardware failures that cause infinite loops cannot be detected.

Guard conditions incarrectly specified cannot be detected because the verifier
does not evaluate guard conditions.

Interacting conversations deadlock that results when two conversations are

contending for a common resource cannot be detected.
Commander M CElement DataCollection

send(information)

collectData(sensor ,location)

»

return(data)

Figure 43: M essage Sequence Chart
5.2.2 Implementation with agentT ool

With agentTool, agent conversations are modeled using state transition diagrams. These
state trangition diagrams are automatically converted into Promela source code and verified with
Spin. Feedback is provided to the system designer through text windows and graphical
highlighting of error conditions in the origind sate trangition diagrams. Although agentTool is
dill in development, it is a vaduable tool for asssting the multi-agent system developer in
building complex systems.

5.3 FutureWork
AgentTool verification can be made more complete by adding a syntax checker to catch

typographical and logica errors before attempting to verify conversations. Since agents designed

71

AFIT/GCSENG/00M-12

with agentTool are state-based, their designs should aso be able to be verified usng Promea and
Spin.
5.3.1 Development of a Syntax Checker

Programming language compilers such as C and JAVA contain a syntax checker to
ensure the programs written in their language are specified correctly. The syntax of agent and
conversation specifications made with agentTool should also be evaluated by a checker to ensure
they are written correctly. A syntax checker for agentTool would ensure 1) invalid characters
(such as !?@#) are not used in conversation specifications, 2) guard conditions are logically
correct, and 3) “do” actions required in conversation states or transitions are implemented in the
agent’s behavior. A syntax checker would also perform such tasks as ensuring at least one
message (transmit, receive, or both) is associated with a transition.

The Object Constraint Language (OCL), developed by Integrated Business Engineering
Language, IBM, is part of the Unified Modeling Language from version 1.1 on (Rationd, 1997).
OCL is based on standard set theory and is used to specify invariants on classes and types in the
class model, to describe pre- and post conditions on operations and methods, and to describe
guards. OCL can be used to write expressions that evaluate to t r ue or f al se, thusmaking it a
good choice for defining relationa agebra formulas.

IBM has written a parser for OCL that can perform some basic syntax checking. This
parser may be incorporated into the agentTool architecture and used to verify specifications
written in OCL are correct. Portions of agent and conversation specifications in agentTool are

written in OCL and should be verifiable with an OCL parser.

72

AFIT/GCSIEENG/00M-12

5.3.2 Verification of an Agent’s State-based Behavior
Since an agent’s behavior can be defined using state transition diagrams (Robinson,
2000), a system of agents can be verified by simulating the response agents have when receiving
and sending messages through conversations with other agents. Figure 44 shows an agent’s state

based interior.

Systam Command

Currenthy Selected (Agent Reactive

Agent Diagram |’ngem: Reactive |’cumponem Stat Diay |

| Add State
"receive 3 messagereceiveMsaimessage)
Add Tra_ns-

. Wait @

celect CURFENT State sendimessagedsend a message”
calect HENT State
Traneition Added

select CURFENT Stats

select HEDT State
Transition, Added State2
select CTTRREHT State

select HEOLT State
Trancition Added

4]

Figure 44: Agent State Based Interior (Robi nson, 2000)
This would be similar to the research performed in this thesis and many of the same techniques
reapplied.
54 Summary

This research addresses a critical need in the development of multi-agent systems,
automatic verification. Automatic verification brings together the skills of computer scientists
and mathematicians resulting in software that is more dependable and robust than previoudy
atainable with traditional software development tools. Software engineers no longer have to

hope their agent conversations will work as expected. Automatic verification, once thought

73

AFIT/GCSENG/00M-12

impossible to accomplish, is attainable and provides a muchneeded tool for multi-agent

development systems.

74

AFIT/GCSENG/00M-12

BIBLIOGRAPHY

Cleaveland, Rance. “The Concurrency Workbench: A Semantics Based Tool for the Verification
of Concurrent Systems,” ACM Transactions on Programming Languages and Systems,
15(1): 36-72 (January 1993).

Deloach, Scott A. “Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems,” Proceedings of a Workshop on Agent-Oriented Information
Systems (AOIS '99). 45-57. Seattle WA. May 1, 1999.

Hailpern, Brent T. Verifying Concurrent Processes Using Tempora Logic. New York: Springer-
Verlag, 1982.

Harel, David. “Statecharts: A Visud Formalism For Complex Systems,” Science of Computer
Programming, Volume 8 231-274 (1987).

Hinchey, M.G. and JP. Bowen. High-Integrity System Specification and Design. London:
Springer-Verlag, 1999.

Hoare, C.A. Communicating Sequential Processes. New Y ork: Prentice-Hall, 1985.

Holzmann, Gerard J. “The Mode Checker Spin,” |EEE Transactions On Software Engineering,
Volume 23, Number 5: 279-295 (May 1997).

Keley, Jay W. Air Force 2025. 2025 Support Office, Air Univerdity, Air Education and Training
Command. Air University Press, August 1996.

Lowe, Gavin and Bill Roscoe. “Using CSP to Detect Errorsin the TMN Protocol,” |EEE
Transactions on Software Engineering, Vol. 23, No. 10: (October 1997).

Manna, Zohar and Amir Pnudli. The Temporal Logic of Reactive and Concurrent Systems. New
York: Springer-Verlag, 1992.

Milner, Robin. Communication and Concurrency. New Y ork: Prentice-Hdl, 1989.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach. New Y ork: McGraw-Hill,
1997.

Raphael, Marc J. Knowledge Base Support For Design and Synthesis of Multi-agent Systems.
MSthesis, AFIT/ENG/OOM-21. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 2000.

Rational Software Corporation. Object Condraint Language Specification. verson 1.1, 1
September 1997.

Robinson, David J A Component Based Approach to Agent Specification. MS thesis,
AFIT/ENG/00M-22. School of Engineering, Air Force Ingtitute of Technology (AU),
Wright-Patterson AFB OH, March 2000.

Shdikashvili, John M. Joint Vision 2010. Joint Staff: Pentagon, 1999.

75

AFIT/GCSENG/00M-12

Stevens, Perdita. The Edinburgh Concurrency Workbench. User Manual. University of
Edinburgh, November 1998.

Sycara, Katia P. “Multiagent Systems,” American Association for Artificial Intelligence: 79-92,
(Summer 1998).

Wood, Mark F. Multiagent Systems Engineering: A Methodology for Analysis and Design of

Multiagent Systems. M S thesis, AFIT/ENG/00M-26. School of Engineering, Air Force
Ingtitute of Technology (AU), Wright-Patterson AFB OH, March 2000.

76

AFIT/GCSIEENG/00M-12

APPENDIX A: MESSAGES FOR ERROR
CONVERSATION

PLEASE STAND BY... TESTI NG CONVERSATI ONS. .
PTETITIILL OUTPUT OF SPIN ANALYSIS !Itititin]
Anal ysis Conpleted... Evaluating Analysis...
xxxxxxtxx% OUTPUT FROM DEADLOCK CHECK ***% %% %% %%
CONVERSATI ON | S DEADL OCKED! !
xxxxxxtxx% OUTPUT FROM PROGRESS CHECK ***% %% %% %%
CONVERSATI ON DOES NOT HAVE UNUSED STATES!!

kkhkkkhkkhkhkkk*k wTPUT FRGVI SI MJLATED RUN *kkkkkkhkhk*k

proc 0 = :init:

proc 1 = Sendlnfolnitiator
proc 2 = Sendl nfoResponder
proc 3 = CollectDatalnitiator
proc 4 = Col | ect Dat aResponder

q\p 0 1 2 3 4
1 . . . Col | ect Dat a! col | ect Dat a
1 Col | ect Dat a?col | ect Dat a
1 Col | ect Dat a! col | ecti onFail ure
1 . . . Col | ect Dat a?col | ecti onFai |l ure
2 . Sendl nf o! send
2 Sendl nf o?send
2 Sendl nf o! acknowl edge
2 . Sendl nf o?acknow edge
spin: trail ends after 16 steps

final state:
#processes: 5
queue 2 (Sendlnfo):
queue 1 (Col |l ectData):
16: proc 4 (Coll ectDataResponder) line 92 "verify" (state 27)
16: proc 3 (CollectDatalnitiator) line 65 "verify" (state 24)
16: proc 2 (SendlnfoResponder) line 46 "verify" (state 24) <valid

endst at e>

16: proc 1 (Sendlnfolnitiator) line 25 "verify" (state 22) <valid
endst at e>

16: proc O (:init:) line 114 "verify" (state 6) <valid endstate>

5 p.rocesses created
*xxxxxxxxx DETAI LED DEADLOCK | NFORMATI ON ** %% %% x %

DEADLOCK CONDI TI ON EXI STS | N THE FOLLOW NG CONVERSATI ON:
Conversation Name = Coll ectData

Partici pant Nane = Responder

Current State = wait

State Transition = acknow edge

DEADLOCK CONDI TI ON EXI STS | N THE FOLLOW NG CONVERSATI ON:
Conversation Name = Coll ectData

Participant Nane = Initiator

Current State = |logFailure

State Transition = acknow edge

77

AFIT/GCSIEENG/00M-12

xkxxxkkxxk* TEST| NG COVMPLETED *****x*%xx

Appendix B: Messages from Message Sequence
Verification

PLEASE STAND BY... TESTI NG MESSAGE SEQUENCE. . .
PTETITIILL OUTPUT OF SPIN ANALYSIS !Itititin]
Anal ysis Conpleted... Evaluating Analysis..
*xxxxxxxxx OUTPUT FROM MESSAGE SEQUENCE CHECK ****#%**xx
MESSAGE SEQUENCE | S VALID!!!

khkkkkhkkkkkk SEQJENCE TRACE |S AS FOLLOWS ***x %% %% %%

proc 0 = :init:

proc 1 = Sendlnfolnitiator
proc 2 = Sendl nfoResponder
proc 3 = CollectDatalnitiator
proc 4 = Col | ect Dat aResponder
proc 5 = Col | ect Dat aResponder
proc 6 = Col |l ectDatalnitiator
proc 7 = Sendlnfolnitiator
proc 8 = Sendl nfoResponder

g\ p 0 1 2 3 4 5 6 7 8
1 Sendl nf o! send
Sendl nf o?send
Sendl nf o! fail ureTransm ssi on
Sendl nfo?fail ureTransm ssi on
. Sendl nf o! send
Col | ect Dat a! col | ect Dat a
Sendl nf o?send
Sendl nf o! fail ureTransm ssi on
Sendl nf o?fail ureTransni ssi on
. . Sendl nf o! send
Col | ect Dat a?col | ect Dat a
Sendl nf o?send
Sendl nf o! fail ureTransm ssi on
. . Sendl nfo?fail ureTransm ssi on
Col | ect Dat a! col | ecti onFail ure
Sendl nf o! send
Sendl nf o?send
. Sendl nf o! fail ureTransm ssi on
Col | ect Dat a?col | ecti onFail ure
Sendl nfo?fail ureTransm ssi on
Sendl nf o! send
. Sendl nf o?send
Col | ect Dat a! col | ect Dat a
. Sendl nfo! fail ureTransm ssi on
Sendl nf o?fail ureTransni ssi on
Sendl nf o! send
. . . . Sendl nf o?send
Col | ect Dat a?col | ect Dat a
Col | ect Dat al return
Col | ect Dat a?return
Col | ect Dat al fail ureTransm ssion
Col | ect Dat a?fai |l ureTransm ssi on
. . . Col | ect Dat al return
Sendl nf o! send
Col | ect Dat a?return

NRENNNNNNRRRRNRRPRNRRPRNRRPRRNRRERRRNRRERER

78

AFIT/GCSIEENG/00M-12

spin: trail ends after 98 steps

final state:

#processes: 10
queue 1 (Sendlnfo): [send]
queue 2 (Col |l ectData):

98: proc
10 processes

(:never:) line 136 "verify" (state 26) <valid endstate>
reated

98: proc 8 (SendlnfoResponder) line 15 "verify" (state 10)

98: proc 7 (Sendlnfolnitiator) line 34 "verify" (state 11)

98: proc 6 (CollectDatalnitiator) line 56 "verify" (state 15)
98: proc 5 (Coll ectDataResponder) line 88 "verify" (state 28)
98: proc 4 (Coll ectDataResponder) line 83 "verify" (state 23)
98: proc 3 (CollectDatalnitiator) line 60 "verify" (state 24)
98: proc 2 (SendlnfoResponder) line 9 "verify" (state 3)

98: proc 1 (Sendlnfolnitiator) line 34 "verify" (state 11)

98: proc O (:init:) line 110 "verify" (state 10) <valid endstate>

c

*kkkkkhkkhkkk*k*k TESTI NG COVPLETED *kkkkkhkkkk*k

79

AFIT/GCSENG/00M-12

VITA

Captain Timothy H. Lacey was born on 26 October 1961 in Thomasville, Georgia He
graduated from Colquitt County High School in Moultrie, Georgia in June 1979. He entered the
Air Force' s enlisted force January 1983 and completed his undergraduate studies with a Bachelor
of Science degree in Computer Science, magna cum laude, in June 1991. He was commissioned
through the Air Force' s Officer Training School (OTS) in November 1992.

Captain Lacey’s first assignment was at Mountain Home AFB, Idaho as a Russian
smulator operator and maintainer in October 1983. In December 1989, he was assigned as a
computer programmer to Scott AFB, Illinois. While a Scott AFB, he completed his
undergraduate degree and received his commission through OTS. His first assgnment as an
officer was to Hill AFB, Utah in April 1993. There he was a programmer manager for the Air
Force Mission Support System used by pilots to preplan their flights. In November 1995 he was
assigned to Bolling AFB, DC and worked for the Defense Intelligence Agencies Engineering
Review Board. In July 1998, he entered the Graduate School of Engineering’'s Computer
Systems Engineering program, Air Force Institute of Technology. Upon graduation, he will be
assigned to AFIT/SC a Wright Patterson AFB where he will be in charge of the Information

Systems Branch (SCB).

80

AFIT/GCSENG/00M-12

REFOFT DOCUMBITATION PAGE mfg,a.-,.gmrm
Pl mepr-iey bl i ﬁh.-hﬂr-;—-_—_b-ubqi-hi-—hhl-h-l-_-l—-uq-hlqun——
m briturirey fral w__- :m il Clpmrirform bl Fapiarts, 137 W oo Pharmrs

Dmcdn Hiyh-dmy, ToHm 1104, Frimden U 1000 KO0, bl hi—nn—-nu-_-—n_ l:-q-pn.—.-hn-n.-n— Pamjmh (TNTH-T1 T}, Lrillminby ur, [T 3CNEIT.

T, DEENCT O UN LT Er-amass 2. FERJRT DOIE |2 FERJH e O O EST O MEFED

»azch 1000 hAsEr's Theaa
. TTE SNOSTENTE B FONONANORE Fa

ABROHAL }ETHODOILOGY AND TBCHHIQTTH BORWHRIEY ITH3
D0 e THICATIOIPRO TOCO L S IHLA BT TT- AGHNT HETWTHRO FbAEHT

5, AU THO R
Tnoty H. Tacey, Capain, TRAH

7. EFOFa oA AEC O N ERER el DADRESS e S ;

Afr Roros Tm dme of Technokopy R PO RT AU MEER
Gadme School.of Bogimeeting aml hA o peroenr [AFTT HE
2550 P Emeer, EmHmg g4

WRAEE OH 45dII-T785

ARLT S HEOH0RE 1

1o,
LFAENCYFEFRORTMUMER

BB R i 10,

baj Scomd. Delcach HMNE, DEMITES-IS0G, mxc gl

[T TETRET O GUGI EE T Tra T TERENT TH TaTREI TN e
ARRDWHD BORTFOELL RHLHASH, DISTRIET IO THLIWITHD.

1= BESTROCT pHbsmaas A pomal

A3 e paock taxdhail th increases, da mboed applica dom are broonnng irreasmply proalenr 2y enn ming dese

apptica fom are 1ery conpiaed o hoH amd omcbe deperdatie. 2ofoanre apens are deal forbeaking oo ed
pobern e ram pratle snbanla. Apenrcomenaiom, 2 wroes of ne1sa pes passd eraeen apenn, are de comen ooe of
nml-a penrayr exd aml oo cbe deered coecr befae being phosd Ine =nace. T porprae o do ramrchom o
derelpa formmlre hedolpy and echmqoe o 1enfy dor de conmmmies don poccch defind ina nmld-a poremdrommene
waere wald, Thi vas acconoph bed by exancining ap=nr comena m before depbying de 1y e Anadditeom] pralof do
maearchamy pdevekpa proof-of-ooceprocd de for 2 proToo] de aooom aaly vented 1owe of de Do anrpoperoes
Henrfied m i e hedolopy.

In e emd, did Eiearch prodneed a e dodolopy for anoam AT verifying coena tom am e ne bedology wans

mperened in g a peniToclsofoanre e b nmemaommenr Ingroenens am fomre otk s aho moomemed as
a ranliod tin effoac

14 FTEIECT TEFRG TS NUREFCF FRdES |
Apenn, Comerafsm, Bommlwentis don, Ea e TEmiken D pans, broneh, Spm, oI
apﬂmlmaib-:k.u.tb-:kmﬁmm;l bfilt-a prorBms oI Ny, ATUCIE e 15, PACE GOLE
Werifea non, ATCTm oo, Eb:l:n:n.'l.,l-.-.f_ua :Em:l'l:u.-:'l-:,:Eh::-:-n En:nﬂu
(T ECTATT CLOSAFIGO O | . LTI ST TOR OF GEAT R |
0OF FEFADFRT l:IF THS POdE l:IF LESTRACT
T AZETHIHD T ASETHIHD THCLALETHIHD oL
Sedlad Farn IEE IIFh.- A== 50 (Ha)

Premle b RHEI
Sl mpem— —bqr--mnqumn-in

81

